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N G ke W N

Abstract: The coffee leaf miner (Leucoptera coffeella) is a key coffee pest in Brazil that can cause severe

defoliation and a negative impact on the productivity. Thus, it is essential to identify initial pest

infestation for the sake of appropriate time control to avoid further economic damage to the coffee

crops. A fast non-destructive method is an important tool that can be used to monitor the occurrence

of the coffee leaf miner. The present work aims to identify the occurrence of coffee leaf miner

Ef;eéi:tfg; infestation through a new vegetation index, using multispectral images from the Sentinel-2 satellite

o i ) and the Google Earth Engine platform. Coffee leaf miner infestation was measured in the field in
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four cities in the state of Minas Gerais. The largest infestations occurred in September, October, and
November but particularly in October 2021, in which the rate of infestation reached 85%, followed by

C.d.SM.d. Silva, RA.; Venzon, M. September 2020 with a maximum infestation of 76%. The calculation steps of the vegetation indices
New Spectral Index and Machine and mappings were carried out in the Google Earth Engine cloud processing platform through
Learning Models for Detecting Coffee  the development of a script in JavaScript programming language. Combinations of two sensitive
Leaf Miner Infestation Using bands were selected to detect coffee leaf miner infestation, and from these, the “Coffee-Leaf-Miner
Sentinel-2 Multispectral Imagery. Index” was developed, which was compared with other existing vegetation indices in terms of their
Agriculture 2023, 13, 388. performance for coffee leaf miner detection. The combination of the NIR-BLUE and NIR-RED bands
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was more sensitive for the detection of coffee leaf miner infestation; therefore, the NIR, BLUE, and
RED bands were selected to develop the new index. The “Coffee-Leaf-Miner Index” presented the
Academic Editor: Xiuliang Jin best performance among those evaluated, with a coefficient of determination of about 0.87, a root
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of 95.39. The R? range of other spectral indices which exist in the literature and which were used
in this study was from 0.017 to 0.867, and the root mean square error ranged from 4.996 to 13.582%
coffee leaf miner infestation. The machine learning method was then adopted using the supervised
Random Forest and Support Vector Machine algorithms to recognize patterns of coffee leaf miner
infestation in the field, only the Coffee-Leaf-Miner Index was used for the identification test of the

37 coffee leaf miner infestation. The Support Vector Machine with linear Kernel type was applied to
Copyright: © 2023 by the authors.  establish a discrimination model. The number of trees for the Random Forest classifier was 100. The
Licensee MDPI, Basel, Switzerland.  Gupport Vector Machine presented a lower performance than the Random Forest algorithm, but the

This article is an open access article performance of both were above 80% for user and producer precision. Three bands (Blue, Red, NIR)

distributed under the terms and oo celected for the creation of the new index, which showed capacity for remote detection of coffee
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40/).

leaf miner infestation on a regional scale. Thus, “Coffee-Leaf-Miner Index” can identify coffee leaf
miner infestation thanks to all the complexity involved in detecting pests via orbital remote sensing.
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1. Introduction

Brazil is the world’s largest coffee producer, and it is responsible for one-third of
world production [1]. Most of the national production of Arabica coffee is in the state
of Minas Gerais, which is responsible for about 70% of the country’s production [2]. In
this context, coffee farming is an important economic activity for agribusiness and small
farmers in Minas Gerais and, consequently, also for Brazil. However, one of the factors that
can negatively affect coffee production is pest attacks that occur during coffee production.
Therefore, measures that can contribute to monitoring pest development are of fundamental
importance.

The coffee leaf miner Leucopetra coffeella (Lepitoptera: Lyonetiidae) is the main pest
of Arabica coffee in Brazil [3]. The pest has a widespread occurrence in Minas Gerais
and attacks the leaves of the coffee plant, causing necrosis and defoliation of up to 75%
and losses in production that can exceed 50% [4,5]. Crops that are severely defoliated
in the drought as a consequence of coffee leaf miner infestation take about two years to
recover [6] and can cause hundreds of millions of dollars in losses [7]. The increase in
coffee leaf miner infestation is associated with several factors, such as indiscriminate use
of insecticides, the presence of extensive crops or large areas of continuous monoculture
planting, coffee planting in larger spacings, high temperature, prolonged dry periods, and
low relative humidity, as well as the absence of natural enemies due to lack of resources in
monocultures [6,8]. Its most serious occurrence is associated with higher temperatures [9]
and the driest period of the year [5]. In Minas Gerais, the increase in infestation starts in
July/August, with a peak in October [10].

Monitoring the coffee crop is an important practice for crop phytosanitary manage-
ment, as it allows the producer to know when there is an infestation of coffee leaf miner and
makes it possible to decide whether or not to carry out the control measures. Alternative,
efficient, and low-cost methods that can monitor large areas with an infestation of pests
and diseases in crops have been gaining prominence with the use of remote sensing [11-13].
Such methods are based on the different spectral responses between a healthy plant and one
with a pest or disease [14]. These spectral responses may, for example, be due to changes in
morphology, leaf color, chlorosis, and necrosis. For the analysis of the spectral response
over time, it is necessary to select and process a large number of images, which is often
time-consuming. Therefore, it was necessary to create platforms that would allow these
analyses to be streamlined.

For the processing of a large amount of geospatial data (geo-big data), some platforms
have emerged. Such platforms include Amazon Web Services (AWS), which was launched
in 2006, and Microsoft Corporation’s Azure platform, which was launched in 2010; both of
these platforms are paid [15]. In 2010, Google launched the free cloud computing platform
(Google Earth Engine—GEE) that allows quick access and processing of various sets of
remote sensing data. The GEE provides access to a global remote sensing database spanning
four decades and receives around 4000 new datasets daily in its database [16]. This amount
of data allows the temporal analysis of the coffee crop in any region of the world, and
among the databases that are available in the GEE is the collection of Sentinel satellites;
machine learning algorithms (M.L.) are among the available tools [15]. Several studies have
used the GEE for fast, regional, and accurate monitoring, e.g., the mapping of infestation
by Spodoptera frugiperda in maize [17], the analysis of Fulsarium in the culture of wheat [11],
and the evaluation of the impacts of chilling injury on soybean [18].

Sentinel-2 was released in 2015 and features an MSI multispectral sensor with 13 spec-
tral bands. The visible (RGB) and Infrared (NIR) bands have a spatial resolution of 10 m
and a revisit period of about 5 days [19]. Thus, monitoring can be carried out in short
periods and with precision at the level of small rural properties. The M.L. can be defined as
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a branch of artificial intelligence that considers that the system can learn from data, detect
patterns, and make decisions with minimal human intervention [20]. In recent years, M.L.
has gained prominence as an important tool in remote sensing and precision agriculture
and has been used to assist in the identification of diseases and pests [11,21,22].

Several studies have been conducted using vegetation indices to detect pest/disease
in different crops. Using the NDVI time series, images from Sentinel and the GEE, it was
possible to monitor the infestation of Fall Armyworm (Spodoptera frugiperda) in corn [17].
Twenty vegetation indices found in the literature were used to evaluate the infestation of
Spodoptera frugiperda in the sorghum crop, with the NDVI and LAI (Leaf Area Index) being
the vegetation indices that presented the best performances to identify the infestation [12].
In another study, 63 vegetation indices associated with machine learning algorithms based
on decision trees were used to assess coffee rust infestation [23]. Spectral reflectance analysis
has also been considered to identify pest/disease. Using machine learning algorithms
and Satellite Sentinel images, it was possible to separate areas of cotton under attack by
Spodoptera frugiperda by considering the spectral reflectance [13]. Nine vegetative indices
were evaluated to identify the damage caused by frost in coffee plantation areas, with the
NDVI being the index that presented the best results for identifying and evaluating frost
damage in coffee plants [24]. Few studies have proposed the creation of specific vegetation
indices for a given pest/disease, e.g., a new vegetation index for discriminating yellow-
rust-infected winter wheat [22]. Another index was created to detect Wheat Fusarium Head
Blight Using Sentinel-2 Multispectral Imagery [11].

Vegetation indices common in the literature are not crop or pest/disease specific
and cannot, by themselves, discriminate crop-specific parameters. Therefore, it would be
important to create specific indices to identify coffee leaf miner infestation. There is no
specific vegetative index in the literature to identify leaf miner infestation.

The present work aimed to select the combination of two Sentinel-2 bands to identify
the levels of coffee leaf miner infestation in coffee crops; develop a new index to estimate
coffee leaf miner infestation in coffee crops; and map the coffee leaf miner attack infestation
in coffee crops using Sentinel-2 images through the Google Earth Engine platform.

2. Materials and Methods
2.1. Study Area

The study was carried out at the Experimental Research Stations of Agriculture and
Livestock Research Enterprise of Minas Gerais (Epamig), which are located in the cities of
Trés Pontas (CETP), Sao Sebastiao do Paraiso (CESP), Machado (CEMA), and Patrocinio
(CETP), in the state of Minas Gerais (Figure 1).

The coffee cultivars and edaphoclimatic characteristics of the experimental research
station for the years 2019 to 2021 are described in Table 1, with precipitation data ob-
tained from the Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS)
database [25] and the temperature data obtained from the database of the Latest Climate
Reanalysis Produced by ECMWE/Copernicus Climate Change Service—ERA 5 [26].

Table 1. Coffee cultivars and edaphoclimatic characteristics of the experimental research stations.

Characteristics CETP CESP CEMA CEPC
Cultivar Mundo Novo Catuai 99 Catuai 99 Rubi
Elevation (m) 916 880 970 997
Average annual rainfall (mm) 720 857 816 845
Annual average temperature (°C) 21.4 22 21.5 21.7
Latitude (S) 21°20'37.014” 20°54/42.023” 21°40'50.848” 18°59'28.284”
Longitude (W) 45°28/59.452” 47°7'20.341” 45°56/38.069” 46°59'21.700”
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Figure 1. Experimental Research Station where coffee leaf miner infestation levels were monitored:
Trés Pontas (CETP), Sao Sebastido do Paraiso (CESP), Machado (CEMA), and Patrocinio (CEPC).

In each experimental research station, a plot with the following areas was selected:
CETP (2575 m?); CESP (930 m?); CEMA (2279 m?); and CEPC (1609 m?). Although the
spatial resolution of the Sentinel-2A satellite is 10 m for bands 2, 3, 4, and 8 and 20 m for
bands 5, 6, and 7, the plot areas were enough to meet the resolution of Sentinel-2A (Table 2).

Table 2. Spectral bands and resolution of the Sentinel-2A sensor MSI.

Spectral Band Central Wavelength (nm) Bandwidth (nm) Spatial Resolution (m)
B1 Coastal aerosol 443 20 60
B2 Blue 490 65 10
B3 Green 560 35 10
B4 Red 665 30 10
B5 Red-edge 1 (Rel) 705 15 20
B6 Red-edge 2 (Re2) 740 15 20
B7 Red-edge 3 (Re3) 783 20 20
B8 Near Infrared (NIR) 842 115 10
B8a Red-edge 4 (Re4) 865 20 20
B9 Water vapor 945 20 60
B10 Shortwave Infrared /cirrus 1.375 30 60
B11 Shortwave Infrared 1 1.610 90 20
B12 Shortwave Infrared 2 2.190 180 20

2.2. Data Collect

The first step of the present work was the monthly monitoring of the coffee leaf
miner infestation estimate (CLMIE) between January 2019 and December 2021. For the
monitoring, leaves were randomly collected from 50 plants per plot. In each plant, from
the leaves of the 3rd or 4th pair of two branches, on opposite sides, we collected four distal
leaves located in the middle plant strata until the sample collection reached 200 leaves per
plot. Only leaves with intact mines were considered for the miner count. We kept the coffee
leaves in paper bags and later examined them in the laboratory to assess the active mines
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(infestation). We calculated the coffee leaf miner (CLM) infestation rate using the following
formula:

Number of coffee leaf with active mine x 100
Total number of collected coffee leaves

CLM infestation rate (%) =

The second step was the selection of the months with the highest incidence of CLMIE.
Then, the selection of Sentinel-2 multispectral images (Table 2) was carried out in three
periods—i.e., on 2 September 2019, between 26 and 28 September 2020, and from September
20 to 21, 2021—to obtain the reflectance of bands in the coffee crop area from coffee leaf
miner infestation. Coastal aerosol (B1), Near-Infrared (NIRn) (B8a), Water vapor (B9),
Shortwave Infrared/cirrus (B10), Shortwave Infrared 1 (SWIR1) (B11), and Shortwave
Infrared 2 (SWIR2) bands (B12) were not considered in the present study, as they were not
part of the vegetation indices used in this study.

2.3. Vegetation Indices

The geoprocessing steps and the calculation of the vegetation indices were carried
out on the Google Earth Engine cloud processing platform through the development of a
script in the JavaScript programming language. Using the geographical coordinates of the
experimental research stations (Table 1), satellite images of the study areas for the months
from 2019 to 2021 were obtained. Thus, with the spectral reflectance information available
in the images, it is possible to obtain the average value of each one of the vegetation indices
in each of the experimental research stations could be obtained.

Based on the spectral reflectance values of Sentinel satellite images obtained for
September 2020 and 2021, in coffee crops with and without coffee leaf miner infestation,
two basic vegetation indices were adopted, according to the methodology described by Liu
etal. [11], i.e., difference vegetation index (DVI) [27] and ratio vegetation index (RVI) [28],
as well as modifications of these two indices. These indices allowed us to assess which
spectral bands are more sensitive to indicate infestation with coffee leaf miner.

Regression equations based on the variables vegetation indices and coffee leaf miner
infestation were then developed. Through the regression equations, the spectral bands
that best indicated the coffee leaf miner infestation in coffee crop areas were selected and
then compared using statistical performance criteria (determination coefficient—R?, root
mean square error—RMSE). The same statistical criteria (RMSE and R?) were used later to
compare some vegetation indices described in the literature with the new index.

2.4. The New Index—CLMI

From the selected spectral bands, a new vegetation index called Coffee-Leaf-Miner
Index (CLMI) was generated to estimate coffee leaf miner infestation. The CLMI was based
on the area covered by a triangle, as per the methodology described by [11]. To calculate
the area of the triangle, a matrix formed by the reflectance values of the selected bands and
the respective central wavelengths of these bands was generated. The area of the triangle
was calculated by dividing the determinant of the matrix (Equation (1)).

Determinant

CLMI = Triangle area = > €))

In this study, in addition to the new index, ten other relevant vegetation indices
from the literature were selected (Table 3), and these were calculated through the spectral
reflectance values of the Sentinel-2 satellite images. All 10 indices were compared with
the CLMI to assess the coffee leaf miner infestation in coffee crops, through statistical
performance criteria (R> and RMSE) considering the month of September from the years
2019 to 2021. Based on the results found for September, the 3 indices that presented the
best performers (higher R? and lower RMSE) were compared to CLMI based on October
data. All statistical analyses were performed using R 4.2.1 software (R Development Core

Team, 2022) [29].
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Table 3. Characteristics of the vegetation index used to monitor the coffee leaf miner in the experi-
mental research station.

Definition Formula Reference

Normalized Difference Vegetation Index (NDVI) NIRTRED [30]

NIR—RED
Enhanced Vegetation Index (EVI) 2.5 X NTRF6XRED=75xBLUEFI [31]

NIR
Simple Ratio (SR) RED [27]
. . . NIR—GREEN
Green Normalized Difference Vegetation Index (GNDVI) NIRFGREEN [32]
NIR
Infrared Percentage Vegetation Index (IPVI) NIR+RED [33]
RE1
Modified Chlorophyll Absorption Ratio Index (MCARI) (RE1—RED) — (0.2 x (RE1 — GREEN))) x RED [34]
NIR—RE1
MERIS Terrestrial Chlorophyll Index (MTCI) RE1-RED [35]
NIR+RED —RE1
Red Edge Inflection Point (REIP) 700435 X —pts—rEr— [36]
RED—GREEN

Plant Senescence Reflectance Index (PSRI1) REL [37]

_ _ _ (1+L)x (NIR—RED)
Soil-Adjusted Vegetation Index (SAVI) (NIR+RED+L) [38]

2.5. Index Test (CLMI) for Mapping Coffee Leaf Miner Infestation

The mapping step was carried out on the Google Earth Engine platform through the
development of a script in the JavaScript programming language.

The coffee leaf miner infestation was mapped using the CLMI index on Sentinel-2A
images, which were from 26 to 28 September 2020, from four plots in the CETP, CESP,
CEMA, and CEPC experimental research stations.

Given that the coffee leaf miner infestation dynamics are influenced by precipitation,
the average precipitation values from April to May from the Climate Hazards Group
Infrared Precipitation with Station (CHIRPS) data were used. However, the addition of
this variable did not show satisfactory results. Thus, only the CLMI was used for the
identification test of the coffee leaf miner infestation.

The machine learning method was then adopted using the supervised Random For-
est (RF) and Support Vector Machine (SVM) algorithms to recognize patterns of coffee
leaf miner infestation in the field based on the images obtained in the four plots (CETP,
CESP, CEMA, CEPC) to train the algorithm to recognize the coffee leaf miner infestation
using CLML

These two machine learning methods (RF and SVM) are among the most popular
algorithms used in classification and regression, and they are characterized by similar high
performance [39]. The SVM algorithm, which was first introduced in the late 1970s, is one
of the most widely used kernel-based learning algorithms in a range of machine learning
applications, in particular, image classification. SVM, in its basic form, is a linear binary
classifier which identifies a single boundary between two classes [39].

The RF is a set of learning algorithms, which were proposed by Breiman [40] and
which consist of a set of decision trees and independent and identically distributed random
vectors. SVM and RF can handle learning tasks with a small amount of training datasets
but demonstrate competitive results.

In this study, SVM with linear kernel type was applied to establish a discrimination
model. For Random Forest, the number of decision trees to create was 100. The confusion
matrix was used to assess the accuracy of supervised algorithms. Specifically, before
training the algorithm, 30% of the pixels of all plot images were reserved to validate the
training of the algorithms (Random Forest and SVM) in the prediction of CLMIE. The
remaining pixels (70%) were used to train the algorithms.

The confusion matrix was extracted based on the 30% of data reserved for validation.
The CEMA plot was used to represent a healthy plot, as it had the lowest infestation (8%
infestation). The other stands were considered infested with coffee leaf miner infestation
above 20%.
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3. Results
3.1. Field Monitoring

The monthly monitoring of the occurrence of coffee leaf miner infestation between
January 2019 and December 2021 in CETP, CESP, CEMA, CEPC are presented in Table 4.

Table 4. Maximum and the average percentage of coffee leaf miner infestation in Trés Pontas,
Sao Sebastidao, Machado, and Patrocinio during the period from 2019 to 2021. M = Maximum;

A = Average.
2019 2020 2021 Total
Date M A Date M A Date M A M A
% % % %

January 29 5 2.0 20 23 9.1 1 1 0.4 23 6.8
February 25 13 5.6 17 5 3.1 22 3 1.3 13 52
March 4 8 4.1 9 1 0.4 5 7 3.3 8 4.0
April 24 8.5 49 1 17 7.8 26 8 3.5 17 8.3
May 13 1 0.7 7 13.5 4.8 17 13 4.1 13.5 6.2
June 10 0.5 0.2 8 27 12.3 21 35 16.3 35 15.2
July 31 5 2.3 29 27.5 10.9 27 32 9.6 32 14.6
August 12 1.5 0.7 31 30 18.5 17 29 10.0 30 14.9
September 2 3 2.7 28 76 32.3 20 46 20.0 76 30.0
October 4 30 24.0 19 56 23.0 18 85 31.5 85 41.6
November 15 19 17.3 16 56 18.9 23 17 7.8 56 22.7
December 15 14.5 10.2 7 85 7.3 13 12.5 7.5 14.5 10.1

The occurrence of coffee leaf miner in coffee plantations can be observed throughout
the months of the year (Table 4). However, from June onwards, there was an increase in
coffee leaf miner infestation, with the largest infestations occurring in September, October,
and November but particularly in October 2021, in which the infestation reached up to 85%,
followed by September 2020 with a maximum infestation of 76%. The lowest infestations
were in February and March (Table 4).

3.2. Spectral Characteristics of the Coffee Crop with Coffee Leaf Miner

Considering that the month of September was the month with the second highest
incidence of coffee leaf miner in the study region, as well as the month with the highest
number of images available, the month of September of the years 2019, 2020, and 2021 was
then considered to create of the new index.

Figure 2 shows the spectral reflectance in coffee crops with different levels of coffee
leaf miner infestation from the image obtained on 26 and 28 September 2020.

Based on the pattern of the spectral curve, it is possible to identify that the CETP coffee
crop that showed the lowest reflectance in the Near Infrared region (NIR) and the highest
reflectance in the Blue wavelength region was the one with the highest coffee leaf miner
infestation. In the Red region, it is observed that the higher the percentage of leaf miner
infestation (8%; 21.5%; 23.5%, and 76%), the greater the reflectance.

Comparing the reflectance of the coffee crop with the highest infestation (CETP—76%)
with the one with the lowest infestation (CEMA—8%) in the NIR region, it can be seen that
the higher the infestation, the lower the reflectance.
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Figure 2. Multispectral reflectance average of the image obtained on 26 and 28 September 2020 of
coffee crops with different levels of coffee leaf miner infestation.

3.3. Index Development

Based on the coefficient of determination (R?) and the Root Mean Square Error (RMSE)
(Figure 3), which were obtained for the 24 regression equations based on the difference or
ratio of band wavelengths and the level of coffee leaf miner infestation recorded in the field,
the bands that best show coffee leaf miner infestation in coffee crops areas were selected.

0O R (%) BRMSE (% leaf miner infestation)
90

80 1 _ - -
70
60

50

R? e RMSE

Index

Figure 3. Root mean error square (RMSE) percentage coffee leaf miner infestation and percentage of
coefficient of determination (R?) of the models developed using the basic vegetation index and its
modifications.

Given the analysis of the ratio between the different bands considered, although the
indices based on the ratio (NIR/BLUE and RE3/BLUE) have presented the best results
because of the grouping of the values of higher R? and lower RMSE (Figure 3), the CLMI
index based on the NIR, RE3, and BLUE bands did not present a good performance for the
CLMIE, because of the low values of R? and high values of RMSE. Therefore, the indices
based on the difference between the bands were also analyzed, with the NIR-BLUE and
NIR-RED differences being those that presented the best performances because of the
higher R? and lower RMSE. The NIR, RED, and BLUE bands were then selected.
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Thus, from the analysis of the area of the triangle, which was formed by the values
of the spectral reflectance of the NIR, RED, and BLUE (Figure 4), the CLMI index was
developed for the CLMIE.

3§15
= 1.0
0.5 .
0.0 0.0
Blue Green Red Rel Re 2 Re3 NIR Blue Green Red Rel Re2 Re 3 NIR
Sentinel-2 MSI band Sentinel-2 MSI band
- —& - CEMA {low infestation) =~ —s— CETP (high infestation) -+ - CEMA (low infestation) =~ —=— CETP {high infestation)
(a) (b)

Figure 4. Overview of the reflectance of the image obtained on 28 September 2020 (a) and the area of
the triangle based on the reflectance values of Blue, Red, and Near Infrared (NIR) (b) for coffee crops
with low and high coffee miner infestation. Low infestation = 8%, and high infestation = 76%.

Based on the area of the triangle formed in Figure 4, the CLMI index was created from
Equation (2).

(842 — 490) x (RED — BLUE) — (665 — 490) x (NIR — BLUE)

CLMI = 5

@

where RED, BLUE, and NIR are the reflectance values of the bands, and the numbers 665,
490, and 842 are the central wavelengths of the same bands (Table 2).

Still based on Figure 4, it is noteworthy that the smaller the area of the triangle formed,
the greater the level of coffee leaf miner infestation because coffee leaf miner infestation
decreases the reflectance in the NIR region and increases the reflectance in the Blue region;
therefore, the lower the value of the CLMI index, the greater the level of infestation by
coffee leaf miner in the coffee crops.

3.4. Estimation of Coffee Leaf Miner Infestation Using Simulation with Multispectral Data

The CLMI index was compared with 10 other relevant vegetation indices in the litera-
ture to identify coffee leaf miner infestation in coffee crops using statistical performance
criteria (R? and RMSE). For a better adjustment of the generated models, the extreme values
were removed, i.e., 0% of infestation and 76% of leaf miner infestation. Table 5 summarizes
the R? and RMSE values found in the developed models of the CLMI and the ten relevant
vegetation indices in the literature.

The CLMI presented the best R> and RMSE values of 0.869 and 4.94, respectively.
The new index was the best index to identify coffee leaf miner infestation. The existing
vegetation indices in the literature that presented the best performance to identify coffee
leaf miner infestation were NDVI, IPVI, EVI, and SAVI, which presented an R? above 0.85
and an RMSE below 5.5. The vegetation indices that presented a low performance for
identifying the leaf miner infestation were the MTCI and REIP, which presented with an R2
below 0.4 and an RMSE above 11.

Figure 5 also shows, based on the results of the models, the estimated values of the
coffee leaf miner infestation and those measured in the field in the period between 26 and
28 September 2020.
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Table 5. RZ and RMSE (% coffee leaf miner infestation) of models to estimate coffee leaf miner
infestation, as developed from the CLMI and the 10 vegetation indices for September from the years
2019 to 2021.

Indices R? RMSE
CLMI 0.869 4.942
NDVI 0.867 4.996
IPVI 0.865 5.036
EVI 0.859 5.142
SAVI 0.838 5517
GNDVI 0.785 6.349
PSRI1 0.744 6.931
SR 0.659 8.002
MCARI 0.640 8.219
MTCI 0.302 11.449
REIP 0.017 13.582
50 R2=0.871 50 R?=0.869
_ 4 e _ 40 .
5 30 .. o. % 30 oo
T 20 R o
£ 1 R fw | 7
w o . = 0 .
. N o 2 0 © 00" 1000 2000 30.00 40.00 5000
Measured Measured
(a) (b)

Figure 5. Relationship between the measured in the field and the one estimated from the New Index
(a) and NDVI (b) for coffee crops with different levels of coffee leaf miner infestation in the period
between 26 and 28 September 2020.

Figure 5 shows the scatter plots between the estimated coffee leaf miner infestation
and that measured in the field. It can be observed that the generated models had difficulties
in identifying low leaf miner infestations, reaching negative values when the leaf miner
infestation was low.

The vegetation indices that had the highest R? value (>0.85) and the lowest RMSE
(<5.5) (Table 5) for the CLMIE in September were used for the CLMIE in October of the
years 2019 and 2020 (Table 6), because in October 2021, there were no cloud-free satellite
images of the studied locations. October was the month with the highest infestation of
coffee leaf miner (Table 4).

Table 6. R2 and RMSE of models to estimate coffee leaf miner infestation, developed from the CLMI
and the 3 vegetation indices for October from the years 2019 to 2020.

Indices R? RMSE

CLMI 0.568 3.841
IPVI 0.563 3.861
EVI 0.556 3.892

NDVI 0.554 3.902

For October, the CLMI was the best index to estimate coffee leaf miner infestation in
coffee crops, due to the higher value of R? and lower value of RMSE. The NDVI was the
vegetation index that presented the lowest performance for estimating coffee leaf miner
infestation. However, when comparing the results of October with September, all the
vegetation indices presented lower performance when estimating the infestation with
coffee leaf miner in October.
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3.5. Application of the New Index for Mapping the Coffee Leaf Miner Infestation on a
Regional Scale

The map of coffee leaf miner infestation using the CLMI index and the supervised
Random Forest and Support Vector Machine (SVM) algorithms on Sentinel-2A images,
from 26 to 28 September 2020, in four plots in the CETP, CESP, CEMA experimental fields,
and CEPC can be seen in Figure 6.

Patrocinio (CEPC)—23.5% infestation

i i :\—- 4

Sao Sebastido do Paraiso (CESP)—21.5% infestation Sao Sebastido do Paraiso (CESP)—21.5% infestation

-' Y '
Machado (CEMA)—8% infestation

-4

S

Machado (CEA) —8% infestation

Trés Pontas (CETP)—76% infestation Trés Pontas (CETP)—76% infestation
(a) (b)

Figure 6. Map of coffee leaf miner infection produced by Random Forest (a) and SVM (b). The Green
color shows coffee without coffee leaf miner; the Red color indicates coffee with coffee leaf miner.
The Blue color shows the field where the monitoring of coffee leaf miner infestation was carried out.
In black are the coffee growing areas [41].
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The coffee leaf miner infestation map using the CLMI index and the supervised
Random Forest algorithm showed areas with lower coffee leaf miner infestation when
compared to the map that used the SVM algorithm. The Experimental Research Station
of CETP and CEMA were the sites that showed the highest infestation with leaf miner
(Figure 6).

The performance of the new index for monitoring coffee leaf miner infestation using
Random Forest and SMV is shown in Table 7. The confusion matrix, the kappa index, and
the accuracies for the performance evaluation were considered, and the type I and II errors
are presented.

Table 7. Overall verification of the developed models of the CLMI.

Random Forest

Healthy Diseased Sum User Accuracy (%) Overall Accuracy (%) Kappa
Healthy 6 1 7 85.7
Diseased 1 11 12 91.7
Sum 7 12 15
Producer’s accuracy (%) 85.7 91.7 89.5 95.4
Type I error (%) 14.3
Type II error (%) 8.3
Support Vector Machine
Healthy Diseased Sum User Accuracy (%) Overall Accuracy (%) Kappa
Healthy 6 3 9 66.7
Diseased 1 12 13 92.3
Sum 7 15 22
Producer’s accuracy (%) 85.7 80.0 818 613
Type L error (%) 14.3
Type I error (%) 20.0

Random Forest presented the best accuracy indices and the lowest errors when com-
pared to the values found when using the SVM algorithm to classify coffee leaf miner
infestation. The Random Forest algorithm reached an overall accuracy and kappa index
higher than 89%, whereas the SVM algorithm found an overall accuracy of 81.8% and a
kappa of 61.3%.

4. Discussion

In this study, we show that coffee crops with an infestation lower than 23.5% had
lower reflectances in the Blue, Green, and Red range when compared to the coffee crop with
an infestation of 76%. In the visible region (Blue, Green, and Red), the reflectance in the
leaves is determined by the pigments of chlorophyll (65%), carotene (6%), and xanthophylls
(29%) which, when interacting with electromagnetic radiation, absorb radiation in the
Blue region [42]. Therefore, the degradation of pigments (chlorophyll, carotene, and
xanthophylls) because of the coffee leaf miner infestation, causes a pronounced spectral
variation in the visible range, mainly in the Blue range. For the Near-Infrared range,
the coffee plantation with the highest infestation of a coffee leaf miner (76%) had the
lowest reflectance. Infrared reflectance can be affected by changes that occur in the leaf
parenchyma [14], as the coffee leaf miner larva can penetrate the leaf mesophyll and destroy
the parenchyma [4]. This phenomenon can explain the lower Near-Infrared reflectance
(NIR) when there is an increase in coffee leaf miner infestation. Therefore, the Near-
Infrared range can be used to assess infestations of pests that attack the internal structure
of the leaf [42,43]. The CLMI was defined as the area of the triangle based on the spectral
reflectance in the Blue, Red, and NIR regions.

Table 5 shows R? and RMSE values of the regression equations developed from the
CLMI and the other 10 vegetation indices. It can be observed that the indices that presented
the best performance were those that had the NIR, Red, and Blue bands. NDVI presented
the best performance of statistical criteria (R> and RMSE) for CLMIE, followed by IPVI
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and EVI. The indices that presented the bands Green, Rel, and Re2, were the indices that
presented the lowest performance, such as the REIP and MTCI indices, which presented
the coefficients of determination of 0.017 and 0.32, respectively. The low performance of
these indices shows that the use of the Green, Rel, and Re bands of Sentinel-2 does not
monitor the CLMIE. October was the month with the lowest values of RZ, when compared
to September. The month of September is the beginning of a phenological phase of coffee;
therefore, the difference between the months of September and October may be associated
with the different physiological conditions between these two months.

The mapping of the area with coffee leaf miner infestation was carried out using the
CLML. The accuracy of the mapping can be seen in the confusion matrix in Table 3. The
producer’s accuracy shows the error of omission, reveals how much the algorithm can
identify from the real data, and measures the classification accuracy; the user’s accuracy
shows the commission error, showing the reliability of a class corresponding to the field of
truth [44]. For Random Forest, producer accuracy and user accuracy were identical and
above 85% for both healthy and infested coffee. The SVM presented a lower performance
than the Random Forest algorithm, but the performance of SVM was above 80% for user
and producer precision for the user and producer accuracy. A type I error is a false positive,
which is when it is estimated that there is an infestation with a coffee leaf miner, but in
reality, there is no infestation in the field. A type II error (false negative) estimates that
an infestation is not occurring, but in reality, an infestation is taking place. The Random
Forest and SVM algorithms presented errors (I and II) below 20%. The kappa coefficient is
a statistical method used to assess the level of agreement between two sets of data. Kappa
values greater than 80% represent excellent agreement and between 60% and 80% have a
substantial agreement [45]. The Random Forest algorithm presented a kappa coefficient of
95%, and the SVM presented a kappa coefficient of 61.3%. These data show that the use of
Random Forest and SVM algorithms associated with the new index could identify with
good accuracy the coffee leaf miner infestation in the field.

Mapping using the CLMI index through the machine learning method could be used
to identify coffee crops with coffee leaf miner infestation and coffee crops without coffee
leaf miner infestation based on the spectral reflectance of coffee crops. There are some
limitations and challenges in monitoring coffee leaf miner infestation with CLMI on a
regional scale. First, the multispectral data were taken from coffee crops at the same
phenological stage, and it is not known whether the behavior of the index would be the
same at other stages. Second, the management of the areas was similar in the study areas,
and the management practices may be different among the producers. The new index
developed can be used to aid in the remote detection of coffee leaf miner infestation on a
regional scale in a fast and non-invasive way, facilitating the control of the infestation by
reducing monitoring costs. Therefore, the new index can provide optimization of the use
of agricultural pesticides. Monitoring of coffee leaf miner infestation at the regional level
plays an important role in agriculture. This fast, non-destructive, and low-cost approach
can be used as a method of monitoring the coffee leave miner infestation on a regional scale
so that the rural producer can be aware of a possible increase in the infestation of the coffee
leaf miner on his property. This awareness would allow the producer to increase visits in
the field at the periods indicated during monitoring.

5. Conclusions

This study identified three bands that can best be used to identify leaf miner infestation
(Blue, Red, and NIR). The new index, CLMI, was developed to detect coffee leave miner
infestation. From this index, an infestation map was generated, with Random Forest
being the algorithm that presented the best results. Thus, CLMI can identify coffee leaf
miner infestation thanks to all the complexity involved in detecting pests via orbital
remote sensing. It is understood that the improvement of the model would take place
through the insertion of a greater amount of data from the infestation record. In addition,
environmental conditions must also be taken into consideration, as coffee leaf miner
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infestation is influenced by also close to bio-tic conditions. A limitation of this method is
the reliance on clear (cloudless) environmental conditions for the location being assessed.
Future studies that consider the inclusion of more variables and that take into account
environmental factors should be carried out to improve the monitoring of leaf miner
infestation.

Author Contributions: Conceptualization, E.EV. and WPM.E; methodology, EEV., WPM.F, R.AS,,
LAL,CdSM.dM.,;GDM.d.C, ALR.dFE and D.H.L.; funding acquisition, M.V.; writing—original
draft, EEV. and WP.M.E; writing—review and editing, M.V. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by “Consdrcio Brasileiro de Pesquisa e Desenvolvimento do
Café” (CBP&D-Café), “Conselho Nacional de Desenvolvimento Cientifico e Tecnolégico” (CNPq),
and “Fundacao de Amparo a Pesquisa de Minas Gerais” (FAPEMIG).

Institutional Review Board Statement: Not applicable.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References

1. ICO International Coffee Organization. Historical Data on the Global Coffee Trade. Available online: http://www.ico.org/new_
historical.asp (accessed on 28 June 2022).

2. CONAB Companhia Nacional de Abastecimento. Historical Series—Arabica Coffee—Brazil. Available online:
https:/ /www.conab.gov.br/info-agro/safras/serie-historica-das-safras#café-2 (accessed on 20 June 2022).

3. Silva, R.A.; Souza, J.C.; Matos, C.S.M.; Pereira, A.B. Bicho-Mineiro do Cafeeiro; EPAMIG: Belo Horizonte, Brazil, 2022.

4. Dantas, J.; Motta, 1.O.; Vidal, L.A.; Nascimento, E.EM.B,; Bilio, J.; Pupe, ].M.; Veiga, A.; Carvalho, C.; Lopes, R.B.; Rocha, T.L.; et al.
A Comprehensive Review of the Coffee Leaf Miner Leucoptera coffeella (Lepidoptera: Lyonetiidae)—A Major Pest for the Coffee
Crop in Brazil and Others Neotropical Countries. Insects 2021, 12, 1130. [CrossRef] [PubMed]

5. Reis, PR.; Souza, J.C,; Silva, R.A.; Santa-Cecilia, L.V.C. Principais pragas do cafeeiro no Cerrado Mineiro: Reconhecimento e
manejo. In Cafeicutura do Cerrado; Carvalho, G.R., Ferreira, A.D., Andrade, V.T., Botelho, C.E., Carvalho, ].PF., Eds.; EPAMIG: Belo
Horizonte, Brazil, 2021; p. 564.

6. Souza, ].C.; Reis, PR,; Rigitano, R.L.O. Bicho-Mineiro Do Cafeeiro: Biologia, Danos e Manejo Integrado; EPAMIG: Belo Horizonte,
Brazil, 1998.

7. Cure, ].R.; Rodriguez, D.; Gutierrez, P.A.; Point, L. The Coffee Agroecosystem: Bio-Economic Analysis of Coffee Berry Borer
Control (Hypothenemus hampei). Sci. Rep. 2020, 10, 12262. [CrossRef]

8. Venzon, M. Agro-ecological Management of Coffee Pests in Brazil. Front. Sustain. Food Syst. 2021, 5, 721117. [CrossRef]

9. de Oliveira Aparecido, L.E.; Lorencone, P.A.; Lorencone, J.A.; de Meneses, K.C.; de Lima, R.F; da Silva Cabral Moraes, ].R.;
Torsoni, G.B. Coffee Pest Severity by Agrometeorological Models in Subtropical Climate. Int. ]. Biometeorol. 2022, 66, 957-969.
[CrossRef]

10. Reis, P.R,; Souza, J.C.; Santa-Cecilia, L.V.C,; Silva, R.A.; Zacarias, M.S. Manejo integrado das pragas do cafeeiro. In Café Ardbia do
Plantio a Colheita; Reis, PR., Cunha, R.L., Eds.; EPAMIG: Lavras, Brazil, 2010; Volume 1, 896p.

11. Liu, L; Dong, Y,; Huang, W.; Du, X,; Ren, B.; Huang, L.; Zheng, Q.; Ma, H. A Disease Index for Efficiently detecting Wheat
Fusarium Head Blight using Sentinel-2 Multispectral Imagery. IEEE Access 2020, 8, 52181-52191. [CrossRef]

12. Prabhakar, M.; Gopinath, K.A.; Kumar, N.R.; Thirupathi, M.; Sravan, U.S.; Kumar, G.S.; Siva, G.S.; Meghalakshmi, G.; Vennila, S.
Detecting the Invasive fall Armyworm Pest Incidence in Farm Fields of Southern India using Sentinel-2A Satellite Data. Geocarto
Int. 2021, 37, 3801-3816. [CrossRef]

13.  Ramos, A.PM.; Gomes, ED.G.; Pinheiro, M.M.E; Furuya, D.E.G.; Gongalvez, W.N.; Junior, ]. M.; Michereff, M.EE,; Blassioli-Moraes,
M.C.; Borges, M.; Alaumann, R.A; et al. Detecting the Attack of the Fall Armyworm (Spodoptera frugiperda) in Cotton Plants
with Machine Learning and Spectral Measurements. Precis. Agric. 2022, 23, 470-491. [CrossRef]

14. Ponzoni, FJ.; Shimabukuro, Y.E.; Kuplich, T.M. Sensoriamento Remoto Aplicado ao Estudo da Vegetacdo, 2nd ed.; Paréntese: Sao José
dos Campos, Brazil, 2012; 160p.

15. Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for Geo-big Data
Applications: A Meta-Analysis and Systematic Review. ISPRS |. Photogramm. Remote Sens. 2020, 164, 152-170. [CrossRef]

16.  Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Moghaddam, S.H.A.; Mahdavi, S.;

Ghahremanloo, M.; Parsian, S.; et al. Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications:
A Comprehensive Review. IEEE |. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5326-5350. [CrossRef]


http://www.ico.org/new_historical.asp
http://www.ico.org/new_historical.asp
https://www.conab.gov.br/info-agro/safras/serie-historica-das-safras#caf%C3%A9-2
http://doi.org/10.3390/insects12121130
http://www.ncbi.nlm.nih.gov/pubmed/34940218
http://doi.org/10.1038/s41598-020-68989-x
http://doi.org/10.3389/fsufs.2021.721117
http://doi.org/10.1007/s00484-022-02252-y
http://doi.org/10.1109/ACCESS.2020.2980310
http://doi.org/10.1080/10106049.2020.1869330
http://doi.org/10.1007/s11119-021-09845-4
http://doi.org/10.1016/j.isprsjprs.2020.04.001
http://doi.org/10.1109/JSTARS.2020.3021052

Agriculture 2023, 13, 388 15 of 16

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

35.
36.

37.

38.

39.

40.

41.

42.

43.

Buchaillot, M.L.; Cairns, J.; Hamadziripi, E.; Wilson, K.; Hughes, D.; Chelal, J.; McCloskey, P.; Kehs, A.; Clinton, N.; Araus, L.J.;
et al. Regional Monitoring of Fall Armyworm (FAW) Using Early Warning Systems. Remote Sens. 2022, 14, 5003. [CrossRef]
Cao, J.; Zhao, Z.; Liangliang, Z.; Yuchuan, L.; Ziyue, L.; Fulu, T. Damage Evaluation of Soybean Chilling Injury Based on Google
Earth Engine (GEE) and Crop Modelling. J. Geogr. Sci. 2020, 30, 1249-1265. [CrossRef]

ESA European Space Agency. Sentinel-2 User Handbook. Available online: https://sentinel.esa.int/documents /247904 /685211
/Sentinel-2_User_Handbook (accessed on 17 November 2019).

Kumar, V.; Ramachandran, D.; Kumar, B. Influence of New-age Technologies on Marketing: A Research Agenda. J. Bus. Res. 2021,
125, 864-877. [CrossRef]

Chemura, A.; Mutanga, O.; Dube, T. Separability of Coffee Leaf Rust Infection Levels with Machine Learning Methods at
Sentinel-2 MSI Spectral Resolutions. Precis. Agric. 2017, 18, 859-881. [CrossRef]

Zheng, Q.; Huang, W.; Cui, X; Shi, Y.; Liu, L. New Spectral Index for Detecting Wheat Yellow Rust Using Sentinel-2 Multispectral
Imagery. Sensors 2018, 18, 868. [CrossRef] [PubMed]

Marin, D.B.; Feraaz, S.A.G.; Santana, L.S.; Barbosa, B.D.S.; Barata, R.A.P.; Osco, L.P.; Ramos, A.P.M.; Guimaraes, P.H.S. Detecting
Coffee Leaf Rust with UAV-based Vegetation Indices and Decision Tree Machine Learning Models. Comput. Electron. Agric. 2021,
190, 106476. [CrossRef]

Marin, D.B.; Ferraz, G.A.S.; Schwerz, E; Barata, R.A.P,; Faria, R.d.O.; Dias, J.E.L. Unmanned Aerial Vehicle to Evaluate Frost
Damage in Coffee Plants. Precis. Agric. 2021, 22, 1845-1860. [CrossRef]

Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The
Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Sci. Data 2015, 2,
150066. [CrossRef] [PubMed]

Copernicus Climate Change Service (C3S). ERA5: Fifth Generation of ECMWEF Atmospheric Reanalyses of the Global Climate.
Copernicus Climate Change Service Climate Data Store (CDS). 2017. Available online: https://cds.climate.copernicus.eu/cdsapp#!/h
ome (accessed on 10 May 2022).

Jordan, C.F. Derivation of Leaf Area Index from Quality of Light on the Forest Floor. Ecology 1969, 50, 663-666. [CrossRef]
Richardson, A.J.; Wiegand, C.L. Distinguishing Vegetation from Soil Background Information. Photogramm. Eng. Remote Sens.
1977, 43, 1541-1552.

R Development Core Team. In R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:
Vienna, Austria, 2022.

Rouse, J.W., Jr.; Haas, R.H.; Schell, ].A.; Deering, D.W. Monitoring vegetation systems in the great plains with ERTS. NASA Spec.
Publ. 1974, 351, 309.

Justice, C.O.; Vermote, E.; Townshend, J.R.; Defries, R.; Roy, D.P; Hall, D.K.; Salomonson, V.V,; Privette, ].L.; Riggs, G.; Strahler,
W.; et al. The Moderate Resolution Imaging Spectroradiometer (MODIS): Land Remote Sensing for Global Change Research.
IEEE Trans. Geosci. Remote Sens. 1998, 36, 1228-1249. [CrossRef]

Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS.
Remote Sens. Environ. 1996, 58, 289-298. [CrossRef]

Crippen, R. Calculating the Vegetation Index Faster. Remote Sens. Environ. 1990, 34, 71-73. [CrossRef]

Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; de Colstoun, E.B.; McMurtrey, J.E. Estimating Corn Leaf Chlorophyll Concentration
from Leaf and Canopy Reflectance. Remote Sens. Environ. 2000, 74, 229-239. [CrossRef]

Dash, J.; Curran, PJ. The Meris Terrestrial Chlorophyll Index. Int. . Remote Sens. 2004, 25, 5403-5413. [CrossRef]

Guyot, G.; Baret, F;; Major, D.J. High Spectral Resolution: Determination of Spectral Shifts between the Red and Infrared. Int.
Arch. Photogramm. Remote Sens. 1988, 11, 750-760.

Fernandez-Manso, A.; Fernandez-Manso, O.; Quintano, C. Sentinel-2A Red-Edge Spectral Indices Suitability for Discriminating
Burn Severity. Int. ]. Appl. Earth Obs. Geoinf. 2016, 50, 170-175. [CrossRef]

Roujean, J.L.; Breon, EM. Estimating PAR Absorbed by Vegetation from Bidirectional Reflectance Measurements. Remote Sens.
Environ. 1995, 51, 375-384. [CrossRef]

Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P., Member, S.; Homayouni, S. Support
Vector Machine Versus Random Forest for Remote Sensing Image Classification: A meta-analysis and Systematic Review. IEEE .
Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6308-6325. [CrossRef]

Fletcher, R.S.; Reddy, K.N. Random Forest and Leaf Multispectral Reflectance Data to Differentiate Three Soybean Varieties From
Two Pigweeds. Comput. Electron. Agric. 2016, 128, 199-206. [CrossRef]

CONAB Companhia Nacional de Abastecimento. Portal de Informagdes Agropecuarias. In Mapeamentos. Café-MG.2017.. Available
online: https://portaldeinformacoes.conab.gov.br/mapeamentos-agricolas-downloads.html (accessed on 15 May 2022).
Almeida, K.E.C.; de Souza, T.T.C.; da Costa, A.L.; Marcelo, A.S.D.S.; de Laia, L. Near-infrared Spectroscopy for the Evaluation
and Prediction of Injuries Associated with the Attack of Thaumastocoris Peregrinus (Carpintero & Dellapé) in Eucalyptus Camal-
dulensis (Dehnh) Espectroscopia de Infravermelho préximo para a Avaliacao e Predicao de Injurias associadas ao Ataque de
Thaumastocoris Peregrinus. Sci. For. 2018, 46, 9-16. [CrossRef]

Kolling, B.J. Espectroscopia de Refletdncia Difusa para Detectagdo do dano Causado por Spodoptera Eridania (Cramer) (Lepi-
doptera: Noctuidae) na Cultura de Repolho. 2019. Available online: https:/ /repositorio.ufsc.br/bitstream /handle /123456789 /1
97662 /BENNO%20JOSE%20KOLLING.pdf?sequence=1&isAllowed=y (accessed on 20 June 2022).


http://doi.org/10.3390/rs14195003
http://doi.org/10.1007/s11442-020-1780-1
https://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbook
https://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbook
http://doi.org/10.1016/j.jbusres.2020.01.007
http://doi.org/10.1007/s11119-016-9495-0
http://doi.org/10.3390/s18030868
http://www.ncbi.nlm.nih.gov/pubmed/29543736
http://doi.org/10.1016/j.compag.2021.106476
http://doi.org/10.1007/s11119-021-09815-w
http://doi.org/10.1038/sdata.2015.66
http://www.ncbi.nlm.nih.gov/pubmed/26646728
https://cds.climate.copernicus.eu/cdsapp#!/home
https://cds.climate.copernicus.eu/cdsapp#!/home
http://doi.org/10.2307/1936256
http://doi.org/10.1109/36.701075
http://doi.org/10.1016/S0034-4257(96)00072-7
http://doi.org/10.1016/0034-4257(90)90085-Z
http://doi.org/10.1016/S0034-4257(00)00113-9
http://doi.org/10.1080/0143116042000274015
http://doi.org/10.1016/j.jag.2016.03.005
http://doi.org/10.1016/0034-4257(94)00114-3
http://doi.org/10.1109/JSTARS.2020.3026724
http://doi.org/10.1016/j.compag.2016.09.004
https://portaldeinformacoes.conab.gov.br/mapeamentos-agricolas-downloads.html
http://doi.org/10.18671/scifor.v46n117.01
https://repositorio.ufsc.br/bitstream/handle/123456789/197662/BENNO%20JOSE%20KOLLING.pdf?sequence=1&isAllowed=y
https://repositorio.ufsc.br/bitstream/handle/123456789/197662/BENNO%20JOSE%20KOLLING.pdf?sequence=1&isAllowed=y

Agriculture 2023, 13, 388 16 of 16

44. Congalton, R.G. A review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sens. Environ. 1991, 37,
35-46. [CrossRef]

45. Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159-174. [CrossRef]
[PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://doi.org/10.1016/0034-4257(91)90048-B
http://doi.org/10.2307/2529310
http://www.ncbi.nlm.nih.gov/pubmed/843571

	Introduction 
	Materials and Methods 
	Study Area 
	Data Collect 
	Vegetation Indices 
	The New Index—CLMI 
	Index Test (CLMI) for Mapping Coffee Leaf Miner Infestation 

	Results 
	Field Monitoring 
	Spectral Characteristics of the Coffee Crop with Coffee Leaf Miner 
	Index Development 
	Estimation of Coffee Leaf Miner Infestation Using Simulation with Multispectral Data 
	Application of the New Index for Mapping the Coffee Leaf Miner Infestation on a Regional Scale 

	Discussion 
	Conclusions 
	References

