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Simple Summary: Animal-associated staphylococci have been isolated in human infections. There-
fore, these strains may pose a zoonotic risk in addition to constituting a reservoir for antimicrobial
resistance genes. In this study, we isolated Staphylococcus aureus and other species of staphylococci
from camels used for recreational activities in the Canary Islands. Most S. aureus lacked the an-
timicrobial resistance genes, but some staphylococci species carried the mecA gene which confers
resistance to methicillin. The carriage of this gene conferring resistance to methicillin in staphylococci
isolated from camels may be a public health concern since there is a risk of bacterial transmission
to humans during recreational activities. Furthermore, since the Canary Islands are the only camel
exporter to the European Union, camels could constitute a source of zoonotic agents to the rest of the
European countries.

Abstract: Several different species of animals host staphylococci as normal microbiota. These animals
can be a source of staphylococci zoonotic infections. People with routine or occupational exposure to
infected/colonized animals are at risk of a potential transmission. Therefore, we aimed to investigate
the presence of S. aureus and other staphylococci in camels used for recreational purposes as well
as their antimicrobial resistance, virulence factors and genetic lineages. A total of 172 samples were
collected from 86 healthy camels (nose and mouth) from different farms located in the Canary Islands,
Spain. Antimicrobial susceptibility testing was performed against 14 antimicrobial agents. The
presence of virulence genes was studied by PCR. Multilocus sequence typing, spa typing and agr
typing were performed in all S. aureus isolates. From the 86 camels tested, 42 staphylococci were
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isolated, of which there were 11 S. aureus, 13 S. lentus, 12 S. sciuri, 3 S. xylosus, S. epidermidis, S. hominis
and S. chromogenes. Staphylococci isolates were resistant to penicillin, ciprofloxacin, clindamycin and
fusidic acid. All S. aureus isolates harbored the hla, hlb and hld virulence genes. S. aureus isolates were
ascribed to three sequence types (STs) and three spa types. All S. aureus isolates belonged to agr type
III. Camels from Gran Canaria used in recreational purposes have a moderate prevalence of S. aureus
and other coagulase-negative staphylococci. Nevertheless, S. aureus isolates are susceptible to almost
all antibiotics tested.

Keywords: Staphylococcus aureus; coagulase-negative staphylococci; methicillin-resistant; camels;
antimicrobial resistance

1. Introduction

Camelids belong to the Camelidae family which comprises the genera Camelus, Lama
and Vicugna [1]. The genera Camelus includes the species Camelus dromedarius, which is
the one-humped camel, and the species Camelus bactrianus, the two-humped camel [1,2].
C. dromedarius is common in Africa, the Middle East, Asia and Australia, while C. bactrianus
is dispersed in Central Asia, China, East Kazakhstan and Southern Russia [2,3]. In 2020,
the camel population was 3,552,527 worldwide, with C. dromedarius accounting for approx-
imately 90% of all camels [1,4]. Although Africa contains the largest population of the
one-humped dromedary, since 1989, the Canary Islands have been the only region that pro-
vides dromedary camels in the European Union [5]. In 2013, the population of camels in the
Canary islands was just under 1300 [6]. Camels were mainly used as a source of meat, milk,
transportation, agricultural work and racing [7]. However, recently, camel-based tourism
has become one of the main attractions in several countries which includes camel riding,
trekking, excursions and picture taking [8]. These camel–human close interactive encoun-
ters may lead to the transmission of zoonotic agents [5]. Several studies have shown that
camels are carriers of many important pathogens such as Salmonella, extended-spectrum
beta-lactamase-producing Escherichia coli and Pseudomonas aeruginosa, Enterococcus spp. and
Staphylococcus aureus [4,5,9–11].

The genus Staphylococcus currently comprises 81 species and subspecies [12]. Both
S. aureus and coagulase-negative staphylococci, such as S. epidermidis, are commensals
that colonize the skin and mucosal membranes of humans and several animal species [13].
Studies have shown that camels can also be colonized by S. aureus, reporting high carriage
rates of around 55% [14,15]. The presence of other species of staphylococci, particularly
methicillin-resistant staphylococci (MRS), has not yet been studied much in camels [14].
Furthermore, the prevalence of S. aureus and MRS has not yet been studied in camels
from Europe. Staphylococci are also opportunistic pathogens that can acquire resistance to
several or all classes of antimicrobials, threatening the ability to treat common infections [16].
Methicillin-resistant S. aureus (MRSA) is part of the World Health Organization global
priority list [17]. Contrary to coagulase-negative staphylococci (CoNS), S. aureus produces
a wide range of toxins that can act as virulence factors [18]. Nevertheless, lately, there was
an emergence of nosocomial infections caused by CoNS which was more often observed
in vulnerable patients with an increased risk for infections [19]. Staphylococci have been
isolated from a wide range of hosts and environments including humans, livestock, pets,
wild animals, air and surface waters [20–25]. Animal-associated staphylococci have been
reported as infectious agents in humans. These strains pose a zoonotic risk in addition
to constituting a reservoir for antimicrobial resistance genes [26]. Therefore, we aimed
to investigate the presence of staphylococci in one-humped dromedary camels from the
Canary Islands and to characterize the antimicrobial resistance, virulence and genetic
lineages of the isolates.
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2. Materials and Methods
2.1. Animals and Bacterial Isolates

Samples were collected from the nostrils and buccal mucosa of 86 one-humped camels
from the Canary Islands, making a total of 172 samples as previously described [27].
Samples were collected from 37 camels from Gran Canaria in June 2019 and from 49 camels
from Fuerteventura in November 2019 (Figure 1). All camels were domesticated and used in
recreational activities. The swabs were placed into tubes containing BHI broth (LiofilChem,
Via Scozia, Italy) with 6.5% of NaCl and incubated at 37 ◦C for 24 h [28]. Then, 150 µL of
inoculum was seeded onto Oxacillin Resistance Screening Agar Base Selective Supplement
agar (ORSAB; Oxoid, Basingstoke, UK) supplemented with 2 mg/L of oxacillin and Baird-
Parker agar (Oxoid, Basingstoke, UK) plates for methicillin-resistant staphylococci (MRS)
and S. aureus isolation [28]. Up to 4 colonies showing different morphological characteristics
were isolated from each plate. Confirmation and identification of staphylococci genera and
species were conducted using MALDI-TOF MS [29].
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2.2. Phenotypic Antimicrobial Resistance

Susceptibility to antimicrobial agents was carried out according to the Kirby–Bauer
disk diffusion method against the following 14 antimicrobials (in µg/disk): penicillin
G (1 unit), cefoxitin (30), chloramphenicol (30), ciprofloxacin (5), clindamycin (2), ery-
thromycin (15), fusidic acid (10), gentamicin (10), kanamycin (30), linezolid (10), mupirocin
(200), tetracycline (30), tobramycin (10) and trimethoprim/sulfamethoxazole (1.25/23.75).
The results were analyzed according to the criteria of the European Committee on An-
timicrobial Susceptibility Testing (EUCAST) 2018 except for kanamycin that followed the
Clinical and Laboratory Standards Institute (CLSI) 2017 guidelines [30,31]. The reference
strain S. aureus ATCC25923 was used as a quality control strain.

2.3. Antimicrobial Resistance and Virulence Genes

DNA extraction was performed as previously described [32]. According to the phe-
notypic resistance profiles, each isolate was screened for the presence of resistance genes,
which included the penicillin resistance gene blaZ, the methicillin resistance gene mecA, the
macrolide and licosamide resistance genes ermA, ermB, ermC, ermT, mphC, msr(A/B), lnuA,
lnuB, vgaA and vgaB and the fusidic acid resistance genes fusB, fusC and fusD (Table S2).

All isolates were subjected to PCR for the detection of genes encoding Panton–Valentine
leukocidin PVL (lukF/lukS-PV), hemolysins (hla, hlb and hld), exfoliative toxins (eta and etb)
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and toxic shock syndrome toxin (tst). Additionally, the scn gene, which is the marker of the
immune evasion cluster (IEC) system, was also investigated (Table S2).

2.4. Molecular Typing

The polymorphic X of the S. aureus protein A gene (spa) was amplified as previously
described [33]. The results were analyzed with the Ridom StaphType software (version 1.5,
Ridom GmbH, Würzburg, Germany) to determine the spa type of each isolate. All S. aureus
were subjected to multilocus sequence typing (MLST) by amplifying the 7 housekeeping
genes (arcC, aroE, glpF, gmk, pta, tpi and yqiL) by PCR followed by sequencing as described
by Enright et al. [34]. The sequences were submitted to the MLST database (https://
pubmlst.org/organisms/staphylococcus-aureus, accessed on 22 November 2021) to obtain
the sequence types (STs) and clonal complexes (CCs). S. aureus isolates were characterized
by agr typing (I–IV) by multiplex PCR [35].

3. Results and Discussion

The close contact between animals and humans offers favorable conditions for bacterial
transmission [36]. The transmission of antimicrobial-resistant staphylococci has been
shown between dogs and their owners and livestock and farm workers [37,38]. Therefore,
a possible human-to-camel-to-human bacterial transmission may occur during recreational
activities. In this study, we analyzed 172 samples recovered from 86 camels from the Canary
Islands. A total of 42 staphylococci were isolated from the camels, with 21 staphylococci
isolated from nasal samples and the other 21 from oral samples. It has been shown that
the animal staphylococcal microbiota varies between anatomical sites due to the different
microenvironmental conditions [39,40]. From the 86 camels tested, 11 (12.8%) S. aureus
were isolated from 10 camels, since 1 camel carried 2 different strains of S. aureus (Table 1).
S. aureus isolates were recovered from six oral samples and five nasal samples. A total
of 4 (10.8%) S. aureus isolates were recovered from the 37 camels from Gran Canaria and
7 (14.3%) isolates were isolated from the 49 camels from Fuerteventura (Table S1). As far
as we know, this is the first study reporting the presence of S. aureus and CoNS in camels
in Europe. Nevertheless, a few studies have been conducted in healthy camels from the
African and Asian continents. The frequency of S. aureus isolated from camels in our study
is similar to other studies conducted in Egypt and Nigeria and higher than a recent study
conducted in Tunisia [4,41,42]. However, two other studies conducted on healthy camels
from Saudi Arabia and Algeria reported a much higher frequency of S. aureus of 56.2%
and 53%, respectively [14,15]. Since most studies conducted on staphylococci from camels
showed a prevalence of almost 100% of CoNS colonization, we decided to isolate only
methicillin-resistant CoNS (MRCoNS) [14,42]. A total of 31 (18%) MRCoNS were recovered
from the 172 samples and identified as S. lentus (n = 13), S. sciuri (n = 12), S. xylosus (n = 3),
S. epidermidis, S. chromogenes and S. hominis. From the 100 camels tested in the study by
Alzohairy, 8% were positive for MRCoNS, which is a lower frequency than that obtained in
our study [14]. Co-carriage of two different species of staphylococci was identified in six
animals and co-carriage of three species in two camels. The pattern of co-carriage was as
follows: S. aureus/S. sciuri (n = 5), S. aureus/S. chromogenes (n = 1), S. aureus/S. lentus/S.
sciuri (n = 1) and S. epidermidis/S. hominis/S.lentus (n = 1).

Antimicrobial susceptibility testing was performed in all isolates followed by the
screening for antimicrobial resistance and virulence genes. Furthermore, all S. aureus
isolates were typed by MLST, spa typing and agr typing. All S. aureus isolates were sus-
ceptible to all antibiotics tested except for isolate VS3144, which showed resistance to
ciprofloxacin, in accordance with the study of Chehida et al. [4]. Other studies conducted
in Asia and Africa revealed a higher number of antimicrobial resistances in S. aureus from
camels [14,15,43]. These differences in results may be due to the different legislation for ad-
ministering antibiotics to animals established in each continent and country. Furthermore,
in our study, none of the S. aureus isolates showed methicillin resistance, which contrasts
with the high frequency of MRSA found in other studies from Asia and Africa [14,41].

https://pubmlst.org/organisms/staphylococcus-aureus
https://pubmlst.org/organisms/staphylococcus-aureus
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Regarding the presence of virulence genes, all S. aureus isolates carried the hla, hlb and
hld genes that encode for the alfa-, beta- and delta-hemolysins, which is not surprising
since these toxins are present in most S. aureus strains, mainly because they are located
in very stable regions of chromosomal DNA [44]. Similar results were found in the study
of Chehida et al. [4]. However, most studies conducted on camels did not investigate the
presence of resistance or virulence genes in staphylococci isolates. S. aureus isolates were
ascribed to three STs (ST7345, ST88 and ST8) and three spa types (t1773, t3221 and t008),
showing a low diversity of clonal lineages. Furthermore, S. aureus ST7345 and t1773 were
isolated from both Gran Canaria and Fuerteventura camels, suggesting either a dominance
of these lineages in camels or in the study region. S. aureus ST7345 was first described in
this study and is a double loci variant of ST130 with mutations in the aroE and pta loci. S.
aureus ST130 is frequently associated with ruminants but it has also been isolated from
humans and wildlife, usually associated with mecC-carrying MRSA isolates [45–47]. The
spa type t1773 was previously reported to be associated with CC130 and common among
farm animals and as a frequent cause of ovine mastitis [48–51]. Three S. aureus isolates
were ascribed to ST88 which is a relatively rare lineage distributed globally among MRSA
and MSSA [52]. This clonal lineage is highly related to community-acquired MRSA strains
and is predominant in sub-Saharan Africa [53]. Nevertheless, and in accordance with our
results, both S. aureus ST130 and ST88 were the predominant clones among samples of
healthy camels in Algeria [15]. Furthermore, isolates belonging to ST130 have also been
detected in camel’s milk and fermented milk [54,55]. One S. aureus isolate was ST8-t008
which is highly related to the CA-MRSA epidemic clone USA300 [21]. Since S. aureus
ST8-t008 is a classical human pathogen, a possible human-to-animal transmission may
have occurred.

Table 1. Genetic characterization and molecular typing of S. aureus isolates from healthy camels.

Isolate
Antimicrobial Resistance

Virulence
Molecular Typing

Phenotype Genotype ST (CC) spa agr

VS3140 Susceptible - hla, hlb, hld 7345 t1773 III
VS3141 Susceptible - hla, hlb, hld 7345 t1773 III
VS3142 Susceptible - hla, hlb, hld 7345 t1773 III
VS3143 Susceptible - hla, hlb, hld 7345 t1773 III
VS3144 CIP - hla, hlb, hld 7345 t1773 III
VS3145 Susceptible - hla, hlb, hld 7345 t1773 III
VS3146 Susceptible - hla, hlb, hld 7345 t1773 III
VS3147 Susceptible - hla, hlb, hld 88 t3221 III
VS3148 Susceptible - hla, hlb, hld 88 t3221 III
VS3149 Susceptible - hla, hlb, hld 88 t3221 III
VS3150 Susceptible - hla, hlb, hld 8 (8) t008 I

Abbreviations: CIP: ciprofloxacin; ST: sequence type; CC: clonal complex.

Studies reporting the frequency and antimicrobial resistance of S. aureus in healthy
camels are scarce, but studies showing the frequency and antimicrobial resistance in CoNS
are even scarcer. In our study, among the 31 MRCoNS isolates, 13 S. lentus and 12 S. sciuri
were isolated from 12 camels each (Table 2).

In other studies, S. lentus has been frequently identified in samples from livestock and
from people with occupational exposure to livestock [56–58]. S. sciuri has a wider host
range and is adapted to very different habitats [59,60]. One nasal sample from one camel
was positive for S. lentus (VS3158) and S. sciuri (VS3168), and both isolates showed the same
resistance pattern. Another camel simultaneously carried S. lentus (VS3155), S. epidermidis
(VS3152) and S. chromogenes (VS3153) in the nasal mucosa. Additionally, the same animal
was the only one to carry the same staphylococci species (S. lentus) in both the mouth
and nose. Nevertheless, the isolates differed in the resistance profile, with the S. lentus
(VS3166) isolated from the oral sample having resistance to penicillin and clindamycin
conferred by the genes mecA and mphC, and the S. lentus isolated from the nasal sample
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showing only resistance to penicillin. Although S. epidermidis and S. hominis strains have
been isolated from animal samples, these species are the most prevalent CoNS at the clinical
level and as part of the normal nasal microbiota of healthy individuals, which may suggest
a possible human origin [22,61,62]. All MRCoNS were resistant to penicillin and harbored
the mecA gene. The presence of the mecA gene among staphylococci of the S. sciuri group
(S. sciuri, S. lentus, S. vitulinus and S. fleurettii) is common since it is believed that they
played an important role in the origin, evolution and dissemination of mecA [63]. None
of the MRCoNS showed phenotypic resistance to cefoxitin. In fact, it has been shown
that some CoNS carry a homologue of the mecA gene which does not confer resistance
to β-lactams [64]. Despite all isolates being resistant to penicillin, all isolates lacked the
blaZ gene, which suggests the presence of other unknown resistance mechanisms or that
the breakpoints used for susceptibility testing are not accurate for CoNS [22]. Contrary
to what was obtained in the study by Alzohairy, none of our MRCoNS isolates displayed
a multidrug resistance profile [14]. Finally, only 7 out of 31 MRCoNS isolates carried
virulence genes. The hld gene was detected in six isolates, while hla was detected in two.
S. epidermidis was the only isolate that carried both genes. Although CoNS carry fewer
virulence genes than S. aureus strains, studies have shown that CoNS are a heterogeneous
group with distinct virulence potential levels [19,65].

Table 2. CoNS species identification, antimicrobial resistance and virulence.

Isolate Species
Antimicrobial Resistance

Virulence Factors
Phenotype Genotype

VS3151 chromogenes PEN mecA
VS3152 epidermidis PEN mecA hla, hld
VS3153 hominis PEN mecA
VS3154 lentus PEN, ERY, CD mecA, mphC hla
VS3155 lentus PEN mecA
VS3156 lentus PEN, FD mecA
VS3157 lentus PEN mecA
VS3158 lentus PEN mecA
VS3159 lentus PEN mecA
VS3160 lentus PEN mecA
VS3161 lentus PEN mecA
VS3162 lentus PEN mecA
VS3163 lentus PEN, FD mecA hld
VS3164 lentus PEN, FD mecA
VS3165 lentus PEN mecA
VS3166 lentus PEN, CD mecA, mphC
VS3167 sciuri PEN mecA
VS3168 sciuri PEN mecA
VS3169 sciuri PEN mecA
VS3170 sciuri PEN mecA
VS3171 sciuri PEN mecA
VS3172 sciuri PEN mecA
VS3173 sciuri PEN mecA hld
VS3174 sciuri PEN mecA
VS3175 sciuri PEN mecA
VS3176 sciuri PEN mecA hld
VS3177 sciuri PEN mecA hld
VS3178 sciuri PEN, CD, FD mecA, mphC
VS3179 xylosus PEN mecA
VS3180 xylosus PEN mecA
VS3181 xylosus PEN mecA hld

Abbreviations: PEN, penicillin; ERY: erythromycin; CD: clindamycin; FD: fusidic acid.
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4. Conclusions

In this study, a moderate frequency of S. aureus and MRCoNS was detected among
healthy camels. However, our findings show that, in general, European camels have fewer
resistance and virulence genes than healthy camels from Africa and Asia. This study
demonstrates a low diversity of S. aureus. The predominant lineage was ST7331, followed
by ST88, which has already been reported among healthy camels, suggesting that these
lineages may be dominant in camels. The carriage of mecA-positive staphylococci by camels
may be a public health concern since there is a risk of bacterial transmission to humans
during recreational activities. Furthermore, since the Canary Islands are the only camel
exporter to the EU, camels could constitute a source of zoonotic agents to the rest of the EU.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ani12101255/s1. Table S1: Distribution of staphylococci iso-
lates according to the geographical location and anatomical isolation site; Table S2: Primer pairs
used for molecular typing and detection of antimicrobial resistance genes in staphylococci strains.
References [35,66–79] are cited in the Supplementary Materials.
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