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A B S T R A C T   

Machine Learning (ML) algorithms are increasingly being used in several areas of agricultural studies, such as 
plant breeding. ML can assist in the recognition of relevant patterns or groups, or even in the prediction of the 
outcome under new settings, thus accelerating experiments and interpretating their results. The identification 
and selection of drought-tolerant grapevine rootstock (Vitis spp.) have become more relevant in late years, 
motivated mostly by global climate change scenarios. However, the grapevine is a perennial species, with 
polygenic characteristics and a complex traits inheritance by offspring, thus making it very challenging to 
discover new, drought tolerant cultivars. For this reason, this study’s main objective was to compare the per-
formance of six machine learning models on the prediction of drought tolerance levels of grapevine rootstock 
cultivars. A data set with forty-five distinct cultivars was used to evaluate the methods, and the best performing 
model (AUC 0.9857) was used to predict the drought tolerance class of three cultivars (IAC 313, IAC 572, and 
IAC 766) whose drought tolerance level was still unknown. The results predicted a high drought tolerance for 
IAC 313 and IAC 766 cultivars, and a low tolerance for IAC 572.   

1. Introduction 

Grapevine is considered a crop of notable socioeconomic importance 
[1], and one of the most valuable perennial crops in the world, due to the 
high added value and versatility of the products [2]. Climate plays a 
crucial role in viticulture and is associated with the geography of wine 
[3]. Currently, it is singled out as one of the most critical aspects that 
directly interfere with the ripening and the final quality of the grapes to 
produce a specific style of wine [4,5]. Climate also directly affects the 
choice of cultivars, planting location, vegetative potential, phytosani-
tary behavior, yield, and even the management and cultural practices 
adopted [3–6]. 

Climate change makes agricultural production extremely vulnerable, 
especially in terms of water availability, an essential component of life 
[5,7]. More specifically, one of the most pronounced abiotic stresses for 
plants is drought, which causes considerable losses in world agricultural 

production [8]. Thus, a slight climate variation can directly affect the 
production and quality of grapes [4,3]. Besides, global warming pro-
jections indicate a high variation on rainfall patterns and intensity for 
the next decade [4,3,9,10]. Therefore, mitigating the effects of climate 
change has become one of the main demands of the winery sector [4,3, 
1]. 

The scarcity of water resources emphasizes the importance of using 
water more efficiently in the winery sector, as most grape-growing re-
gions around the world experience drought at some point [11–13]. 
Although several approaches can be employed to mitigate the drought 
problem in viticulture worldwide, using drought-tolerant rootstocks can 
be one of the most sustainable solutions to improve adaptability of 
vineyards [10,14]. 

Drought tolerance in grapevines is a polygenic characteristic, 
controlled by many genes [15,16]. This hinders the identification and 
selection of the most promising genotypes, due to the interaction of the 
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plant with the environment [8,15,10,16]. The objectives of a rootstock 
breeding program must be decided effectively, given the large number of 
possible combinations, as well as that, the requirements to assess a wide 
variety of aspects, for example, drought tolerance, ease of propagation, 
compatibility with the graft, longevity of the scion, tolerance to envi-
ronmental factors, resistance to pests and diseases in the region, as well 
as other plant characteristics and their influence on fruit. 

Machine learning is an efficient methodology that has been 
increasingly used in several areas of study, such as in plant breeding 
[17]. Since it makes it possible to identify, predict and classify genotypes 
according to the needs of the plant breeding program [18,17]. This study 
focused on use of machine learning algorithms to predict the drought 
tolerance levels of three Brazilian grapevine rootstocks cultivars (IAC 
313, IAC 572, and IAC 766), in order to rank the best drought-tolerant 
rootstocks to be cultivated in the São Francisco Valley sub-middle 
(Latitude 9◦ S, Longitude 40◦ W) characterized by a semi-arid tropical 
climate, Brazil [19,20]. These tropical rootstocks were selected in our 
study due to the lack of information about their drought tolerance de-
gree and importance in the region of interest. 

2. Materials and methods 

2.1. Plant material 

Forty-five grapevine rootstock cultivars were evaluated, listed in 
Table 1, with their drought tolerance degree and genetic origin, in order 
to build a data set, which was later used to train a machine learning 
model. Five instances of each cultivar (i.e., plants) were used as samples, 
totaling 210 instances in the training data set. Three criteria were 
adopted to choose these cultivars: (i) these are the most common cul-
tivars in the São Francisco Valley region; (ii) their availability among the 
accessions from the Active Germplasm Bank of Embrapa [21]; and (iii) 
the availability of information about their drought tolerance in the 
literature. The trained model was then used to predict the drought 
tolerance level of the three cultivars IAC 313 (Tropical), IAC 572 (Jales), 
and IAC 766 (Campinas). 

2.2. Data set characteristics 

The data set holds fifty-nine variables, including physiological, 
biochemical, nutritional, and morpho-agronomic characteristics, 
manually curated by the authors from scientific articles, books, grape-
vine nurseries websites, thesis, conferences, and scientific research 
centers. The collected features are listed below: 

2.2.1. Physiological characteristics 
Stomatal conductance under unstressed conditions (gs) and drought 

stress both in μmol CO2.m-2.s-1; Transpiration rate under unstressed 
conditions (E) and drought stress both in mmol H2O.m-2.s-1; Photo-
synthesis rate under unstressed conditions (A) and drought stress both in 
µmol m − 2.s − 1; Intrinsic Water use efficiency under unstressed con-
ditions (WUE) and drought stress both in μmol CO2 mol-1 H2O; 
Instantaneous water use efficiency under unstressed conditions (iWUE) 
and drought stress both in μmol CO2 mmol-1 H2O; Osmotic potential 
under unstressed conditions (Ψos) and drought stress both in Mpa, 

Table 1 
Genetic origin and drought tolerance of the forty-five grapevine rootstock cul-
tivars (Vitis spp.) considered in the training data set.  

Cultivars Pedigree Drought tolerance 

VR 039–16 Vitis vinifera L. x Muscadinia rotundifolia 
Michaux1,;5 

Low2,;7 

VR 043–43 Vitis vinifera L. x Muscadinia rotundifolia 
Michaux1 

Low3 

101–14 MGt Vitis riparia Michaux x Vitis rupestris 
Scheele1,;3,;5,;6 

Low2,;3,;4,;5,;8,;10 

106–8 MGt Vitis riparia Michaux x Cordifolia rupestris 
de grasset n◦11 

High6 

110 R Vitis berlandieri Planchon x Vitis rupestris 
Scheele1,;5,;8 

High2,;4,;5,;6,;7,;8,;13 

1103 P Vitis berlandieri Planchon x Vitis rupestris 
Scheele1,;5,;6,;8 

High2,;3,;5,;7,;8 

1202 C Vitis vinifera L. x Vitis rupestris Scheele1 High7 

125 AA Vitis berlandieri Planchon x Vitis riparia 
Michaux1 

Low4 

140 Ru Vitis berlandieri Planchon x Vitis rupestris 
Scheele1,;6 

High2,;4,;5,;7,;8,;12,;13 

157–11 C Vitis berlandieri Planchon x Vitis riparia 
Michaux1 

Medium4 

1613 C Solonis (Vitis riparia Michaux x Vitis longii 
Prince) x Othello1,;5 

Medium9 

161–49 C Vitis riparia Michaux x Vitis berlandieri 
Planchon1,;6 

Low5 

1616 C Solonis x Vitis riparia Michaux1 Low2 

196–17 Cl 1203C x Vitis riparia Michaux1 High6,;7 

216–3 Cl 1616C x Vitis rupestris Scheele1 Medium5,;6,;7 

26 G Vitis vinifera L. x Vitis riparia Michaux1 Medium12 

3306 C Vitis riparia Michaux x Vitis rupestris 
Scheele1 

Medium8 

3309 C Vitis riparia Michaux x Vitis rupestris 
Scheele1,;5,;6 

Low4,;5,;7,;11,;13 

34 EM Vitis berlandieri Planchon x Vitis riparia 
Michaux1 

Low4,;5 

41 B MGt Vitis vinifera L. x Vitis berlandieri Planchon1 High5,;10 

420 A MGt Vitis berlandieri Planchon x Vitis riparia 
Michaux1,;3,;5,;6,;9 

Medium4,;5,;10,;12 

44–53 M Vitis riparia Michaux x Malegue 1441 High2,;5,;6,;7 

5 BB Vitis berlandieri Planchon x Vitis riparia 
Michaux1,;5,;6 

Medium2,;4 

5 C Vitis berlandieri Planchon x Vitis riparia 
Michaux1,;5 

Low5,;8 

62–66 C Vitis vinifera L. X Vitis cordifolia Michaux1 High11 

8 B Vitis berlandieri Planchon x Vitis riparia 
Michaux1 

Medium5 

93–5 C Vitis vinifera L. x Vitis rupestris Scheele1 Low6 

99 R Vitis berlandieri Planchon x Vitis rupestris 
Scheele1,;5,;6,;8 

High8 

Ganzin 1 Vitis vinifera L. x Vitis rupestris Scheele1 High7 

Dogridge Vitis rupestris Scheele x Vitis candicans 
Engelmann1,;5 

High9 

Fercal Vitis berlandieri Planchon x 31R1 Medium2,;5,;7,;8 

Freedom Fresno 1613–59 x Dogridge1 Medium2,;8 

Golia Castel 156–12 x Vitis rupestris Scheele1 Low4 

Gravesac 161–49C x 3309C1 Medium6,;7,;8 

Harmony 1613C x Dogridge1 Medium2 

Riparia Gloire Vitis riparia Michaux1,;5,;6 Low2,;5,;7,;10,;12,;13 

Rupestris du 
lot 

Vitis rupestris Scheele1,;5,;6,;8 Medium5,;7,;9 

Salt Creek Vitis champinii Planchon1,;5 High9,;8 

Schwarzmann Vitis riparia Michaux x Vitis rupestris 
Scheele1,;5 

Low5,;8 

SO4 Vitis berlandieri Planchon x Vitis riparia 
Michaux1,;5,;6 

Low3,;5,;8,;10 

Sori Solonis x Vitis riparia Michaux1 Medium7,;12 

Vitis champini Vitis champinii Planchon1 High13 

IAC 313 Golia x Vitis cinerea Engelmann1,;3 Unknown* 
IAC 572 Vitis caribaea De Candolle x 101–14MGt1,;3 Unknown* 
IAC 766 106–8MGt x Vitis caribaea De Candolle1,;3 Unknown* 

Information obtained in:. 
1 Maul et al. [22]. 
2 Sunridge Nurseries [23]. 
3 Embrapa Grape and Wine (2016). 
4 Vicopad [24]. 

5 Villa [25]. 
6 Storm & Krasokhina [26]. 
7 Audeguin et al. [27]. 
8 Wine Australia [28]. 
9 Satisha et al. [29]. 
10 ATVB [30]. 
11 Chevalier [31]. 
12 Rebschule Mueller [32]. 
13 Carroll [52]. 
* No information in the literature. 

N.I. Verslype et al.                                                                                                                                                                                                                              



Smart Agricultural Technology 4 (2023) 100192

3

Hydraulic conductance (Kl) in kg/MPa-1; 

2.2.2. Biochemical characteristics 
abscisic acid under unstressed conditions (ABA), drought stress and 

rehydration condition of the plant all in ng. g − 1; Proline under un-
stressed conditions and drought stress both in mg. g − 1; 

2.2.3. Nutritional characteristics 
percentage of nitrogen, phosphorus, and potassium macronutrients 

content in the leaf petiole; and also, the uptake ability of the plant to 

absorb nitrogen, phosphorus, and potassium, on a rating scale assigned 
between 1 and 5 (high = 5, medium-high = 4, medium = 3, medium- 
low = 2 and low = 1); 

2.2.4. Morpho-agronomic characteristics 
stomata density per mm2; flower sex (male, hermaphrodite or fe-

male); grape buds, grape maturity and leaf fall in days; active limestone 
tolerance in percentage; wood production per plant; root distribution 
scaled in a range from 1 to 6 (very deep=6, deep=5, moderate-deep=4, 
moderate=3, shallow=2, very shallow=1); geotropic angle in degree; 
percentage root distributions to 60 cm and 100 cm; Chlorotic Power 
Index (CPI) in percentage; Drought tolerance scaled in a range from 1 to 

3 (high =3, medium =2 and low = 1); Vegetative cycle (early, inter-
mediate, late); and the variables listed below a scale of scores ranging 
from 1 to 5 (high=5, medium-high=4,medium=3, low-medium=2 and 
low=1) were assigned, for Anthracnose, Downy mildew, Fusarium, 
Phylloxera and Nematode resistance; lime and total limestone tolerance; 
ease of rooting; ease of branch-grafting; acid, sandy, wet, clay, salinity, 
calcareous and compactness soil tolerance; vigor; Iron chlorosis 
tolerance. 

2.3. Data analysis methodology 

All analysis were performed using the Python language on the 
Google Colaboratory1 platform. 

2.3.1. Pearson correlation analysis 
Pearson’s correlation coefficient (r) was calculated among the 

considered variables, using the corr() function available in the pandas 
library [33], in order to examine the correlation between the variables 
and discard highly correlated characteristics. Pearson’s correlation co-
efficients are calculated according to Eq. (1) [34].  

where r corresponds to the correlation coefficient that can vary between 
− 1 and +1; N is the number of observations; x and y are the values of 
both variables. 

Subsequently, a heat map chart, available in the seaborn library 
[35], was generated to improve the visualization of Pearson’s correla-
tion coefficients. 

2.3.2. Data set pre-processing 
Pre-processing occurred in the same way for the training set, with 42 

Fig. 1. Data set before and after normalization. Source: Verslype et al. (2021).  

Table 2 
Hyperparameters analyzed by grid search for each algorithm.  

Algorithm Hyperparameters 

DT Criterion: [gini, entropy]; Max_features [auto, log2, sqrt, None] 
RF N_estimators: [1, 5,10, 100, 1000]; Max_features: [1, 2, 3] 
XGB N_estimators: [10, 100, 500]; Max_features: [auto, log2, sqrt, None] 
SVM C: [0.001, 0.1, 1,10, 20, 100]; Kernel: [rbf, linear] 
LDA N_components: [10, 15, 20, 25, 30] 
KNN N_neighbors: [3, 7, 10]; Weights: [uniform, distance]  
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1 https://colab.research.google.com/ 
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cultivars, and the prediction set, containing three cultivars (IAC 313, 
IAC 572, and IAC 766). For this, the missing values were filled in by the 
mean of each variable column, then duplicated rows were removed and 
finally, normalization was performed using MinMaxScaler, Fig. 1), 
whose transformation is given by the Eq. (2) and ((3), available in the 
scikit-learn library [36]. 

Xstd =
(x − x.min)

(x.max − x.min)
(2)  

Xscaled = Xstd × (max − min) + min, (3)  

Fig. 2. Correlation coefficient analysis between the sixty-one variables evaluated.  

Fig. 3. Variables with strong positive and negative correlation. Source: Verslype et al. (2021).  
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where: min, max corresponds to the sample range. 

2.3.3. Comparison of supervised learning algorithms 
Six algorithms were considered to evaluate their ability to predict 

drought tolerance classes in grapevine rootstocks, namely: Decision Tree 
(DT) [37], Random Forest (RF) [38], K-Nearest Neighbors (KNN) [39], 
XGBoost (XGB) [40], Support Vector Machines (SVM) [41] and Linear 
Discriminant Analysis (LDA) [42]. These algorithms were select because 
they are easily accessible by the public, and all algorithms are available 
in the scikit-learn library [36], except for XGB available in the xgboost 
library [40]. To determine the best algorithm in our setting, a 
cross-validation evaluation procedure was performed, and grid search 
analysis Table 2), available in the scikit-learn library. [36]. The preci-
sion rate (P), recall (R), accuracy, and f1-score metrics obtained by all 
models in the considered data set were evaluated. Are described these 
evaluation metrics in Eqs. (4), (5, (6), and (7) [36,43,44]. 

P =
TP

(TP + FP)
, (4)  

where: P represents the precision, TP indicates the number of true pos-
itives, and FP the number of false positives. 

R =
VP

(TP + FN)
, (5)  

where: R represents recall, TP is the number of true positives, and FN the 
number of false negatives. 

accuracy = (TP+VN)/(TP+TN +FP+FN), (6)  

where: TP is the number of true positives, TN the number of true neg-
atives, FP the number of false positives, and FN the number of false 
negatives. 

f 1 = 2 × (precis ∼ ao × recall)/(precis ∼ ao+ recall), (7)  

where: f1 represents that obtained by the harmonic mean between recall 
and accuracy. 

2.3.4. Drought tolerance prediction 
A predictive drought tolerance analysis was performed on the three 

Brazilian grapevine rootstocks cultivars IAC 313, IAC 572, and IAC 766, 
using the most efficient algorithm and its respective hyperparameter 
configuration, provided by the grid search (Table 2). 

3. Results and discussion 

The Pearson’s correlation coefficient analysis (Fig. 2) indicated 38 
cases with a strong correlation between the 61 variables evaluated in 
this study, of which 12 had a negative correlation close to − 1, and 26 
had a positive correlation close to 1. 

In this regard, correlation analysis is interesting since it allows one to 
explain and determine the degree of relationship between the variables 
in the data set [34]. Thus, coefficients close to 1 and − 1 make it possible 
to obtain a good prediction of one variable from the other [45]. Besides, 

Table 3 
Accuracy, precision (P), recall (R), and f1-score obtained by 10-fold cross- 
validation evaluation on the six algorithms to predict drought tolerance clas-
ses for grapevine rootstock cultivars.  

Algorithm Accuracy (%) P R f1-score 

DT 82.86 0.86 0.83 0.83 
RF 98.10 0.98 0.98 0.98 
XGB 96.67 0.97 0.97 0.97 
SVM 87.14 0.89 0.87 0.87 
LDA 64.29 0.67 0.64 0.65 
KNN 85.71 0.89 0.86 0.86  

Table 4 
Evaluation of the best hyperparameters for each model obtained by Grid search 
to predict drought tolerance classes for grapevine rootstock cultivars.  

Algorithm Best 
result 
(%) 

Best parameter Hyperparameters best configuration 

SVM 83.33 {’C’: 100, ’kernel’: 
’rbf’} 

SVC (C = 100, break_ties=False, 
cache_size=200, 
class_weight=None, coef0=0.0, 
decision_function_shape=’ovr’, 
degree=3, gamma=’auto’, 
kernel=’rbf’, max_iter=− 1, 
probability=False, 
random_state=None, 
shrinking=True, tol=0.001, 
verbose=False) 

RF 98.57 {’max_features’: 2, 
’n_estimators’: 
1000} 

RandomForestClassifier 
(bootstrap=True, ccp_alpha=0.0, 
class_weight=None, 
criterion=’gini’, max_depth=None, 
max_features=2, 
max_leaf_nodes=None, 
max_samples=None, 
min_impurity_decrease=0.0, 
min_impurity_split=None, 
min_samples_leaf=1, 
min_samples_split=2, 
min_weight_fraction_leaf=0.0, 
n_estimators=1000, n_jobs=None, 
oob_score=False, 
random_state=None, verbose=0, 
warm_start=False) 

KNN 90.48 {’n_neighbors’: 3, 
’weights’: 
’distance’} 

KNeighborsClassifier 
(algorithm=’auto’, leaf_size=30, 
metric=’minkowski’, 
metric_params=None, 
n_jobs=None, n_neighbors=3, p =
2, weights=’distance’) 

XGB 96.19 {’max_features’: 
’auto’, 
’n_estimators’: 500} 

XGBClassifier(base_score=0.5, 
booster=’gbtree’, 
colsample_bylevel=1, 
colsample_bynode=1, 
colsample_bytree=1, gamma=0, 
learning_rate=0.1, 
max_delta_step=0, max_depth=3, 
max_features=’auto’, 
min_child_weight=1, 
missing=None, n_estimators=500, 
n_jobs=1, nthread=None, 
objective=’multi:softprob’, 
random_state=0, reg_alpha=0, 
reg_lambda=1, scale_pos_weight=1, 
seed=None, silent=None, 
subsample=1, verbosity=1) 

LDA 67.14 {’n_components’: 
10} 

LinearDiscriminantAnalysis 
(n_components=10, priors=None, 
shrinkage=None, solver=’svd’, 
store_covariance=False, 
tol=0.0001) 

DT 86.19 {’criterion’: 
’entropy’, 
’max_features’: 
None} 

DecisionTreeClassifier 
(ccp_alpha=0.0, 
class_weight=None, 
criterion=’entropy’, 
max_depth=None, 
max_features=None, 
max_leaf_nodes=None, 
min_impurity_decrease=0.0, 
min_impurity_split=None, 
min_samples_leaf=1, 
min_samples_split=2, 
min_weight_fraction_leaf=0.0, 
presort=’deprecated’, 
random_state=None, 
splitter=’best’)  
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redundant features can be detected, for example, the root distributions 
to 100 cm and 60 cm can be highlighted among the strong correlations, 
due to their positive correlation (r = 0.91). This finding indicates that 
there no need to evaluate both features, resulting in cost savings and a 
significant reduction in analytical time. Another pair of features that this 
analysis pointed as highly correlated were between the grape buds and 

grape maturity variables, as they presented, respectively (r = 0.78) and 
(r = 0.73) of positive correlation with the variable onset of leaf fall, 
demonstrating that only the evaluation of the variable early leaf fall 
would be sufficient. 

The proline under drought stress conditions has a high correlation 
with drought tolerance (r = 0.84). This interaction is important since 
proline could be used as an indirect selection criterion for the search for 
drought-tolerant varieties. As drought tolerance is a polygenic trait 
which is difficult to identify and select for superior materials in plant 
breeding programs ([10,16]; Cantu & Walker, 2019). This high corre-
lation could be explained by the fact that proline is considered an 
osmotically active substance, which is accumulated in high levels in the 
cytoplasm when the grapevine is in water restriction periods, thus 
enabling it to maintain balance the water potential within the plant cell 
and the turgor pressure ([16]; Keller, 2015; [46]). 

Thereby analyzing the variables with high correlation (Fig. 3), 14 of 
them were discarded, namely: E under drought stress, A under drought 

Fig. 4. Learning curve of the six algorithms on the data set, through 10-fold cross-validation evaluation, and score metric (R2) to predict drought tolerance classes for 
grapevine rootstock cultivars. Where: DT - Decision Tree, RF – Random Forest, XGB - XGBoost, SVM – Support Vector Machines, LDA - Linear Discriminant Analysis e KNN 
- K-Nearest Neighbors. Source: Verslype et al. (2021). 

Table 5 
RF algorithm classification report for 10-fold cross-validation.  

Class Precision Recall f1-score Support 

High 1.00 0.99 0.99 70 
Low 0.96 1.00 0.98 70 
Medium 1.00 0.97 0.99 70 
Accuracy   0.99 210 
Macro average 0.99 0.99 0.99 210 
Weighted average 0.99 0.99 0.99 210  
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stress, EUA under drought stress, EiUA under water stress, proline under 
unstressed and drought stress conditions, ABA content under unstressed 
conditions, osmotic potential under unstressed and drought stress con-
ditions, IPC, total limestone tolerance, root distribution to 100 cm, grape 
buds and grape maturity. 

Performance differences in the six algorithms on the training data set 
were identified (Table 3). The accuracy metric range was between 
98.10% and 64.29%, precision between 98% and 67%, and recall be-
tween 98% and 64%. For Skansi [44], these evaluation metrics are an 
important cue to obtain a meaningful performance comparation of a set 
of machine learning classifiers. Since the accuracy allows identifying 
how good the classifier is, in average, in the task to label unseen in-
stances, the precision determines the model’s ability to avoid erroneous 
results like not labeling a positive sample as negative, and the recall 
indicates the success of the model to find all positive samples [36,44]. 

In this sense, the cross-validation experiments have shown that the 
RF algorithm as is the best classifier. Due to the highest mean values 
achieved for accuracy (98.10%), precision (98%), and recall (98%). 

Nevertheless, the LDA classifier had the lowest accuracy (64.29%), 
precision (67%), and recall (64%) values among all the models evalu-
ated, indicating a low rate of correctness in the indication of the three 
drought tolerance classes. 

Grid search analysis also was applied to the six algorithms (Table 2) 
to indicate the best performance algorithm to predict drought tolerance 
classes. The results obtained confirm that the LDA had the worst per-
formance, reaching only 67.14% accuracy as the best possible result for 
all the configurations of hyperparameters tested on the data set and 
consequently the lowest learning curve. Meanwhile, the RF and XGB 
algorithms performed the best results with 98.57% and 96.19% cor-
rectness to predict the three drought tolerance classes (Table 4). The best 
parameter and its respective configuration of hyperparameters and the 
learning curve plotted in Fig. 4 indicate a higher learning rate over time. 

Table 5 presents the performance of the best model, stratified by 
class. The RF algorithm achieved a f1-score of 0.99 for the high tolerance 
class, 0.98 for low, and 0.99 for medium drought tolerance. According to 
Pedregosa et al. [36], The f1-score values near to one indicate a better 
performance, while those near zero indicate the worst score in the 
model. In this sense, these results indicate a high success rate to classify 
each of the three drought tolerance classes by the RF algorithm. 

A confusion matrix consists of a visualization of the number of 
erroneously labeled and correctly labeled results, represented in the 
matrix diagonal [44]. The confusion matrix for the best model can be 
seen in (Fig. 5), demonstrating a low rate of erroneously classified re-
sults by the RF algorithm, which shows itself as a good classifier for our 
problem. 

The RF algorithm assigned a rating scale of importance to all the 
features evaluated in the data set. Among these, we observed that the 
variables cutting production, the onset of leaf fall, anthracnose resis-
tance, geotropic angle, calcareous soil tolerance, and root distribution 
up to 60 cm were the first variables with the notable importance in their 
decision-making, as we can see it in (Fig. 6). 

The RF decision-making high importance attribution to wood pro-
duction per plant can be explained by the fact plants with more efficient 
use of water produce more dry matter per gram of transpired water. 
Given the need for an average intake of 1 liter for each 2 gs of grapevine 
dry mass-produced [47,16]. Consequently, these more vigorous plants 
can tolerate conditions with lower water availability in general [47,25]. 
While, the feature of leaf fall is related to drought tolerance, as at this 
stage the grapevines direct the photoassimilates to the roots. This en-
ables the absorption area = to increase and recover from water stress 
[47]. 

The greater importance attributed to the variables roots distribution 
up to 60 cm and geotropic angle in RF decision-making can be explained 

Fig. 5. RF algorithm confusion matrix. Where 0 – represents the high drought 
tolerance class, 1 – low, and 2 – medium. Source: Verslype et al. (2021). 

Fig. 6. Feature importance to the RF algorithm decision making to predict drought tolerance classes for grapevine rootstock cultivars. Source: Verslype et al. (2021).  
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by the geotropic angle that determines the depth capacity of the 
grapevine root system [25]. In this sense, the literature has evidenced 
the closed geotropic angles allow the deepening of the roots and 
consequently make it possible to reach deeper layers of soil remain 
moist, as well as to avoid the absorption of harmful elements to plants in 
saline soils through selective absorption [29,16,48,25]. These features 
enable rootstocks to better adapt to water stress conditions, and conse-
quently, a greater drought tolerance [29,25]. 

The RF model also assigned a high importance to the variable 
anthracnose resistance, considered a disease with a wide impact on 
grapevines, as it mainly affects young and tender tissues in the aerial 
part of the plant [49]. The drought stress associated with anthracnose 
predisposition occurrence was studied by Erbaugh et al. [50] for the 
Cornus florida L. species, which observed a significant increase in disease 
severity in plants shaded and under drought conditions. In addition, 
Hsiang [51] mentions how the Poa annua L. species becomes unable to 
respond quickly to anthracnose infection and overcome the disease 
when subjected to severe stresses such as cyclical water stress. In this 
sense, it may be a signal of some degree of interference between the two 
variables in grapevines. 

As mentioned above, after evaluating accuracy, precision, recall, and 
f1-score metrics, the RF was identified as the best model produced in the 
scenarios and data sets test to predict drought tolerance classes in 
grapevine rootstocks. The prediction of drought tolerance classes indi-
cated by the RF algorithm was high tolerance for cultivars IAC 313 and 
IAC 766, and a low tolerance for cultivar IAC 572. Despite being an 
initial study, this approach with supervised algorithms proved to be a 
helpful and accessible strategy for the breeder, that can help develop 
these cultivars by predicting, identifying and selecting promising ge-
notypes. We would like to acknowledge some limitations of the present 
work, which still needs validation of the predicted classes for the IAC 
313, 766 and 572 through studies in field conditions under drought 
conditions. Besides, the training data set is rather a limited sample of 
grapevine rootstocks. In future works, we intend to increase the size of 
the training data set or explore data augmentation strategies. 

4. Conclusion 

This paper proposed a pipeline to predict rootstock drought toler-
ance for the São Francisco Valley in Brazil, through the use of machine 
learning methods. A manually curated data set was produced, which was 
used to evaluate several machine learning algorithms. The results indi-
cated that the best performing classifiers were RF, followed by XGB with 
98.57% and 96.19% correctness to predict drought tolerance classes of 
grapevine rootstocks. 

The best RF hyperparameter configuration was max_features=2 and 
the number of estimators equal to 1000 for the evaluated scenarios and 
data sets. While, the LDA classifier had the lowest efficiency, with a hit 
rate of 67.14%, to predict the classes of tolerance to water deficit. 

The trained model was used to predict drought tolerance of 03 the 
grapevine rootstock cultivars that have never been experimentally 
evaluated. The model classified grapevine rootstock cultivars IAC 313 
and IAC 766 with high drought tolerance, while IAC 572 with a low 
tolerance. In this regard, cultivars IAC 313 and IAC 766 could be the best 
option for vintners in the São Francisco Valley. It is important to note 
that this is a preliminary study, and these predictions, are an indicative 
of the real drought tolerance of the three cultivars, requiring more 
research to validate such results. 

Machine learning algorithms demonstrated to be a helpful tool in 
plant breeding studies that can contribute to identifying and selecting 
drought-tolerant grapevine rootstock genotypes in breeding programs. 
As a suggestion to extend this study, we envision the validation of the 
predictions obtained by the ML model in field tests under drought stress, 
as well as an increase of the training data set. 
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