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INTRODUCTION

Copy number variations (CNVs) are chromosomal rear-
rangements (≥1 kb) triggered by changes in DNA content 
and structure (Feuk et al., 2006) leading to a change in 
the order (inversions and translocations) and the number 

of copies (duplications and deletions) of a genomic region 
(Henrichsen et al.,  2009). CNVs represent an import-
ant source of genetic and phenotypic variability among 
individuals and populations (Beckmann et al.,  2007; 
Conrad & Antonarakis,  2007; Low et al.,  2019; Zhou 
et al.,  2016), exerting a significant evolutionary impact 
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Abstract
Further characterization of genetic structural variations should strongly focus 
on small and endangered local breeds given their role in unraveling genes and 
structural variants underlying selective pressures and phenotype variation. 
A comprehensive genome-wide assessment of copy number variations 
(CNVs) based on whole-genome re-sequencing data was performed on three 
Brazilian locally adapted cattle breeds (Caracu Caldeano, Crioulo Lageano, 
and Pantaneiro) using the ARS-UCD1.2 genome assembly. Data from 36 
individuals with an average coverage depth of 14.07× per individual was used. 
A total of 24 945 CNVs were identified distributed among the breeds (Caracu 
Caldeano = 7285, Crioulo Lageano = 7297, and Pantaneiro = 10 363). Deletion 
events were 1.75–2.07-fold higher than duplications, and the total length of 
CNVs is composed mostly of a high number of segments between 10 and 30 kb. 
CNV regions (CNVRs) are not uniformly scattered throughout the genomes 
(n = 463), and 105 CNVRs were found overlapping among the studied breeds. 
Functional annotation of the CNVRs revealed variants with high consequence 
on protein sequence harboring relevant genes, in which we highlighted the 
BOLA-DQB, BOLA-DQA5, CD1A, β-defensins, PRG3, and ULBP21 genes. 
Enrichment analysis based on the gene list retrieved from the CNVRs disclosed 
over-represented terms (p < 0.01) strongly associated with immunity and cattle 
resilience to harsh environments. Additionally, QTL associated with body 
conformation and dairy-related traits were also unveiled within the CNVRs. 
These results provide better understanding of the selective forces shaping the 
genome of such cattle breeds and identify traces of natural selection pressures 
by which these populations have been exposed to challenging environmental 
conditions.
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by generating the required variation in the population 
through the change in gene structure and dosage as well 
as by regulating gene expression and function (Zhang 
et al.,  2009). Hence, this source of variation is as im-
portant a component of diversity as SNPs. In terms of 
the total number of nucleotides involved, CNVs may ac-
count for more differences among individuals than do 
SNPs (Conrad et al., 2010; McCarroll & Altshuler, 2007; 
Zhang et al.,  2009). Furthermore, a significant pro-
portion of CNVs encompass genomic regions not well 
covered by SNP arrays such as segmental duplications 
regions, and consequently, were not properly genotyped 
(Estivill & Armengol, 2007). Therefore, CNVs may pro-
vide genomic structural information complementary to 
SNP data (Scherer et al., 2007).

Different methodologies have been applied to iden-
tify CNVs at a genome-wide scale, including compar-
ative genomic hybridization arrays, SNP-genotyping 
microarrays, and high-throughput sequencing (Clop 
et al., 2012; Di Gerlando et al., 2019). Although the first 
two array platforms may be affected by low probe den-
sity (Bickhart et al.,  2012), they have been widely used 
for CNV detection in several livestock species, particu-
larly in cattle (Bae et al., 2010; Di Gerlando et al., 2019; 
Fadista et al., 2010; Hou et al., 2011; Kijas et al., 2011; Liu 
et al., 2010). Advances in high-throughput genome scan 
technologies combined with appropriate algorithms have 
provided better approaches to systematically identify 
genome-wide CNVs at a higher and effective resolution, 
frequency, and sensitivity, allowing the identification of 
a vast number of structural variants, especially those 
that have been previously undetectable due to their 
small sizes (Alkan et al., 2009; Bickhart et al., 2012; Clop 
et al., 2012).

CNVs have been associated with heritable complex 
traits in several species, and lately, the interest in CNVs 
discovery has extended into livestock species (Dupuis 
et al., 2013; Fontanesi et al., 2010, 2011; Ramayo-Caldas 
et al., 2010). Interestingly, genome-wide CNVs studies in 
local and less notorious breeds have been addressed in 
literature (Di Gerlando et al., 2019; Molnár et al., 2014; 
Tian et al.,  2013; Wang et al.,  2016; Yang et al.,  2017; 
Zhang et al., 2015; Zhou et al., 2014). However, despite 
the importance of such breeds to a wide range of chal-
lenging environments, studies deciphering their ge-
netic structure are still a minority when compared to 
those accomplished in highly-specialized commercial 
breeds. Brazilian locally adapted taurine cattle breeds 
originated from the cattle brought by Portuguese con-
querors in 1534 during the Brazilian colonization pe-
riod (Mariante et al., 1999; Martins et al., 2009; Mazza 
et al., 1994; Primo, 1992). These cattle have undergone to 
a process of natural selection in a remarkable set of eco-
systems throughout the country for more than 450 years 
(Mariante & Cavalcante, 2000). Although these breeds 
have their origin traced back to the Iberian Peninsula, 

each of them developed and underwent natural selection 
processes in distinct geographic regions, with diverse 
environmental conditions and successive generations of 
random crossings associated with breed miscegenation 
with distinct populations (Mariante et al., 1999). These 
events allowed them to acquire very particular charac-
teristics over time and the different adaptive processes 
led them to genetic differentiation, being considered 
independent genetic entities (Campos et al., 2017; Egito 
et al., 2007; Peripolli et al., 2020).

Caracu Caldeano (CAR) cattle are settled in south-
east Brazil, and the process of natural selection led 
them to acquire short hair, tolerate the high tempera-
tures, resistance to parasites, favorable uprights and 
resistant hooves, short and prolapsed navel, and the 
ability to digest coarse fiber (McManus et al.,  2010). 
The Crioulo Lageano (CRL) cattle population is cen-
tered in South Brazil (plateau of Lages, Santa Catarina 
state). This region is characterized by acidic and stony 
soils, uneven topography, f loodplains, bush fields and 
abundant riparian forests, and cold winters with a 
high incidence of frost. The low temperatures during 
the winter period limit the availability of green fodder 
due to frost, affecting the adaptation and/or productiv-
ity of several livestock species. However, these adverse 
conditions shaped the CRL cattle, which are perfectly 
adapted to such an ecosystem (Primo,  1986). The 
Pantaneiro (PAN) cattle are present in the northern 
part of the Pantanal (mid-west Brazil). The Pantanal 
ecosystem is characterized by high solar radiation, 
parasites infestations, and flooding altering food 
availability (Ricklefs, 1979). The vegetation comprises 
forest patches, savanna, scrub savanna, and seasonally 
f looded grasslands, interspersed with various perma-
nent and temporary lakes (Mourão & Medri,  2007). 
Natural selection conferred these cattle with excep-
tional rusticity, which has allowed them to thrive under 
water and food stress conditions, where other types of 
cattle would have little or no chance to survive (Mazza 
et al., 1992).

Further characterization of genetic structural vari-
ations, particularly in local breeds, is an important 
step towards deciphering the molecular mechanisms 
underlying trait variation, survivorship, and breed 
adaptation. Therefore, this study reports, for the first 
time, a genome-wide characterization of CNVs derived 
from whole-genome re-sequencing data in CAR, CRL, 
and PAN, three Brazilian locally adapted taurine cat-
tle breeds. The breeds examined herein have evolved 
under different challenging environments and might 
harbor important phenotypic traits and evidence of 
positive selection that will help secure cattle produc-
tion in a changing environment. Therefore, CNVs 
might harbor breed-specific adaptation footprints 
that may elucidate the phenotypic variation shaped by 
natural selection and may unravel potential biological 
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functions of the genes screened within the putative 
candidate regions.

M ATERI A LS A N D M ETHODS

Samples, sequencing, and raw data preparation

Sequencing analysis was based on data from one dairy 
(12 CAR) and two dual-purpose (12 CRL and 12 PAN) 
cattle breeds. Animals were sampled from three Brazilian 
geographical regions, including the south (CRL), south-
east (CAR), and mid-west (PAN). The population struc-
ture among the breeds together with their history and 
breed development can be further assessed in Peripolli 
et al. (2020).

DNA samples were provided from DNA banks 
located in Embrapa Dairy Cattle (Juiz de Fora, 
MG, Brazil) and Embrapa Genetic Resources and 
Biotechnology (Brasilia, DF, Brazil). The samples 
were paired-end whole-genome re-sequencing with 
2 × 100 base pair reads (CRL) and 2 × 125 base pair 
reads (CAR and PAN) performed on the Illumina 
HiSeq2500 platform with an aimed average sequenc-
ing depth of 15×. Pair-end reads were aligned to the 
Bos primigenius taurus genome assembly ARS-UCD1.2 
using Burrows-Wheeler Alignment MEM (bwa-mem) 
tool v.0.7.17 (Becker et al.,  2018) and converted into 
a binary format using samtools v.1.8 (Li et al., 2009). 
PCR duplicates were marked using picard tools (http://
picard.sourc​eforge.net, v.2.18.2).

Detections of CNVs and CNV regions

The read depth-based method implemented in cnvna-
tor v.0.4.1 (Abyzov et al.,  2011) software was used to 
call CNVs for each sample relative to the Bos primi-
genius taurus genome assembly ARS-UCD1.2. The 
bin size was set to 500 bp (CAR and CRL) and 600 bp 
(PAN) based on the ratio of the average read depth 
signal to its standard deviation. Quality control was 
undertaken to remove unreliable raw CNVs and reduce 
the false discovery rate. CNV calls with a p-value lower 
than 0.01 for the t-test statistics (e-val1) together with 
the fraction of mapped reads with zero quality (q0) 
lower than 0.5 and CNVs smaller than 1 kb in length 
were filtered out. Only autosomal chromosomes were 
included in the analysis.

CNV regions (CNVRs) were identified by over-
lapping individual CNVs within each breed (Redon 
et al.,  2006), and only those found overlapping in all 
individuals within a breed by at least 1 bp were used 
for downstream analysis. Shared CNVRs among the 
studied breeds were also identified by overlapping the 
CNVRs identified within each breed, and only those 
described overlapping in at least two breeds were used 

for further analysis. Overlapping analyses were carried 
out using the bioconductor package GenomicRanges 
(Lawrence et al., 2013).

Correspondence analysis

Correspondence analysis is a multivariate method from 
categorical data analogous to principal component 
analysis, which leads to a low-dimensional graphical 
representation of a contingency table as points in a met-
ric space (Weller, 2005). Therefore, shared CNVRs were 
used to access the structure of the locally adapted cat-
tle breeds to obtain a comparative view of such breeds 
based on CNVR clusters. Shared CNVRs overlapping 
in at least two breeds were used as variables to spatially 
cluster the CNVRs using the Statistical Analysis System 
(sas version 9.3) software and the CORRESP procedure 
based on Chi-square distances to judge proximity among 
them.

Predicted functional impacts, gene 
annotation, and enrichment analysis

A functional annotation analysis of the called variants 
(CNVRs) was performed to assess their possible bio-
logical impact using the Variant Effect Predictor (VEP; 
McLaren et al.,  2016) together with the Ensembl genes 
release 100, version April 2020 (assembly ARS-UCD1.2). 
Variants with a high consequence on protein sequence 
(i.e., splice acceptor variant, splice donor variant, stop 
gained, frameshift variant, stop lost, and start lost) were 
selected for further assessment.

Genes were annotated within the CNVRs using the 
cow gene set Ensembl genes release 100 (ARS-UCD1.2) 
fetched from the biomart tool (Haider et al.,  2009). 
Database for Annotation, Visualization, and Integrated 
Discovery (DAVID) v.6.8 tool (Huang et al.,  2009a, 
2009b) was used to identify overrepresented (p < 0.01) 
Gene Ontology (GO) terms and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways using the list of 
genes from the CNVRs and the bovine annotation file as 
a background. QTL retrieved from the CattleQTL data-
base (Hu et al., 2016) were overlapped with the CNVRs 
using bedtools (Quinlan & Hall, 2010).

RESU LTS

Data

With Illumina paired-end sequencing technology, we 
obtained re-sequencing data from 36 individuals from 
three different Brazilian locally adapted taurine cattle 
breeds. After mapping the reads to the genome assem-
bly ARS-UCD1.2, an average coverage depth of 14.07× 

http://picard.sourceforge.net
http://picard.sourceforge.net
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was obtained. As disclosed in the literature, an average 
coverage depth between 4 and 8× allows sufficient power 
for CNVs detection using the read depth-based method 
(Bickhart et al., 2012; Sudmant et al., 2010).

CNV and CNVRs discovery

Four outlier samples (one for CRL and three for PAN) 
were filtered out from the dataset after CNV calling due 
to the discrepant number of CNVs identified.

A total of 7285 CNVs (4640 deletions and 2645 du-
plications) was identified in the CAR breed. On an in-
dividual animal basis, the average number of CNVs per 
animal was 607.08, with an average length of 28.30  kb 
and encompassing approximately 0.63% (17.18  Mb) of 
the total autosomal genome extension (ARS-UCD1.2). 
In the CRL breed, the total number of CNVs was 7297 
(4726 deletions and 2571 duplications), displaying an av-
erage number of 663.36 CNVs per animal together with 
an average length of 27.60 kb and covering roughly 0.67% 
(18.31 Mb) of the total autosomal genome extension. For 
the PAN breed, 10 363 CNVs (6998 deletions and 3365 
duplications) were identified, with an average number 

of 1151.44 CNVs per animal and an average length of 
34.06 kb, encompassing nearly 1.44% (39.22 Mb) of the 
total autosomal genome extension.

The longest CNVs within each breed were very 
close in size among the studied breeds and were all 
events of deletion, with values of 1004.99  kb in length 
on BTA10:23 775 501–24 780 500 bp (CRL), 1006.99 kb in 
length on BTA10:23 773 501–24 780 500  bp (CAR), and 
1007.39 kb in length on BTA9:104 447 401–105 454 800 bp 
and BTA10:23 773 201–24 780 600 bp (PAN). Remarkably, 
the genomic region on BTA10:23 775 501–24 780 500  bp 
was found overlapping in all three breeds within the lon-
gest CNVs described. When inspecting in detail, such 
genomic region did not harbor any gene or QTL. The 
number of CNVs per chromosome was greater on BTA1 
for the PAN (n = 662) cattle and on BTA15 for the CRL 
(n = 518) and CAR (n = 496) cattle breeds (Appendices S1–
S3). The total length of CNVs for the studied breeds was 
composed mostly of a high number of segments between 
10 and 30 kb, which accounted for approximately 47% 
(CAR; n  =  3443 and CRL; n  =  3422) and 55% (PAN; 
n = 5737) of all CNVs detected (Figure 1a).

The CNVRs were not evenly distributed throughout 
the genomes, with some chromosomes missing CNVRs 

F I G U R E  1   (a) Copy number variation 
(CNV) length class size range distribution 
for Caracu Caldeano (CAR), Crioulo 
Lageano (CRL), and Pantaneiro (PAN) 
cattle breeds. (b) Copy number variations 
region (CNVR) length class size range 
distribution for CAR, CRL, and PAN 
cattle breeds
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and others containing several such regions (Figure  2, 
Appendices  S4–S6). The total length of CNVRs is 
also composed mostly of a high number of segments 
between 10 and 30 kb in length (Figure 1b). A total of 
153 CNVRs were identified in the CAR breed, includ-
ing 49 deletions, 102 duplications, and two mixed (de-
letion and duplication within the same region) events. 
Such CNVRs covered roughly 0.09% (2.45 Mb) of the 
autosomal genome extension (ARS-UCD1.2), with an 
average length size of 16.05 kb and values ranging from 
1.00 to 79.50 kb. In the CRL breed, the total number 
of CNVRs was 140 (46 deletions, 86 duplications, and 
eight mixed events), covering approximately 0.08% 
(2.17 Mb) of the autosomal genome extension with an 
average length size of 15.53 kb and values ranging from 
0.50 to 114.50  kb. For the PAN breed, a total of 170 
CNVRs were described, encompassing 61 deletions, 99 
duplications, and 10 mixed events. The CNVRs covered 
nearly 0.13% (3.60 Mb) of the autosomal genome exten-
sion, with an average length size of 21.122 kb and values 
ranging from 0.50 to 200.50 kb.

The number of CNVRs per chromosome was greater 
on BTA1 for the CAR (n = 17) and CRL (n = 13) cattle 
breeds (Figure  3a,b, respectively), and BTA12 showed 
the greatest enrichment for the PAN (n  =  29) cattle 
(Figure 3c). It is worth highlighting that the number of 
CNVRs duplication events was higher (~1.85-fold) than 
did the deletions.

Shared CNVRs by the three breeds (n = 105) were ob-
served, with a length size varying from 1.00 to 52.00 kb 
and a mean size of 14.34  kb (Appendix  S7, Figure  4). 
Further, breed-specific genomic regions could be ob-
served for CAR (n = 70), CRL (n = 43), and PAN (n = 128) 
when overlapping the CNVRs among the studied breeds.

Correspondence analysis

The CNVR structure among the breeds was dissected 
by analyzing the first two dimensions (Figure  5 and 
Appendix  S8). Shared CNVRs among the breeds clus-
tered in four main groups and a clear separation could 
be observed between the breeds and CNVR clusters. 
Dimension 1 accounted for roughly 63% of the variance 
and it clearly separated CNVR groups 1 and 2. These two 
CNVR groups differentiated CRL and CAR cattle breeds. 
The PAN cattle were found associated with CNVR group 
1 and CAR cattle as well as with CNVR group 2 and CRL 
cattle. Despite being differentiated, CRL and CAR might 
share some CNVRs with PAN cattle. CNVR group 3 is 
likely to share CNVRs with all breeds. When analyzing 
dimension 2 (36.7% of the variance), the CNVR group 4 is 
the group that least correlated with the breeds. It is worth 
highlighting that CAR and CRL share different CNVR 
groups, and the little they have in common might be en-
compassed in CNVR group 4.

F I G U R E  2   Copy number variation region (CNVR) scattering in the Caracu Caldeano (CAR), Crioulo Lageano (CRL), and Pantaneiro 
(PAN) cattle genomes according to autosomal length (ARS-UCD1.2). Dots depicting the breeds: circle (CAR), triangle (CRL), and square 
(PAN). Dots depicting the CNVR events: deletion (red), duplication (blue), and mixed (green) events
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When inspecting in detail, all CNVR groups harbored 
several protein-coding genes (Appendix  S9). It is worth 
highlighting that CNVR group 1 comprised five protein-
coding genes, in which we can underscore the DEFB7 gene. 
CNVR group 2 harbored 11 protein-coding genes, with 

emphasis on the TRBV3-1 gene. CNVR group 3 harbored 
the highest number of protein-coding genes (n = 15), and a 
β-defensin and a bovine leukocyte antigen (BoLA)-related 
gene were described within this group. CNVR group 4 dis-
played one protein-coding gene with no described function.

F I G U R E  3   Frequency distribution of copy number variation regions (CNVRs) according to CNVR event (deletion, duplication, and 
mixed). (a) Caracu Caldeano cattle breed, (b) Crioulo Lageano cattle breed, (c) Pantaneiro cattle breed
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Variant and functional annotation of genes

Functional classification showed that most of the variants 
identified within the CNVRs were located in intergenic 
and intronic regions (Appendix S10), and several variants 
with a high consequence on protein sequence were identi-
fied (CAR n = 43; CRL n = 37; PAN n = 57; and shared 
CNVRs by the three breeds n = 53; Appendices S11–S14). 
Following variant annotation, we further investigated 
the gene content within the predicted variants to cause 
relevant biological functions. Totals of 30, 22, 42, and 26 
protein-coding genes were described within variants with 
a high consequence on protein sequence for CAR, CRL, 
PAN, and shared CNVRs by the three breeds, respec-
tively. Among them, it is worth underscoring the BOLA-
DQB, BOLA-DQA5, CD1A, and some β-defensins genes 
(i.e., DEFB13 and DEFB7), which were identified in all 

breeds (Figure 6). Further, genes such as the PRG3 and 
ULBP21 were particular to CAR cattle. All of them have 
been strongly linked to cattle environmental resilience, 
including immune response and ectoparasite resistance.

Enrichment analysis of genes

Enrichment analysis was performed to obtain a broad 
functional insight into the set of genes (Appendix S15) ob-
served in CNVRs described in each breed, as well as in 
shared CNVRs by the three studied breeds. GO enrich-
ment analysis revealed five biological processes, three mo-
lecular functions and four cellular component processes 
enriched (p < 0.01, Table 1), and suggested that several of 
the CNVRs genes are mainly enhanced in functions re-
lated to the immune response. CAR and PAN cattle breeds 
showed enrichment of β-defensins genes encompassing the 
over-represented terms, whereas CRL and shared CNVRs 
displayed an enhancement of BoLA-related genes. Some 
overrepresented terms (i.e., GO:0042742, GO:0005576, 
GO:0002504, GO:0042613) were described in more than 
one breed. Besides, the over-represented in shared CNVRs 
(GO:0002504 and GO:0042613) have been previously iden-
tified when analyzing the breeds individually.

Genes within the breed-specific genomic regions dis-
closed for each breed when overlapping the CNVRs were 
also annotated (Appendix  S16), suggesting that these 
regions might be associated with breed-specific differ-
ences in adaptative and productive traits.

CNVRs and overlapping QTL in cattle

CNVRs were disclosed in genomic regions containing 
QTL in cattle formerly implicated in body conformation 
(n = 2) and dairy-related traits (n = 10; Appendix S17). It 

F I G U R E  4   Venn diagram of copy number variation regions 
(CNVRs) for Caracu Caldeano (CAR), Crioulo Lageano (CRL), and 
Pantaneiro (PAN) cattle breeds

F I G U R E  5   Two-dimensional 
correspondence analysis of copy number 
variants regions (CNVRs) with variance 
explained by the first two dimensions in 
brackets for Caracu Caldeano (CAR), 
Crioulo Lageano (CRL), and Pantaneiro 
(PAN) cattle breeds
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is noteworthy to underscore that most of the QTL de-
scribed herein were found within shared CNVRs. The 
CAR and CRL cattle did not display any further QTL 
besides those described in the shared CNVRs by the 
three studied breeds. Further, the PAN cattle displayed 
QTL related to milk protein percentage and fatty acid 
content on BTA3 and BTA29, respectively, in addition 
to those identified within the shared CNVRs by the 
three breeds. It should be noted that the majority of 
the QTL harbored duplication events and just one on 
BTA17:68 058 001–68 079 500  bp (nonreturn rate QTL; 
Frischknecht et al., 2017) was found encompassing a de-
letion event.

DISCUSSION

The Global Animal Genetic Data Bank created by the 
Food and Agriculture Organization contains many re-
ports of local breeds that are thought to show resistance/

tolerance to particular diseases and parasites. However, 
many of these reports are based on personal accounts 
rather than scientific studies (Hoffmann,  2010). This 
study is the first of its kind to bring out scientific find-
ings that validate the reports observed by technicians 
and breeders working with locally adapted breeds in 
Brazil. These findings could provide the basis to better 
explore the use of such breeds in crossbreeding programs 
to transfer their adaptability and rusticity to commercial 
breeds.

Discovery of CNVs and CNVRs

The widespread availability of array-based methods 
has led to much interest in the discovery and mapping 
of CNVs and their association with phenotypes (Yau 
& Holmes, 2008). Previous studies assessing CNVs in 
several cattle breeds have been mainly based on array 
comparative genomic hybridization (aCGH) (Fadista 

F I G U R E  6   Variants scattering in the Caracu Caldeano (CAR), Crioulo Lageano (CRL), and Pantaneiro (PAN) cattle genomes according 
to autosomal length (ARS-UCD1.2). Dots depicting the breeds: circle (CAR), triangle (CRL), and square (PAN). Dots depicting the putative 
variant impact: high (red) and modifier (blue)
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et al., 2010; Liu et al., 2010, 2019) and SNP arrays (Bae 
et al.,  2010; Cicconardi et al.,  2013; Hou et al.,  2012; 
Jiang et al., 2013; Yang et al., 2017; Zhang et al., 2015). 
Although they promoted the progress of CNV studies, 
much has been discussed about the limitations of such 
methodologies associated with the power to detect 
CNVs (Lai et al.,  2005; Pinto et al.,  2011; Winchester 
et al., 2009). Studies have reported that coverage bias 
and platform resolution resulted in differences regard-
ing the number and sizes between CNVs when using 
next-generation sequencing (NGS) and array-based 
methods (Ben Sassi et al.,  2016; da Silva et al.,  2016; 
Jiang et al., 2013; Zhan et al., 2011). Hence, differences 
in CNV calls from different platforms make the com-
parison among studies not straightforward and em-
phasize the importance of a careful assessment when 
contrasting studies.

Current studies on local and endangered cattle breeds 
using whole-genome resequencing data are very minimal 
when compared to specialized (i.e., dairy and beef) breeds 

(Ben Sassi et al.,  2016; Bickhart et al.,  2012; Boussaha 
et al., 2015; Gao et al., 2017; Stothard et al., 2011; Zhan 
et al., 2011). Accordingly, we investigated structural vari-
ations in three Brazilian locally adapted cattle breeds 
using a read depth approach based on whole-genome re-
sequencing data. Our results revealed that CNVs are non-
uniformly scattered across the genomes and represent a 
small proportion of the reference assembly used for map-
ping (~0.63–1.44%), as also reported for other cattle pop-
ulations (Bickhart et al., 2012; Stothard et al., 2011; Zhan 
et al., 2011; Zhang et al., 2015). The number of autosomal 
CNVs identified in each breed is consistent with previ-
ous reports based on NGS data by Stothard et al. (2011) 
and Zhan et al. (2011), and higher than those described 
by Bickhart et al.  (2012) and Ben Sassi et al.  (2016). 
The PAN cattle displayed the highest number of CNVs 
among the studied breeds. It is worth highlighting that 
the PAN breed has the smallest population among the 
Brazilian locally adapted cattle breeds. Moreover, the 
evaluated population comes from a breed conservation 

Category Term n genes p-value Genes

Caracu Caldeano

MF GO:0047961~glycine N-
acyltransferase activity

3 5.24E-06 GLYAT, GAT, 
GLYATL2

BP GO:0042742~defense response 
to bacterium

4 8.38E-05 DEFB7, EBD, 
DEFB13, DEFB4A

BP GO:0006955~immune response 4 1.47E-03 PRG3, BOLA-DQA5, 
BOLA-DQB

CC GO:0005576~extracellular 
region

5 3.59E-03 DEFB7, EBD, PRG3, 
DEFB13, DEFB4A

MF GO:0046703~natural killer cell 
lectin-like receptor binding

2 4.57E-03 ULBP21, RAET1G

Crioulo Lageano

BP GO:0002504~antigen processing 
and presentation of peptide 
or polysaccharide antigen via 
MHC class II

2 7.79E-03 BOLA-DQA5, 
BOLA-DQB

CC GO:0042613~MHC class II 
protein complex

2 9.79E-03 BOLA-DQA5, 
BOLA-DQB

Pantaneiro

MF GO:0005044~scavenger receptor 
activity

3 2.04E-04 WC1, CD163L1, 
WC1.3

BP GO:0042742~defense response 
to bacterium

3 1.48E-03 DEFB7, DEFB13, 
DEFB10

CC GO:0005576~extracellular 
region

4 7.76E-03 DEFB7, CD163L1, 
DEFB13, DEFB10

Shared CNVRs

BP GO:0002504~antigen processing 
and presentation of peptide 
or polysaccharide antigen via 
MHC class II

2 5.20E-03 BOLA-DQA5, 
BOLA-DQB

CC GO:0042613~MHC class II 
protein complex

2 6.13E-03 BOLA-DQA5, 
BOLA-DQB

Abbreviations: BP, biological process; CC, cellular component; MF, molecular function; MHC, major 
histocompatibility complex.

TA B L E  1   Gene Ontology (GO) terms 
and Kyoto Encyclopedia of Genes and 
Genomes pathways analysis enriched 
(p < 0.01) based on copy number variation 
regions identified within each breed 
(Caracu Caldeano, Crioulo Lageano, and 
Pantaneiro) and based on shared copy 
number variation regions by the three 
breeds
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center located at Embrapa Pantanal (Corumbá, MS, 
Brazil), in which crossbreeding is practiced to maintain 
the maximum genetic variability. Therefore, the higher 
number of CNVs described for the PAN cattle may be a 
function of the crossing model applied to maintain such 
genetic variability together with the absence of any ge-
netic improvement program.

Deletions events were approximately 1.75–2.07-fold 
more recurrent than duplications, concurring with for-
mer NGS studies for taurine cattle breeds (~1.72-fold, 
Gao et al., 2017 and 1.15-fold Boussaha et al., 2015). The 
increased number of deletions described herein might 
be associated with the mechanism by which CNVs are 
formed within the genome. Studies have shown that non-
homologous end-joining formation is the major mecha-
nism responsible for deletion and translocations (Shaw 
& Lupski, 2005; Toffolatti et al., 2002). Non-homologous 
end-joining is a repair mechanism frequently initiated in 
response to double-strand breaks after DNA processing 
(Van Gent & Van Der Burg, 2007), and it can occasion-
ally error-prone, leading to loss or small insertion of nu-
cleotides at the lesion site (Labhart, 1999).

The sizes of the identified CNVs mostly ranged from 
10 to 30 kb for all breeds, with a few outliers having a 
size greater than 500  kb. Such results are consistent 
with those based on SNP array (Bae et al., 2010; Lemos 
et al.,  2018; Wu et al.,  2015; Zhang et al.,  2015) on di-
verse cattle breeds; however, it differed from NGS data 
(da Silva et al., 2016) in which CNVs were most frequent 
between 100 and 200  kb. Nevertheless, it is worth un-
derscoring that the CNVR size range distribution con-
curred with those described in the literature for both 
SNP array-based and NGS data (Ben Sassi et al., 2016; 
da Silva et al., 2016; Gao et al., 2017; Lemos et al., 2018).

Correspondence analysis

The correspondence analysis allowed us to discriminate 
the three breeds based on CNVR clusters as well as to 
visualize how the gene content within the CNVRs were 
related to each breed. CNVR groups differentiated CRL 
and CAR cattle, and the PAN cattle were found asso-
ciated with both CAR and CRL cattle. The differentia-
tion between CRL and CAR may be explained by the 
cattle type introduced by European conquerors during 
Brazilian the colonization period (Mazza et al.,  1994). 
Portuguese purebred cattle brought to Brazil belonged 
to three different bloodlines: Bos taurus aquitanicus, Bos 
taurus batavicus, and Bos taurus ibericus. CRL and PAN 
cattle originated from a common ancestral pool and 
have their ancestry in breeds from Bos taurus ibericus 
cattle, while the CAR cattle descended from the Bos tau-
rus aquitanicus bloodline (Serrano et al., 2004). Further, 
the divergence between CRL and CAR cattle may be 
a result of artificial selection events over time. CAR 

animals have been selected for milk production traits in 
the southeastern region of Brazil since 1893 (de Queiroz 
et al., 2005), whereas CRL and PAN animals are mainly 
used in animal genetic resources conservation programs 
(Mariante et al.,  1999, 2009). Our previous study also 
described overlap of genetic variation between PAN 
and CRL cattle breeds (Peripolli et al., 2020). These re-
sults might reflect the breed production type since both 
breeds are dual-purpose use and have their origin traced 
back to Bos taurus ibericus cattle as well as from the 
Spanish expeditions in the Rio da Prata basin (Mazza 
et al., 1994).
CNVR groups 1 and 2 differentiated CRL and CAR 
cattle when considering the highest proportion vari-
ance explained (63.53%) and harbored the DEFB7 and 
TRBV3-1 genes, respectively. The first gene belongs to 
the β-defensin family, which are antimicrobial peptides 
contributing to host defense during infection by act-
ing against many unicellular parasites (Brogden,  2005; 
Lehrer et al., 1993; Nicolas & Mor, 1995) and are respon-
sible for inducing primary immunological responsiveness 
(Banchereau et al., 2000; Sakaguchi et al., 2008). The po-
tential of Brazilian locally adapted cattle breeds respon-
siveness was demonstrated by Maggioli et al. (2013). The 
TRBV3-1 gene is closely associated with T lymphocytes 
and T-cell response, playing a central role in the adaptive 
immune response. In vertebrates, α/β T-cell receptors 
are antigen specific receptors essential to the immune 
response present on the cell surface of T lymphocytes 
(Massari et al., 2018), being crucial to the maintenance 
of effective T cell-mediated immunity to a wide variety 
of pathogenic organisms (Houston et al., 2005).

Copy number variations regions group 3 was de-
scribed to share CNVRs with all breeds, and encom-
passed the BOLA-DQB and DEFB13 (β-defensin family) 
genes. BoLA family member genes are located within the 
major histocompatibility complex region. In cattle, the 
major histocompatibility complex region is known as the 
BoLA, which is on BTA23 (Fries et al., 1993). BoLA plays 
a crucial role in determining immune responsiveness, 
and genetic variations in such region has been greatly 
associated with disease susceptibility and resistance (re-
viewed by Takeshima & Aida, 2006). Additionally, sev-
eral cattle studies have described CNVs adjacent to the 
BoLA region (Hou et al.,  2011; Liu et al.,  2010; Porto-
Neto et al., 2013; Prinsen et al., 2017; Zhou et al., 2016).

CNVs within the locally adapted cattle breeds are 
affecting particular genes with similar biological func-
tions in different CNVR cluster groups. The Brazilian 
locally adapted cattle breeds are considered as hardy 
breeds with excellent adaptability to challenging envi-
ronments. Genes that are involved in the triggering and 
regulation of innate immune responses were detected 
in CNVR cluster groups, which is consistent with the 
high level of resistance to diseases and endoparasites of 
such breeds.
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Variant annotation and enrichment analysis

Genome-wide characterization of CNVs and the compre-
hensive assessment of CNVRs are a powerful strategy to 
ascertain potential key genes and biological mechanisms 
encompassing traits of interest in several livestock spe-
cies. In this regard, CNVRs identified herein were bet-
ter assessed to predict the impact of variants on protein 
sequence and determine their likely biological effects. 
Further, the gene content within those regions were in-
spected in detail to disentangle their roles in shaping 
particular characteristics and phenotypes of the studied 
populations. When further investigating the gene con-
tent harboring variants with a high consequence on pro-
tein sequence, the majority of them were described to be 
closely linked to adaptation and immune response func-
tions rather than productivity. Several family member 
genes with similar biological functions were described 
harboring variants within the three breeds. Among 
them, we can underscore BoLA family member genes, 
β-defensins genes, and the CD1A gene.

Beta-defensins are antimicrobial peptides acting 
against many Gram-positive and negative bacteria, 
fungi, enveloped viruses, and other unicellular parasites 
(Brogden, 2005; Lehrer et al., 1993; Nicolas & Mor, 1995). 
Antimicrobial peptides are among the most evolution-
arily ancient molecules of the immune system and are 
present in a variety of vertebrates, insects, and plants 
(Selsted & Ouellette, 2005). Besides their antimicrobial 
activity, β-defensins have chemoattractant activity for 
immature dendritic and T cells (Yang et al., 1999), play-
ing a critical role in the immediate reaction to a broad 
spectrum of pathogens by inducing primary immunolog-
ical responsiveness (Banchereau et al., 2000; Sakaguchi 
et al., 2008). Further, bovine β-defensins located within 
the bovine cluster D are mainly expressed in the mam-
mary gland, and therefore, contribute to local host de-
fense and impart resistance against intramammary 
infections (Gurao et al., 2017). The CD1A gene has been 
described to be highly expressed at the tick attachment 
site from Holstein-Friesian animals (Piper et al., 2008). 
A study on Angus cattle (Hou et al., 2012) revealed that 
parasite resistance animals with high estimated breeding 
values for eggs/g displayed such gene within regulatory 
networks linked to gastrointestinal nematodes.

Two genes encompassing variants with high impact 
on protein sequence were described only for the CAR 
cattle (ULBP2 and PRG3 genes), and they should be 
highlighted given their role in cattle adaptation. It is 
hypothesized that the cattle ULBP gene family evolved 
under adaptive diversifying selection in response to se-
lective pressure exerted by a viral pathogen (Larson 
et al.,  2006). The PRG3 gene has been associated with 
tick resistance. It forms a protective barrier by stimu-
lating the histamine biosynthetic process and activating 
basophils, which are important effectors of tick rejection 
and a major component of the acquired resistance of the 

host (Falcone et al., 2001; Wikel, 1996). Such mechanism 
leads to an unfriendly environment for tick attachment 
and feeding (Kongsuwan et al., 2008).

All of the previously discussed genes have been de-
scribed within the significant GO terms, strongly 
supporting their enriched functions associated with 
immunity and cattle resilience to harsh environments. 
CAR and PAN cattle showed enriched terms (p < 0.01) 
encompassing mostly β-defensin family member genes, 
while CRL predominantly displayed BoLA family mem-
ber genes. Differences in gene groups observed may be 
related to adaptation to the climatic regions where these 
breeds developed. CAR and PAN are reared in the trop-
ical zone while the CRL in the southern temperate zone. 
It should be noted that only one over-represented term 
(GO:0047961~glycine N-acyltransferase activity) has not 
been directly associated somehow with immune-related 
functions. Several other CNV cattle studies displayed 
an enrichment of genes linked to immune response and 
environmental interaction, including sensory response 
and chemical stimuli (Bickhart et al.,  2012; Stothard 
et al., 2011; Upadhyay et al., 2017; Wang et al., 2015; Yang 
et al.,  2017). Immune-related genes seem to be evolved 
under positive selection (Sackton et al., 2007), reflecting 
a coevolutionary process between infectious pathogenic 
exposure and the host's defense system to acquire a broad 
range of antimicrobial defense (Luenser & Ludwig, 2005; 
McTaggart et al., 2012). Therefore, it has been hypothe-
sized that the increased dosage of such genes may offer 
survivability and adaptive benefits (Liu et al.,  2010; 
Nguyen et al.,  2008), suggesting that adaptation to di-
verse pathogenic environments have probably exerted 
important selective forces in the cattle genome.

It is not surprising that an abundance of genes and over-
represented terms were found described to be involved 
in processes closely associated with immune functions 
and parasite resistance. The Brazilian locally adapted 
cattle breeds studied herein exhibit distinguishing levels 
of phenotypic variability and enhanced fitness to local 
conditions due to a long process of natural selection in 
extremely variable and harsh environments (Mariante & 
Cavalcante,  2000). Such breeds have undergone strong 
environmental pressures for more than 450 years with-
out any significant selective pressure imposed by man, 
facing adverse tropical climate conditions (heat, dry-
ness, and humidity), limited food availability, disease' 
susceptibility, and parasite infestations (Mariante & 
Cavalcante, 2000). Hence, these limitations led them to 
acquire very particular traits over time to thrive in such 
distinct ecosystems (Mariante et al., 1999) and may have 
left footprints of selection within their genome.

Breed-specific CNVRs

Among the genes within the breed-specific CNVRs for 
the CAR cattle, we can emphasize the NBAS gene, the 
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function of which has been associated with stature and 
bone development (Duan et al., 2021). CAR animals have 
the greatest body size among the locally adapted cattle 
breeds, and much has been discussed about the relation-
ship between body size and environmental adaptation 
due to climate and/or driven by changes in feed resources 
and seasonal influences (Gardner et al.,  2011; Martin 
et al., 2018). The EBD gene is a bovine β-defensin gene 
member (BoLA) involved in interleukin-17 signaling, 
and it was also described for CAR animals. This gene is 
highly expressed in enteric epithelial cells and may con-
tribute to host defense of enteric mucosa by conferring 
intestinal immunity (Tarver et al., 1998).

The DEFB4A and PSMD13 genes were also identified 
within CAR-specific genomic CNVRs. The DEFB4A is 
also a β-defensin gene that acts as an antimicrobial pep-
tide against Gram-negative and Gram-positive bacteria, 
conferring antimicrobial resistance of the mammary 
gland (Brogden,  2005). This gene was also described 
to have an effect on milk-related traits, and polymor-
phisms were associated with protein yield, fat content, 
and somatic cell score (Bagnicka et al., 2007, 2008), and 
milk yield (Krzyzewski et al., 2008). The PSMD13 gene 
plays a key role in the maintenance of protein homeo-
stasis by removing misfolded and damaged proteins 
(Tanaka, 2009). This gene has also been associated with 
lactation persistency in Canadian Holstein cattle (Do 
et al., 2017). Such genes reflect the objective of selection 
for dairy-related traits in which the CAR cattle have 
been subjected since 1893 (de Queiroz et al., 2005).

The CRL cattle displayed the BPIFA2A gene within 
the breed-specific genomic regions. This gene play a 
role in the local antibacterial response in nose, mouth, 
and upper respiratory pathways (provided by RefSeq, 
Jan 2016), and could be related to the adaptive capacity 
of this breed to lower temperatures, which can be neg-
ative at certain times of the year. Further, this gene is 
important for the intramuscular muscle’ profile (Berton 
et al., 2016), reflecting the mild selection for meat-related 
traits applied on such breed recently (Mitterer-Daltoé 
et al., 2012).

The PAN cattle harbored several genes within the 
breed-specific CNVRs, and among them we can un-
derscore the AOX1, SORCS3, and PDE5A genes. The 
AOX1 gene has been mainly associated with adipo-
genesis and lipid metabolism (Brandes et al., 1995; Mei 
et al., 2018), and the SORCS3 gene with energy homeo-
stasis (Subkhangulova et al.,  2018) and increased adi-
posity (Purfield et al.,  2019). Food shortages represent 
a common challenge for most animal species, and the 
coordination of energy partitioning and homeostasis is 
a challenge to sustainable intensification of livestock 
productivity in the tropics. As previously discussed, the 
PAN cattle evolved under an ecosystem in which the 
flooding season alters food availability (Ricklefs, 1979). 
Consequently, such cattle may have evolved metabolic 
strategies encompassing extreme starvation-resistance 

capabilities, being able to store and mobilize lipids 
during nutritionally stressful environmental conditions 
(Olsen et al.,  2021). It should be noted that negative 
energy balance probably impairs reproductive perfor-
mance (Stockdale, 2001) and increases the susceptibility 
to infections (Collard et al., 2000). Hence, animals that 
were able to minimize the mobilization of adipose tissue 
reserves in response to the energy deficit might have con-
ferred fitness advantage.

The PDE5A gene was also described for the PAN 
cattle, and it is widely known as a regulator of nitric 
oxide-induced vasodilation. Vasodilation is the mecha-
nism in which blood vessels dilate to dissipate heat to 
external environment, and it can be regulated by in-
teractions between nitric oxide, PDE5, and guanosine 
30,50-cyclic monophosphate (Coppage et al., 2005). The 
Pantanal ecosystem is characterized by high solar radi-
ation with temperatures up to 40°C early in the summer 
(Por, 2012), and cattle breeding in such tropical regions 
may be affected by heat stress when the mechanisms of 
body thermoregulation are unable to promote heat loss 
adequately. Therefore, PDE5A might be a key gene in 
elucidating the better tolerance of the PAN cattle to the 
Pantanal ecosystem through vasodilation during times 
of increased heat stress.

CNVRs and overlapping QTL in cattle

Most of the CNVRs overlapped with previously reported 
regions harboring QTL that mostly affect dairy-related 
traits, and two reasons might have led to this result. 
First, when examining in detail the QTL associations by 
trait classes in the CattleQTL database (Hu et al., 2016), 
the greatest number of reported QTL (~36%) has been 
associated with milk-related traits (n = 50 208), followed 
by reproductive (n = 44 369), and productive (n = 22 519) 
traits. The second reason relies on the fact that the CAR 
breed has been selected for milk production traits in 
the southeastern region of Brazil since 1893 (de Queiroz 
et al., 2005). Further, the remaining two breeds despite 
not being considered high-specialized cattle breeds are 
classified as dual-purpose and might have undergone 
mild selection for dairy-related traits (Lara et al., 2002; 
Oliveira-Brochado et al., 2018).

FINA L CONSIDERATIONS

By using whole-genome re-sequencing data, we re-
ported for the first time a genome-wide characteriza-
tion of CNVs in three Brazilian locally adapted taurine 
cattle breeds. Our results provide substantial informa-
tion about the potential use of CNVs to identify putative 
regions that have been functionally relevant and have 
played a substantial role in shaping the genome of such 
cattle breeds based on the environmental conditions 
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in which they have been raised. Enrichment analysis, 
variant annotation, correspondence analysis, and QTL 
identification retrieved from the CNVRs revealed a 
large proportion of genes associated with immune sys-
tem functioning, parasite resistance, and productive-
related traits. When inspecting breed-specific CNVRs 
in detail, the gene content probably reflects the breed 
formation process in harsh environments and the ob-
jective of selection for dairy-related traits for one cattle 
breed.

These results provide evidence of natural selection for 
traits linked to cattle resilience to challenging environ-
ments. The cattle populations studied herein represent 
an important biological model for understanding the 
role of environmental stressors and the effect of differ-
ent selective forces acting on the genome diversity of 
the Brazilian locally adapted taurine cattle breeds. The 
identification of genomic regions harboring structural 
variations plays an important role in the introgression of 
locally adapted breeds in crossbreeding schemes. Hence, 
production systems may benefit from the introduction of 
crossbred animals, taking advantage of animals better 
adapted to local conditions displaying key adaptative 
traits for survival in challenging environments together 
with production traits from high-specialized cattle 
breeds.
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