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ABSTRACT. In cotton crops, the cotton seed yield significantly contributes with the success of any cultivar. 

However, other traits are considered when an ideotype is pointed out in the selection, such as the fiber 

quality traits. The aim of this study was to applied genotype by yield*trait (GYT) biplot to a multi-

environment trial data of cotton genotypes and selected the best genotypes. For this end, thirteen 

genotypes from nineteen trials were assessed. Seven traits were evaluated [cotton seed yield (SY), fiber 

percentage (FP), fiber length (FL), fiber uniformity (FU), short fiber index (SFI), fiber strength (FS), and 

elongation (EL)] and residual error variances structures [identity variance (IDV) and diagonal (Diag)] were 

tested by bayesian information criterion. After, the REML/BLUP approach was applied to predict the genetic 

values of each trait and the selective accuracy were measured from the prediction. Then, the GYT-biplot 

were applied to the data. For SP and SFI traits, the model with Diag residual variance was indicated, whereas 

for SY FL, FU, FS, and EL traits the model with IDV residual variance demonstrated the best fit to the data. 

Values of accuracy were higher than 0.9 for all traits analyzed. In the GYT-biplot acute angles were find for 

all traits relations, which means high correlation between the yield*traits combination. Besides that, the 

correlation still can be seen in the GYT-biplot, as shown by the magnitudes of the angles between the pairs 

Yield*FU-Yield*FS and Yield*FS-Yield*EL. Also, the GYT-biplot indicates the genotype G4 with the best 

performance for Yield*FS, Yield*SFI, Yield*FU, Yield*FL, and Yield*FP combined. The genotypes G4, G1, 

G13, G8, and G9 represent those genotypes with yield advantage over the other cultivars. Then, the 

genotype G4 combines all desirable characteristics and demonstrate have large potential in the cotton 

breeding. The GYT approach were valuable and were highly recommended in cotton breeding programs for 

selection purpose in a multivariate scenario. 
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Introduction 

Upland cotton (Gossypium hirsutum L.) is the most cultivated species worldwide for fiber production. It 

provides over 90% of the world’s cotton and represents a crop with greatest industrial relevance. Its 

cultivation as an annual crop is widespread from south to north, from subtropical to temperate regions well 

over 30º (D’Eeckenbrugge & Lacape, 2014). In such crops, which encompasses large areas and different 

localities for evaluation of the best materials, the genotype × environment (G × E) interaction plays an 

essential role in genotypic expression and must be considered in the evaluation and selection of superior 

genotypes for cotton cultivation (Malosetti, Ribaut, & van Eeuwijk, 2013; van Eeuwijk, Bustos-Korts, & 

Malosetti, 2016; Li, Suontama, Burdon, & Dungey, 2017). 
To obtain elite cultivars that are adapted to specific regions, it is essential to evaluate genotypes in a wide 

experimental network or the so-called multi-environmental trials (Smith, Cullis, & Thompson, 2005). In this 

sense, statistical methods have been proposed over the last few decades to deal with data emerging from the 

multi-environmental trials framework (van Eeuwijk et al., 2016; Li et al., 2017). In addition, an ideal genotype 

(ideotype) must present superior levels for many target traits, simultaneously. In this point, the challenge 

emerges once the correlation between pair of traits is not always positive or even large. Both aspects are 

crucial in a cotton breeding program, in which both yield and quality traits (such as fiber length) are desirable 

for improving the final value of the product (Teodoro et al., 2018) and the correlation between the yield and 

quality traits are lower or even negative (Ribeiro et al., 2018; Teodoro et al., 2019). Then, for cotton breeding 
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programs, methodologies that encompass multivariate analyses are core important in the breeding process 

toward the cotton ideotype. 
One of the preeminent methods for dealing with multi-environmental trials is the biplot graphical display 

(Yan & Hunt, 2002; Yan & Tinker, 2006; Yan, Frégeau-Reid, Mountain, & Kobler, 2019), being a recent biplot 

approach the genotype by trait biplot (GT-biplot; Xu, Fok, Li, Yang, & Yan, 2017). This method emerges from 

multivariate methodologies, since it assessed the genotypes performance based on multiple traits and allows 

the identification of those superior combining all desirable traits (Xu et al., 2017; Oliveira et al., 2018). 

According to those authors, the GT-biplot, demonstrate the relations between the traits (antagonism or 

synergy) and clarify the traits profiles of the genotypes, pointing those genotypes that stands out with better 

performance, combining the desirable traits. 
Another methodology indicated as more powerful than the GT-biplot for dealing with multivariate 

scenario is the genotype by yield-trait (GYT) biplot (Yan & Frégeau-Reid, 2018). It was proposed to tackle the 

problem of genotype evaluation of multiple traits. In several cultures, the most important trait is the yield, 

and secondaries traits are desirable only when they combine with high yield. The GYT-biplot should revels 

those superior genotypes that combine the yield with other target traits, rather than by the performance of 

individual traits (Kendal, 2019; Woyann et al., 2020). In this way, in the cotton crop, where more than one 

trait is the target for breeding programs, methodologies that encompasses multivariate analyses in the 

selection of superior genotypes should be rather preferred. 

The GYT arose as a linear combination between traits. In this approach, the established association 

between the main trait (generally yield) and all other traits occurs by multiplying yield with the trait when 

higher values of the trait are desirable and dividing the yield component by the trait that high values are not 

desirable. Results obtained from the GYT are visualized by GGE biplot (Yan, 2001), considering genotypes and 

yield-trait combination as fixed effects. While the application of the GYT-biplot is not documented for cotton 

crops, it has been implemented in other annual crops, such as soybean, wheat, and oat (Yan & Frégeau-Reid, 

2018; Yan et al., 2019; Kendal, 2019; Merrick, Glover, Yabwalo, & Byamukama, 2020; Woyann et al., 2020). 

These studies demonstrate the usefulness of the GYT-biplot in dealing with the multivariate scenario. 

They highlight GYT as a method that: (i) measure the performance of the genotypes based on several 

traits and rank the genotypes, (ii) is based on the concept that yield is the most important trait and 

increase other traits combining them with yield level; (iii) avoid the low-yielding genotypes from being 

selected and recommended; and (iv) are easily to interpret, once a graphical dispersion are made though 

GYT-biplot, which facilitates the visualization and interpretation of the results, ranking the genotypes 

by its performance. Given the robustness of the GYT analyses in context of multivariate context, the 

study aims to (i) apply for the first time the GYT-biplot methodology in multi-environmental trial data 

from cotton genotypes and (ii) selected genotypes through the GYT-biplot toward the cotton ideotype, 

considering all traits combined. 

Material and methods 

Experimental data 

The experiment was performed during the 2013/2014 and 2014/2015 cropping seasons in the Midwest 

region, Brazil. The environments consisted of the combinations between sites and cropping seasons of 

Brazilian Cerrado, whose edaphoclimatic characteristics are expressed in Table 1. Nineteen trials of cotton 

cultivars were performed in a randomized complete block design, with thirteen cotton genotypes with four 

replicates each. The experimental unit (plots) consisted of four 5.0 m rows, with 0.90 m between rows and 45 

plants per row. The genotypes used in all the trials have a medium maturity (between 140 and 150 days) and 

are recommended for cultivation in the Brazilian upland region (Brazilian Cerrado). Seven traits were 

evaluated: cotton seed yield (SY, kg ha-1), fiber percentage (FP, %), fiber length (FL, mm), fiber uniformity 

(FU, %), short fiber index (SFI, %), fiber strength (FS, gf tex-1), and elongation (EL, mm). 

Statistical analyses 

Variance components were estimated through restricted maximum likelihood (REML; Patterson & 

Thompson, 1971) and the prediction of genotypic values was made using best linear unbiased prediction 

(BLUP; Henderson, 1975) methods. For this end, the following model was used. 
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Table 1. Locality and edaphoclimatic characteristics of the 19 trials of cotton used in the analyses. m = meters. mm = milimeters. MG = 

Minas Gerais State. GO = Goiás State, MT = Mato Grosso State. PI = Piauí State. BA = Bahia State. MA = Maranhão State. MS = Mato 

Grosso do Sul State. 

Locality Crop year 
Altitude  

(m) 

Latidute  

(S) 

Longitude  

(W) 

Annual  

precipitation (mm) 

Mean annual  

temperature (ºC) 
Climate1 

Trindade (MG) 2013/2014 927 21º 06’ 44º 10’ 1,467 23.2 Aw 

Santa Elena de Goiás (GO) 

2013/2014 

562 17º 48’ 50º 35’ 1,539 24.3 Aw 2013/2014 

2014/2015 

Primavera do Leste (MT) 

2014/2015 

465 15º 33’ 54º 17’ 1,784 22 Aw 2014/2015 

2014/2015 

Campo Verde (MT) 
2013/2014 

736 15º 32’ 55º 10’ 1,902 26.3 Af 
2014/2015 

Sinop (MT) 
2013/2014 345 11º 51’ 55º 30’ 1,818 25 Aw 

2013/2014       

Pedra Preta (MT) 
2013/2014 

248 16º 37’ 54º 28’ 489 25.1 Bsh 
2014/2015 

Luiz Eduardo Magalhães (BA) 2013/2014 769 12º 5’ 45º 47’ 1,511 24.2 Aw 

São Desidério (BA) 2013/2014 497 12º 21’ 44º 58’ 1,289 24.7 Aw 

Montividiu (GO) 2013/2014 821 17º 26’ 51º 10’ 1,512 23 Aw 

Magalhães de Almeida (MA) 2013/2014 36 03º 23’ 42º 12’ 1,430 27.2 Aw 

Teresina (PI) 2013/2014 72 05º 05’ 42º 48’ 1,349 27.6 Aw 

Chapadão do Sul (MS) 2014/2015 800 18º 47’ 52º 37’ 1,600 22.7 Aw 

Sorriso (MT) 2014/2015 365 12º 32’ 55º 42’ 1,883 25 Aw 

 

𝑦 = 𝑋𝑏 + 𝑍𝑔 + 𝑊𝑖 + 𝑒 

where: 

y is the vector of phenotypic data;  

b is the vector of replication-environment combinations (assumed to be fixed), which comprises the effects of 

environment and replication within the environment and is added to the overall mean;  

g is the vector of genotype effects [assumed to be random; 𝑔~𝑁(0, 𝜎𝑔
2), where 𝜎𝑔

2 is the genotypic variance]; i is the 

vector of G×E interaction effects [assumed to be random; 𝑖~𝑁(0, 𝜎𝑖
2), where 𝜎𝑖

2 is the G×E interaction variance]; and 

e is the vector of residuals [random; 𝑒~𝑁(0, 𝑅), where R represents a matrix of residual variances]. Capital 

letters (X, Z, W) represent the incidence matrices for b, g, and i, respectively. 

Residual structure and effects significance 

Models with identity variance (IDV) and diagonal (Diag) residual variance structures were tested for all traits. 

The goodness-of-fit were measured by using the Bayesian Information Criterion (BIC; Schwarz, 1978) as follows: 

𝐵𝐼𝐶 = −2𝐿𝑜𝑔𝐿 + 𝑝𝐿𝑜𝑔[𝑛 − 𝑟(𝑥)], 

where: 

𝐿𝑜𝑔𝐿 is the logarithm of the REML function, 𝑝 is the number of estimated parameters, 𝑛 is the number of 

observations, and 𝑟(𝑥) is the rank of the incidence matrix of fixed effects. The significance of the random 

effects of the model were tested using the likelihood ratio test (LRT; Rao, 1952) as follows: 

𝐿𝑅𝑇 = 2(𝐿𝑜𝑔𝐿 − 𝐿𝑜𝑔𝐿𝑅) ~ 𝜒² 

where: 

𝐿𝑜𝑔𝐿𝑅  is the logarithm of the REML function of the reduced models (without the genotype or G×E interaction 

effects). 

Selective accuracy 

For the genotypic values predicted (BLUP means) from the phenotypic data, the mean selective accuracy 

(𝑟𝑔𝑔𝑖
) were calculated. This index measure how similar are the predicted values when compared with the real 
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genetic values (Resende, Silva, & Azevedo, 2014). The mean selective accuracy was obtained for each trait, by 

the following expressions: 

𝑟𝑔𝑔𝑖
= √1 −

𝑃𝐸𝑉

𝜎̂𝑔
2 ; 

where: 

PEV is the prediction error variance extracted from the diagonal of the generalized inverse of the coefficient 

matrix of the mixed model equations. 

Genetic correlation and Path analysis 

A correlation analysis and a path analysis were used to better estimated the relationship between each pair 

of traits. The genetic correlation coefficient between the genetic values predicted for each trait was calculated 

using the Pearson correlation and the t-test was used to test the significance of the correlations. For the path 

analysis, the SY was considered as the dependent variable and the genetic correlation matrix estimated was 

used for estimation of the direct and the indirect effects. 

Genotype by trait and genotype by yield*trait combination table 

The GYT table was obtained according (Yan & Frégeau-Reid, 2018): the traits FP, FL FU, FS, and EL 

(where large mean values are desirable in cotton breeding programs) were multiplied by the yield and the 

trait SFI (where large mean values are undesirable in cotton breeding programs)  were divided by the yield.  

Data standardization 

The GT table or the GYT table was standardized so that the mean for each trait or yield-trait combination 

becomes 0 and the variance becomes unit (Yan & Frégeau-Reid, 2018). The following formula was used: 

𝑃𝑖𝑗 =
𝑇𝑖𝑗 − 𝑇́𝑗

𝑆𝑗

 

where:  

𝑃𝑖𝑗  is the standardized value of the genotype i trait or yield combination j in the standardized table, 𝑇𝑖𝑗  is the 

genotypic value i for the trait or yield-trait combination j in the GT or GYT table, 𝑇́𝑗 is the mean value over all 

genotypes for trait or yield-trait combination j, 𝑆𝑗 is the standard deviation for trait or yield-trait combination 

j among the genotype averages. 

Construction of GT and GYT biplot 

The GT- and GYT-biplot analyses were applied to the data aiming to visualize the relation between the 

analyzed traits. The following equation was applied (Xu et al., 2017; Yan & Frégeau-Reid, 2018): 

𝑃𝑖𝑗 = (𝑑𝜆1
𝜎Ϛ𝑖1) ∗ (𝜆1

1−𝜎 Г1𝑗 𝑑⁄ ) + (𝑑𝜆2
𝜎Ϛ𝑖2) ∗ (𝜆2

1−𝜎 Г2𝑗 𝑑⁄ ) + 𝑒𝑖𝑗  

where:  

Ϛ𝑖1 and Ϛ𝑖2 are the eigenvalues for PC1 and PC2, respectively, for genotype i; Г1𝑗 and Г2𝑗 are the eigenvalues 

for PC1 and PC2, respectively for yield-trait combination (or trait) j, and 𝑒𝑖𝑗 is the residual from fitting the 

PC1 and PC2 for genotype i on yield-trait combination (or trait) j; 𝜆1
𝜎  and 𝜆1

𝜎  are the singular values for PC1 

and PC2, respectively and α is the singular value partitioning factor. When α = 1 (i.e., SVP = 1 in terms of GGE 

biplot), the biplot is said to be genotype-focused, and is suitable for comparing genotypes. When α = 0 (i.e., 

SVP = 2), the biplot is said to be yield*trait combination-focused and is suitable for visualizing correlations 

among yield*trait combination (or trait). 

In GYT-biplot methodology only one trait can be considered as the main trait (Yan et al., 2019), even in 

the case that more than one trait could be considered as main trait (i.e. SY and FL for cotton breeding). In the 

analyses, the SY trait was considered as the main one. The GT- and GYT-biplot was constructed by plotting 

(𝑑𝜆1
𝜎Ϛ𝑖1)  against (𝑑𝜆2

𝜎Ϛ𝑖2)  for genotypes and plotting (𝜆1
1−𝜎 Г1𝑗 𝑑⁄ )  against (𝜆2

1−𝜎 Г2𝑗 𝑑⁄ )  for yield-trait 

combination (or traits) in the same plot (Yan & Frégeau-Reid, 2018). 

All analyses were carried out in the Asreml (Gilmour, Gogel, Cullis, Welham, & Thompson, 2015), and 

GGEBiplotGUI package on R program (R Core Team, 2020). 
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Results and discussion 

The model selection criterion used (BIC) indicates models with different residual variance for the traits 

assessed in the analyses (Table 2). For SP and SFI traits the model with Diag residual variance was indicated, 

whereas for the remaining traits analyzed (FL, FU, FS, and EL) the model with IDV residual variance was 

assigned. However, the model with Diag residual variance for SY trait did not achieve convergence. In this 

case, the model accounting for IDV residual variance was considered. 

Table 2. Mean selective accuracy and residual error variance for each trait assigned by the bayesian information criterion (BIC). 

Model 
Traits 

SY FP FL FU SFI FS EL 

IDV 14331.65 2487.506 966.0651 1395.585 613.4362 2299.413 359.713 

Diag NC 2056.238 999.1285 1480.909 528.0298 2316.296 430.5872 

Accuracy 0.90 0.93 0.89 0.88 0.89 0.91 0.90 

Bold letters indicated the selected model. Model with lower values of BIC were preferable. NC = not converged. SY = cotton seed yield (kg ha-1), FP = fiber 

percentage (%), FL = fiber length (mm), FU = fiber uniformity (%), SFI = short fiber index (%), FS = fiber strength (gf tex-1), and EL = elongation (mm). 

Then, in the subsequent analyses, the respective models selected by BIC were considered for the genotypic 

values prediction. The evaluation of models with different residual variance is a crucial step in data analyses from 

MET data (So & Edwards, 2011; Melo et al., 2020). The residual variance that best adjusts the data increment the 

reliability of genetic values prediction and impacts positively the subsequently analyses. In general, in annual 

crops, such as cotton, models with Diag residual variance are more acceptable, hence the residual variance is 

indicated for each environment individually. However, in MET data, there are cases that the goodness-of-fit are 

presented by models with IDV residual variance, similar with some traits analyzed here, demonstrating that only 

one estimated value for all environments is capable to represent the residual variance. Thus, to test the residual 

variance that best fits the data is an incipient step in any trustable study of MET data. 

The results highlighted the significance for the genotypic and G×E effects for all traits analyzed, 

except for the SY trait, where the genotypic effect was presented as non-significant (Appendix S1). 

Probably, in this case, the G×E interaction exhaust the SY genotypic variability in the analyses. In the 

yield*trait analyses, the aim was to evaluate the multivariate framework. In this sense, the SY trait was 

maintained in the analyses once it was the core trait in the analyses and could bring some important 

information under correlations. Further, the mean selective accuracy values were assigned as high ( 𝑟𝑔𝑔𝑖
 

> 0.80) for all traits analyzed (Table 2), which indicated reliability of the model for the BLUP prediction 

(Resende & Duarte, 2007). 

The correlation between the BLUP values for each trait was presented in the Figure 1. Among all pairs of 

genetic correlations, only the pair of traits FU-SFI, FU-FS, and FS-SFI was significant under the t-test (5%). 

From the path analysis (Table 3), the coefficient of determination (𝑟²) obtained indicate that the traits used 

to explain 63% of the variation obtained in the SY trait. The most preeminent values of direct effect in the SY 

were found for FP and FS traits. According to Cruz, Regazzi, and Carneiro (2012), traits that show favorable 

correlation but have direct effects in the opposite direction indicate the absence of cause and effect. For the 

traits FP, FL, SFO, and FS, there was a direct effect similar with the correlation between the trait and the SY, 

indicating the presence of cause and effect in this relation. Therefore, for the traits FU and EL, there are other 

trait that determine the changes in the variable of interest that will be more useful for selection not being 

clear the cause-and-effect relation with the main trait (SY). 

The GT-biplot analysis represented a total of 66.81% of the variance, being 44.78 and 22.03% from the 

PCA1 and PCA2, respectively (Figure 2A), whereas the genotype vs. yield*trait combination presents PCA1 

(61.55%) and PCA2 (19.13%), summing 80.68% of the data variance explained by the two axes (Figure 1B). 

Both approaches presented values that were indicated as suitable to graphically display the data, where more 

than 70% should explain the data variation (Cruz et al., 2012). Based on the trait distribution, the GT-biplot 

demonstrate a high and positive correlation between FU-FS (acute angles), and positive moderate correlations 

(Resende, 2015) between the pair FP-SFI, SY-FP (Figure 2A). Negative correlation was found for the trait pairs 

(obtuse angles): FU-SFI, FP-FU, FP-FS, and SY-FL. However, the EL presented a small correlation with other 

traits, as demonstrate by its short vector (Yan & Frégeau-Reid, 2018). Besides that, the GT-biplot shows the 

trait profile of the genotype. The genotype G11 presented high FS content and the genotype G8 presented a 

high FP content. Further, the genotype G4 was highlighted by its performance in cotton seed yield. Other 
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authors also highlight the potential of the GT-biplot for demonstrate the correlations between traits 

(Akinwale, Fakorede, Badu-Apraku, & Oluwaranti, 2014; Oliveira et al., 2018). As a graphical display of a 

multivariate analyses, the GT-biplot represents a tool that combine several advantages from analyses that 

encompass relations between traits (such as correlation, path analyses, and joint regression; Akinwale et al., 

2014), demonstrating the usefulness of this analysis. 

 

Figure 1. Correlation between the values of BLUP means of the traits evaluated in the 19 environments. SY = cotton seed yield (kg ha-1), FP = 

fiber percentage (%), FL = fiber length (mm), FU = fiber uniformity (%), SFI = short fiber index (%), FS = fiber strength (gf tex-1), and EL = 

elongation (mm). *significant at 5% of probability by the t-test. 

Table 3. Path coefficient estimates of direct (diagonal) and indirect effects (off – diagonal) among the studied traits: SY = cotton seed 

yield (kg ha-1), FP = fiber percentage (%), FL = fiber length (mm), FU = fiber uniformity (%), SFI = short fiber index (%), FS = fiber 

strength (gf tex-1), and EL = elongation (mm). 

Traits FP FL FU SFI FS EL Total 

FP 0.74 -0.05 0.19 -0.05 -0.4 -0.01 0.41 

FL 0.11 -0.37 0.05 -0.01 -0.21 0.01 -0.41 

FU -0.35 0.05 -0.41 0.14 0.71 -0.03 0.11 

SFI 0.27 -0.01 0.40 -0.15 -0.68 0.01 -0.16 

FS -0.36 0.09 -0.35 0.12 0.83 -0.10 0.23 

EL -0.02 -0.01 0.04 -0.01 -0.32 0.26 -0.06 

Residual 0.61 

𝑟² 0.63 

r² = coefficient of determination provided by the analysis. 

 

Figure 2. The tester vector view of genotype by trait (GT) biplot (A) and genotype by yield*trait (GYT) biplot based on the original 

genotype by trait data. The biplot was based on singular value decomposition of trait-standardized data (‘Scaling = 1, Centering = 2’) 

and trait-focused singular value partition (‘SVP = 2’). SY = cotton seed yield (kg ha-1), FP = fiber percentage (%), FL = fiber length (mm), 

FU = fiber uniformity (%), SFI = short fiber index (%), FS = fiber strength (gf tex-1), and EL = elongation (mm). 

The results demonstrate that GT-biplot can be considered as a powerful tool for exploring the relation 

between traits, based on the correlation, presenting a graphical display of the genotypes and traits analyzed. 

However, the GYT-biplot have been pointed to overcome the GT-biplot analysis, once it combine information 
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of most traits and also information of yield, simultaneously (Kendal, 2019; Merrick et al., 2020). Then, GYT-

biplot emerges as an alternative for dealing with multivariate analyses using a graphical biplot (Yan & 

Frégeau-Reid, 2018) and reliability. 

Therefore, in the GYT-biplot (Figure 2B), the traits tend to be positive correlated since they presented the 

yield component, even if those traits per se are negatively correlated. Even though the GYT table presented 

the relation between traits, the GYT-biplot are more informative (Yan & Frégeau-Reid, 2018). This approach 

allows ranking the genotypes based on their levels of yield-trait combinations, showing the traits profiles and 

similarities/dissimilarities among the genotypes. In the results, the acute angles were then indicated in all 

traits relations. However, the correlation still can be seen in the GYT-biplots, as shown by the magnitudes of 

the angles between the Yield*FU-Yield*FS and Yield*FS-Yield*EL. Angles with high magnitude are more 

dissimilar from those genotypes in which angles are more acute. It is worth mentioning that the absence of 

significance for some genetic correlation between traits was an impediment for better understanding the 

relations displayed in the GYT-biplot. 

Genotypes from the ‘which-won-where’ performance were displayed (Figure 3A). This view was useful to 

demonstrate the trait profile of the genotypes (Yan et al., 2019). An irregular polygon was formed connecting 

genotypes most distant from the origin in the GYT-biplot. Those genotypes were included in sectors formed 

by a line that emerges from the biplot origin. These lines divided the yield-trait combinations into five sectors 

(Figure 3A); corresponding to each sector there was a polygon vertex (Yan et al., 2019). The far is the genotype 

from the origin that determines the polygon vertex, the largest is the value for the yield-trait combinations placed 

within each corresponding sector. From the GYT-biplot, the genotype G4 represent the highest level of Yield*FS, 

Yield*SFI, Yield*FU, Yield*FL, and Yield*FP, meaning that the genotype is indicated as the best in combining FS, 

SFI, FU, FL, FP, and yield. Similarly, the trait Yield*EL was the best combination in the genotype G13. 

Figure 3B presented the ATC view, based on the genotype-focused singular value partitioning. The focus 

of this analysis is in to compare the genotypes. The circle presented in the figure (near to the center) 

represents the placement of ‘average-trait-combination’. The line with two arrows is a good in a way to 

separates the genotype that presented values above and below the average genotype value. Following the ATC 

line, the genotypes G4, G1, G13, G8, and G9 represent those genotypes with yield advantage over the other 

cultivars. This figure also highlighted that the G13 was superior for FP and EL and G1 was superior for FS and SFI. 

 

Figure 3. (A) The which-won-where view of the genotype by yield*trait (GYT) biplot to highlight genotypes with outstanding profiles. 

The biplot was based on singular value decomposition of the standardized GYT table (‘Scaling = 1, Centering = 2’). The trait-focused 

singular value partition (‘SVP = 2’) was used. (B). The Average Tester Coordination view of the GYT-biplot to rank the genotypes based 

on their overall superiority and their strengths and weaknesses. The biplot was based on singular value decomposition of the 

standardized GYT table (‘Scaling = 1, Centering = 2’). The genotype- focused singular value partition (‘SVP = 1’) was used. YLD.FP = 

yield vs. fiber percentage, YLD.FL = yield vs. fiber length, YLD.FU = yield vs. fiber uniformity, YLD.SFI = yield divided by short fiber 

index, YLD.FS = yield vs. fiber strength, and YLD.EL = yield vs. elongation. 

In cotton breeding programs, cultivars are not preferred by farmers solely when they present a large grain 

yield (Teodoro et al., 2018). Other traits, such FL and SFI are important to improve the quality and, 

consequently, the final value of the product. As a result, fiber quality traits are relevant in the analyses toward 

the cotton ideotype. However, the fiber quality traits are, generally negative correlated with SY, which implies 
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in difficult for breeders in the selection process (Ribeiro et al., 2018). The GYT-biplot combines the yield 

information with other traits and allowed the combined selection of the best cultivars. For instance, the 

genotype G4, G1, and G13 above mentioned were addressed by the desirable performance in several traits 

combined with yield and classified as stable for such traits were indicated as superior in the GYT-biplot traits. 

In the case that the aim of the breeding program is aiming to improve the performance of more than one trait, 

tools similar GYT-biplot are core important, once it allow the recommendation of genotypes with the best 

performance of several traits simultaneously. 

Combining the GYT-biplot analyses with BLUP values represented a great advantage (Woyann et al., 2020). 

For instance, the mixed model methodology overcomes the usual methods used in plant breeding, such as 

ANOVA. It allows handling with unbalanced data, to add kinship information and consider the genotypes as 

a random effect, which implies in improvement of the reliability of the genotypic values prediction. On the 

other hand, the GYT-biplot is highlighted as a useful methodology that overcome the classic methodologies 

for deal with the multivariate scenario and for being a visual tool to describe genotypes strongness and 

ranking them. Ultimately, to combine such analyses improve the reliability of the results. 

Conclusion 

The GYT-biplot methodology was successfully applied in the in multi-environment trial data from cotton 

genotypes. The GYT-biplot technique provides information regarding the genotype’s performance based on 

the multivariate framework. The genotype G4 was selected based on the best performance for multiple traits. 

The genotypes G4, G1, and G13 combines yield*trait superior performance when compared with the average 

genotypes. In breeding programs, the selection combining multivariate framework is core important and 

GYT-biplot presented an interesting solution for ideotype selection in cotton crops. 
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