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Abstract: The operational slowness in the execution of direct methods for estimating forage mass, 

an important variable for defining the animal stocking rate, gave rise to the need for methods with 

faster responses and greater territorial coverage. In this context, the aim of this study was to evaluate 

a method to estimate the mass of Urochloa brizantha cv. BRS Piatã in shaded and full sun systems, 

through proximal sensing applied to the Simple Algorithm for Evapotranspiration Retrieving 

(SAFER) model, applied with the Monteith Radiation Use Efficiency (RUE) model. The study was 

carried out in the experimental area of Fazenda Canchim, a research center of Embrapa Pecuária 

Sudeste, São Carlos, SP, Brazil (21°57′ S, 47°50′ W, 860 m), with collections of forage mass and re-

flectance in the silvopastoral systems animal production and full sun. Reflectance data, as well as 

meteorological data obtained by a weather station installed in the study area, were used as input 

for the SAFER model and, later, for the radiation use efficiency model to calculate the fresh mass of 

forage. The forage collected in the field was sent to the laboratory, separated, weighed and dried, 

generating the variables of pasture total dry mass), total leaf dry mass, leaf and stalk dry mass and 

leaf area index. With the variables of pasture, in situ, and fresh mass, obtained from SAFER, the 

training regression model, in which 80% were used for training and 20% for testing the models. The 

SAFER was able to promisingly express the behavior of forage variables, with a significant correla-

tion with all of them. The variables that obtained the best estimation performance model were the 

dry mass of leaves and stems and the dry mass of leaves in silvopastoral and full sun systems, 

respectively. It was concluded that the association of the SAFER model with the proximal sensor 

allowed us to obtain a fast, precise and accurate forage estimation method. 
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1. Introduction 

Pasture degradation, and the subsequent need for new areas to maintain livestock 

activity, is a reality in several places of the world. This condition is becoming more com-

mon as a result of rising food demand and inefficient use of natural resources. The main 

reasons for this are poor management of the area and overgrazing [1,2]. As a result, live-

stock has been one of the primary drivers of land use and land cover change in Brazil, 

primarily due to forest conversion [3]. 
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One method to avoid overusing pasture is to size the herd based on pasture availa-

bility throughout the year. This necessitates the reliable estimation of the forage mass, 

which is commonly accomplished through direct or indirect methods. Direct methods are 

based on cutting and weighing the forage and require a lot of effort, and are difficult to 

carry out in large areas. Indirect methods for estimating forage mass that takes forage 

canopy height into account, assuming a relationship between plant height and forage 

mass [4,5]. However, indirect methods like this still require extensive field data collection, 

and height can be measured with a measuring disc or graduated ruler [6,7]. Furthermore, 

performing indirect methods necessarily requires destructive collections to generate one 

or more calibration equations. 

Given the different methods of mass estimation and their operational and time-con-

suming nature, remote sensing appears as a feasible tool to obtain this estimate. Remote 

sensing allows for the collection of information about a target without making direct con-

tact with it, making pasture monitoring possible even over large geographical areas [8]. 

Remote sensing data collection levels range from orbital to terrestrial or proximal, with 

sensors at various field level altitudes, each one with a high potential for estimating pas-

ture forage mass. Proximal sensing (near ground level) has the advantage of providing 

immediate and potentially accurate data, giving farmers more control over obtaining this 

type of data. 

Crop-livestock integration is presented as a feasible option for sustainable produc-

tion intensification in Brazil, as pasture sustains 90% of the animal herd [9]. The integra-

tion of crop, livestock and forestry aims to achieve convergence between agricultural and 

animal resources in combination with land use and management strategies focused on 

natural resource protection [10]. In the 2000s, producers increased the use of new technol-

ogies, which resulted in increased productivity, animal stocking rate, and individual 

weight gain of cattle [11]. 

In a silvopastoral system, where there is a combination of pasture cultivation and 

tree species, proximal remote sensing data are recommended (Figure 1). This is because 

tree rows are spaced closely together, in an orbital remote sensing perspective, and as 

pasture evaluations with proximal sensors can be carried out below the tree canopy, they 

minimize the influence of the arboreal canopy on the reflectance captured. These proximal 

data combined with meteorological variables can be used as input in models that estimate 

vegetation biophysical parameters, such as the Simple Algorithm for Evapotranspiration 

Retrieving-SAFER model [12]. Through this model, it is possible to estimate the vegetation 

mass, as performed by [13] with pastures in the Alto Tocantins Hydrographic Basin, 

which obtained satisfactory results in identifying forage availability in degraded areas. 
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Figure 1. Use of orbital and proximal remote sensing in silvopastoral systems. 

These models are being increasingly used in studies that aim to estimate biomass and 

productivity of crop areas. [14,15] demonstrated that the SAFER model is promising for 

estimating corn and pasture biomass. [16] found that the model has high applicability for 

estimating biophysical parameters and energy balance in Urochloa brizantha cv. Ma-

randu. However, this model has not yet been used to estimate forage mass in a silvopas-

toral system. 

Several biophysical parameters, such as the vegetation index (VI) and fractions de-

rived from spectral mixture analysis [17], evapotranspiration [18], and energy balance 

components [16], have been used to characterize pasture grazing systems. Thus, the aim 

of this study was to analyze the feasibility of SAFER as a model for estimating the bio-

physical parameters of Urochloa brizantha cv. Piatã in different pasture production sys-

tems. Proximal reflectance and meteorological data were used as input data in the SAFER 

agrometeorological model combined with the Monteith radiation use efficiency (RUE) 

model. 

2. Materials and Methods 

2.1. Study Site and Experiment Design 

The study was conducted in the experimental area of Embrapa Pecuária Sudeste, São 

Carlos, SP, Brazil (21°57′S, 47°50′W, 860 m; Figure 2). According to Koppen’s classification, 

the region is characterized by a Cwa climate (humid subtropical climate) composed of a 

dry winter and rainy summer [19]. The soil in the study area is the dystrophic red-yellow 

latosol [20]. 

In the study site, 2 grazing systems were evaluated: a silvopastoral system (SILV) 

and an intensive (INT), full-sun system, with Urochloa pasture (syn. Brachiaria) brizantha 

cv. BRS Piatã, in rotational grazing. Eucalyptus trees (Eucalyptus urograndis clone 

GG100) were planted in the SILV system in April 2011. The experimental design consisted 

of single rows, with an orientation close to east-west in a spacing of 15 × 2 m (15 m between 

rows and 2 m between trees in the rows), which resulted in a population density of 333 

trees ha-1. 
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In both systems, pasture was managed under rotational stocking were grazed by cas-

trated males of the Canchim breed (3/8 Nellore + 5/8 Charolais), with stock adjusted ac-

cording to the forage mass in the pre-grazing. The periods of occupation and rest were 6 

and 30 days, respectively. 

 

Figure 2. Experimental area (in yellow) with the sampling strategy for the silvopastoral systems 

(SILV), with different shading levels, and full sun (INT)-Fazenda Canchim, the research center of 

Embrapa Pecuária Sudeste, São Carlos, SP, Brazil. 

2.2. Proximal Reflectance and Meteorological Data Acquisition 

The Crop Circle ACS-430 (Holland Scientific, Lincoln, NE, USA), an active sensor that 

emits electromagnetic light and captures reflectance centered on red (670 nm), red edge 

(730 nm), and near-infrared-NIR (780 nm), was used to collect canopy reflectance in the 

experimental area (Figure 2). The field of view of the Crop Circle ACS-430 sensor is an 

oval of ~30° by ~14° range. Sensor readings were collected approximately 0.7 m above the 

forage canopy in an area of 4 m2 (2 × 2 m). 

The collections were conducted in four complete cycles of forage growth, from Sep-

tember 2015 to January 2016, with three collections per cycle, close to the 15th, 22nd, and 

30th day after the end of grazing. In the INT, 4 randomly distributed points were sampled 

in the paddock. In the SILV, the forage was sampled at 4 levels of shading. For this, the 

evaluations were carried out in parallel between the tree rows, spaced at 3.75 m, with 4 

points being sampled for each level of shade (Figure 2). 

On the same day as the evaluation, forage mass samples were collected from the cen-

ter of this area (2 × 2 m). The direct technique was used to collect the forage mass required 

to evaluate the performance of the SAFER model, in which the forage within the 0.5 × 0.5 

m frame was cut close to the ground. After drying in an oven for 72 h at 65 °C, the mass 

samples were weighed, and a subsample was taken for morphological evaluation and an-

other for dry matter analysis. The total dry mass (MST), dry mass of leaf + stem (MSfc), 

and dry mass of leaves (MSf) in kg ha−1 were determined based on the dry matter and 

morphological composition. The leaf area index (LAI) was calculated from the ratio be-

tween the leaf area and the area from which the forage was collected. All these variables 
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were used to measure the SAFER model in order to observe which 1 would be better re-

lated to the biomass estimated by the model in each of the production systems. 

The meteorological parameters used as input data in the SAFER model were photo-

synthetically active radiation (PAR), air temperature (Ta), and reference evapotranspira-

tion (ETo). These parameters were obtained from 2 meteorological stations located nearby 

the experimental areas and were utilized to characterize the SILV and INT paddock areas. 

The linear quantum sensors were used to quantify the PAR in the INT system and in dif-

ferent shading levels in the SILV. 

2.3. Simple Algorithm for Evapotranspiration Retrieving (SAFER) 

SAFER is a model to calculate real crop evapotranspiration based on the Penman–

Monteith equation [21]. Evapotranspiration is computed using biophysical factors com-

bined with meteorological station data without the need for crop classification data or 

radiation physics [22]. The potential to use meteorological data from several stations is a 

significant benefit of this model since it increases the amount of data accessible for pro-

cessing [12]. Furthermore, another significant advantage of SAFER is that it does not re-

quire information from thermal bands, allowing the use of a broader range of sensors that 

do not have this type of information [12]. In this paper, forage mass was designated as 

fresh mass (MF), about mass with water, since the model employs variables inherent to 

the evapotranspiration process and the Normalized Difference Vegetation Index (NDVI). 

Reflectance and meteorological data were used as input to the SAFER model. Ini-

tially, based on the reflectance at the wavelengths of red ( ), red edge ( 1 ), and near-

infrared ( 2 ), the surface albedo ( 0 ) was estimated. 

0 1 2
   = + +b c d  (1) 

where b , c , and d are regression coefficients calculated from Planck’s law [23]. 

The reflectance of the red and near-infrared bands was applied to calculate the 

NDVI  [24]. 

2

2

( )

( )
NDVI

−
=

+

 

 
 (2) 

From the photosynthetically active radiation ( PAR ) measured at the meteorological 

station, the global incident radiation ( GR ) was estimated. 

G

B

PAR
R

a
=  (3) 

where Ba  is the regression coefficient. 

Then, the incident longwave radiation emitted by the atmosphere was calculated (

aR ) through the Stefan-Boltzmann law. 

𝑅𝑎 = 𝜎𝜀𝐴𝑇𝑎
4 (4) 

where   is the Stefan–Boltzmann constant (5.67 × 10−8 W⋅m−2⋅K−4), aT  is the air temper-

ature, and A  is the atmospheric emissivity calculated according to [25]. 

𝜀𝐴 = 𝛼𝐴(𝑙𝑛 𝜏𝑠𝑤)𝑏𝐴 (5) 

where A and Ab  are the regression coefficients, and sw  is the atmospheric trans-

missivity. 
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Based on and on surface albedo ( 0 ), the values of reflected radiation ( RR ) were 

calculated. 

𝑅𝑅 = 𝛼0𝑅𝐺 (6) 

As a next step, to obtain the surface temperature ( 0T ) by the residual method, the net 

radiation was calculated ( nR ) through the Slob equation. 

𝑅𝑛 = (1 − 𝛼0)𝑅𝐺 − (𝑎𝐿𝜏𝑠𝑤) (7) 

where La
 is the regression coefficient correlated with aT  [25], and sw  is the atmos-

pheric transmissivity. 

Using the data GR , RR , aR  and nR  was used in the radiation balance equation 

to obtain the long wave radiation emitted by the cultivated surface ( SR ). 

𝑅𝑆 = 𝑅𝐺 − 𝑅𝑅 + 𝑅𝑎 − 𝑅𝑛 (8) 

0T  was then estimated using Equation (9). 

𝑇0 = √
𝑅𝑆

𝜎𝜀𝑆

4

 (9) 

where S  is the surface emissivity calculated according to [25]. 

𝜀𝑆 = 𝑎𝑆 𝑙𝑛 𝑁 𝐷𝑉𝐼 + 𝑏𝑆 (10) 

where Sa  and Sb are regression coefficients. 

The evapotranspiration ratio was obtained based on Equation (11). 

𝐸𝑇

𝐸𝑇0
= 𝑒𝑥𝑝[ 𝑎𝑠𝑓 + 𝑏𝑠𝑓(

𝑇0

𝛼0𝑁𝐷𝑉𝐼
)] (11) 

where 
sfa  and 

sfb  are regression coefficients. 

Based on the evapotranspiration data calculated from the SAFER, the daily forage 

biomass (MVD) was estimated (Equation (12)). The absorbed photosynthetically active 

radiation, APAR, constitutes the MVD estimation equation (Equation (13)) [26] adapted 

by [27]. 

𝐴𝑃𝐴𝑅 = (−0.161 + 1.257𝑁𝐷𝑉𝐼)(𝑃𝐴𝑅) (12) 

where PAR  is the photosynthetically active radiation. 

MVD= ∑ (εmax

ET

ET0
APAR0.864) (13) 

where max  is the maximum efficiency of radiation use. For the Piatã grass,
1

max 31.2 −= gMJ , was used [28]. 

Although spectral and field evaluations were carried out at three moments of the 

cycle, estimates were made daily, considering the meteorological data of the exact days 

and the spectral behavior of the subsequently collected forage (Figure 3). In view of the 

results of daily fresh forage mass accumulation (kg ha−1), these were added to obtain the 

forage mass estimate consistent with the collection days (MF). 
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Figure 3. Schematic model of data collection, with the meteorological data collected daily and the 

spectral data at three moments of the cycle. 

2.4. Statistical Analysis 

At the end of the four forage cycles, 192 (4 points × 4 shading levels × 3 moments for 

cycle × 4 cycles) points were sampled in SILV and 48 points in INT (4 points × 3 moments 

for cycle × 4 cycles) production system. For the NDVI variable, a boxplot notch analysis 

was generated, which demonstrates confidence intervals of approximately 95% for the 

medians. The standardized residuals method was used to eliminate outliers and values 

less than −2 and greater than +2 from the data set. The maximum number of outliers taken 

from the SILV dataset was 13, while in the INT, it was 3. The Shapiro–Wilk test was per-

formed to determine whether the data had a normal distribution. 

A Spearman correlation was performed, 1% probability, as non-normal data for the 

variables was observed, separately for SILV and INT. Linear regression models were gen-

erated for each system between the data estimated by the SAFER and in situ data. For 

model training, 80% of the total data was used, and 20% for the test phase. The coefficient 

of determination (R2) values was used to analyze the behavior of the estimated fresh mass, 

the other variables and the relationship between them. 

To evaluate the forage mass estimation from SAFER, the data estimated after this 

phase were compared with the observed data at the field, using a performance graph, R2, 

root mean square error (RMSE) and relative absolute error (ER; Equations (14)–(16)). 

R2 =
𝑆𝑄𝑅

𝑆𝑄𝑇
 (14) 

RMSE =  √[(
1

𝑛
) ∑(𝑂𝑖 − 𝐸𝑖)2

𝑛

1=𝑖

] (15) 

ER (%) = 100 ∗ 
(

1
𝑛

) ∑ /𝐸𝑖 − 𝑂𝑖/𝑛
1=𝑖

𝜎
 

(16) 

where 𝑆𝑄𝑅  is the sum of the squares of the regression, 𝑆𝑄𝑇  is the sum of the total 

squares, 𝑂𝑖 is the observed value, 𝐸𝑖 is the estimated value, 𝑛 is the number of points, 

and 𝜎 is the average of the observed values. 

3. Results 

3.1. Weather Parameters 

The evaluations were carried out at the end of winter, spring and the beginning of 

summer, providing the observation of several meteorological variables that directly affect 

the growth of forages (Figure 4A). In winter, between 246 and 265 days of the year (DOY), 

there is a steady decline in the mean temperature, with values falling below 18 °C, which 

was not observed on the other days studied. Over these 20 days, the average precipitation 

was 7.26 mm d−1, with a total accumulation of 145.20 mm. 
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Figure 4. Meterorological parameters from 3 September 2015 to 19 January 2016 São Carlos, SP, 

Brazil. (A) mean air temperature (°C) and precipitation (mm/day). (B) photosynthetically active ra-

diation (PAR; MJm−2d−1). 

The mean precipitation in spring (DOY 266–355) was approximately 5 mm d−1, with 

maximum precipitation not exceeding 40 mm on any of the days evaluated. Throughout 

the season, the thermal amplitude was approximately 11 °C, with an average maximum 

temperature of 28 °C; however, on most days, the average temperatures ranged from 21 

to 25 °C. At the start of summer (DOY 356–19), the period in question had an average 

rainfall of 19.75 mm d−1, which was significantly greater than the value observed at the 

other forage cycles studied. Despite the fact that only one day had accumulated 126 mm, 

it rained on 80 percent of the analyzed summer days, indicating that the rains were evenly 

distributed. According to the classification proposed by Koppen [19], the study area pre-

sents a hot and humid period between the months of October and March. In Figure 4A, 

this condition is evidenced by the increase in precipitation and temperature at the end of 

the month of October (DOY 294), extending until January. 

It is conceivable to see distinct behaviors for the pasture in INT and the four levels of 

shading in the SILV system by evaluating PAR (Figure 4B). INT system presented higher 
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PAR than shade levels in SILV, which implies that it has a greater capacity for photosyn-

thetic activity. This can be explained by the absence of a canopy above the brachiaria in 

the INT system, a condition unobserved in SILV systems, in which the eucalyptus leaves 

absorb partial PAR radiation and reduces the amount of sunlight incidence on pasture 

and, consequently, forage mass production. Eucalyptus interference occurs in different 

proportions and may be based on the distance between the forage sampled and the tree 

rows, as seen in Figure 4B. 

3.2. Spectral Parameter 

In the first forage cycle, predominantly in winter, the pasture had an NDVI median 

of ~0.4 in four shading levels (SILV), while in the INT system, it was above 0.6, signifi-

cantly different (Figure 5). The NDVI increased in the second cycle, in spring, for all con-

ditions, with the vegetation indices remaining higher in the INT. The NDVI also grew in 

the third cycle, with the medians seeming extremely similar between the systems, and 

displayed a modest decline in the fourth cycle, in the summer, with similar medians be-

tween systems. 

 

Figure 5. NDVI boxplots at four levels of shading of SILV (SILV1 to SILV4) and INT for the four 

evaluated forage cycles. 

In the study area, winter is dry with milder temperatures (Figure 4A), and these as-

pects do not favor vegetation growth, contributing to low NDVI values in the first cycle. 

Also, in the first cycle, as in the second, the higher incidence of PAR in the INT system 

(Figure 4B) favored the fresh mass accumulation in relation to the different shading levels 

in SILV. This is supported by the difference in NDVI between systems. The increase in 

NDVI in late spring (third cycle) can be associated with the most favorable meteorological 

conditions for forage growth (higher values of temperature, precipitation and PAR–Fig-

ure 4). However, the high values of NDVI and the low variability observed in this cycle 

suggest saturation in both livestock production systems, a condition resulting from the 

high forage mass density. 

3.3. SAFER Estimated Forage Mass and In Situ Biophysical Pasture Variables 

The pasture variables were total dry mass (MSt), dry mass of leaves and stalks (MSfc), 

dry mass of leaves (MSf), and leaf area index (LAI). The correlations between estimated 

fresh mass by model SAFER and in situ pasture variables are presented in Figure 6. The 

relationships between in situ pasture variables are presented in the graphs as a record. 
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Figure 6. SAFER estimated fresh mass (MF) and in situ pasture variables correlogram (total dry 

mass: MSt; dry leaf mass: MSf; leaf and stem dry mass: MSfc; and leaf area index: LAI). (A) SILV; 

(B) INT. ** = Spearman significant correlation at 0.01. 

In the SILV (Figure 6A), we observed a strong correlation between the estimated fresh 

mass and the in situ pasture variables, with an emphasis on the leaf and stem dry mass 

(0.903). The variables leaf area index and dry mass of leaves correlated approximately 0.9 

with the estimated forage mass derived from SAFER. In INT, the correlations were lower 

than in the SILV system, with leaf dry mass having the strongest correlation (0.649). The 

other correlations were moderate: 0.637, 0.633, and 0.552 for leaf and stem dry mass, leaf 

area index and total dry mass, respectively. 

The models generated in the training phase between MF in situ pasture variables are 

shown in Figures 7 and 8. The SAFER forage mass estimation in SILV (Figure 7) was ~3000 

kg ha−1, with the largest concentration of points up to 2000 kg ha−1, values that were lower 

than those observed in the field. It is worth mentioning that the SAFER was created and 

calibrated for the semiarid region, and that may have affected the final results of fresh mass, 

but still, it was able to generate values strongly correlated with pasture variables in the ex-

periment region, cerrado biome. With this, it is possible to create, through linear regression, 

models between these variables, suggesting a previous validation in the field. Among the 

four pasture variables analyzed, only the total dry mass presented an R2 below 0.65. 

The best regression performance was observed for leaf dry mass (Figure 7B), with an 

R2 of 0.76. In the INT, the estimated pasture fresh and dry masses were higher than in the 

SILV, as expected, since the PAR incidence on the vegetation was higher (Figure 8). The 
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maximum estimated forage mass was ~4000 kg ha−1, and the observed total dry mass was 

~12,000 kg ha−1. 

Total dry mass was variable with the lowest R2; this can be explained due to the pres-

ence of dead matter in the sample, which has a direct impact on the NDVI value. The 

presence of dead matter tends to reduce the NDVI values as red reflectance increases and 

NIR reflectance reduces. NDVI will suffer interference from the senescence process and 

will not reflect the real biomass condition in the area. The best fit regression in the INT 

was the leaf and stem dry mass, followed by the leaf area index, both with an R2 of 0.52. 

 

Figure 7. SAFER estimated fresh mass (MF) and the Piatã grass pasture variables linear regression 

in the SILV system. (A) total dry mass (MSt); (B) dry mass of leaves (MSf); (C) leaf and stem dry 

mass (MSfc); (D) leaf area index (LAI). 
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Figure 8. SAFER estimated fresh mass (MF) and of Piatã grass pasture variables linear regression in 

the INT system. (A) total dry mass (MSt); (B) dry mass of leaves (MSf); (C) leaf and stem dry mass 

(MSfc); (D) leaf area index (LAI). 

3.4. Evaluation of Linear Regression Models 

Fresh mass calculated from SAFER was used to estimate pasture parameters. Figures 

9 and 10 show observed and predicted data correlations for the SILV and INT systems, 

respectively. In SILV, the models showed better performance in relation to INT. The 

model obtained from the dry mass of leaf and stem (MSfc; Figure 9C) had the adjusted 

line and prediction values closer to the 1:1 line, with higher precision expressed by R2 of 

0.88 and higher accuracy with a relative error of 15.19%. In this model, the RMSE was 

290.32 kg ha-1. The SILV3 and SILV1 presented the highest prediction errors and SILV2 

the lowest error. The model using dry leaf mass (MSf; Figure 9B) also presented good 

results, with an R2 of 0.71, nevertheless with an Er of 24.76%. 
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Figure 9. Observed and estimated variables linear regression of Piatã grass pasture in the SILV. (A) 

total dry mass (MSt); (B) dry mass of leaves (MSf); (C) leaf and stem dry mass (MSfc); (D) leaf area 

index (LAI). 

In the INT, the model with a bigger R2 was the dry mass of leaves (Figure 10B) with 

an R2 of 0.60. The total dry mass (Figure 10A) generated a model with the best perfor-

mance, with a relative error of 10.30%. The line that best fitted the 1:1 line was for the dry 

mass of leaves (Figure 10B). 
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Figure 10. Observed and estimated variables linear regression of Piatã grass pasture in the INT. (A) 

total dry mass (MSt); (B) dry mass of leaves (MSf); (C) leaf and stem dry mass (MSfc); (D) leaf area 

index (LAI). 

4. Discussion 

The available pasture mass quantity is critical information for determining the ani-

mal stocking rate. The most common method for evaluating this variable is to use direct 

methods based on cutting and weighing the feed [6]. Forage mass estimate at a fine scale, 

based on field measurements, requires time and is typically geographically limited, and 

is unlikely to provide representative information for extensive areas [29]. 

The methodology presented in this work proposed forage mass estimation consider-

ing the particularities of two livestock production systems, in which pastures are con-

ducted in intensive and in a silvopastoral system using proximal remote sensing and me-

teorological data. Initially, obtaining fresh mass from SAFER generated lower results than 

the total dry mass of samples collected in the field for both systems. However, it managed 

to express the phenology Urochloa (syn. Brachiaria) brizantha cv. Piat in a promising man-

ner, as demonstrated in Figure 6. These promising results can be attributed to the fact that 

variables highly associated with plant biochemical processes, such as photosynthetically 

active radiation, air temperature, reference evapotranspiration, and maximum crop effi-

ciency, in addition to NDVI and albedo, were used as input to SAFER, resulting from the 

spectral vegetation behavior [12,30]. 

The SILV model outperformed INT in terms of fresh mass estimation based on in situ 

pasture characteristics. (Figures 9 and 10). This condition may be associated with higher 
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NDVI variability during the evaluated cycles in shaded forage once linear regression 

models are more sensitive to large variations. As one of the SAFER input variables, NDVI 

influences the energy balance and the fresh mass generated from the Monteith equation. In 

the silvopastoral system, the variability of the dry mass of forage collected in the field is 

accompanied by NDVI variability (Figure 5). In INT, field dry mass variability is higher than 

SILV system, as observed by [31]. However, the NDVI showed less variability throughout 

the cycles. This can be attributed to the NDVI saturation process in the presence of high 

biomass densities [30,32]. While total DM from 6574.70 to 11,607.35 kg ha−1 in INT was 

observed, the forage mass in the SILV system ranged from 945.19 to 5626.32 kg ha−1. 

The higher proportion of fresh mass can be another factor that may have contributed 

to more accurate estimation in the SILV system, as seen by a lower difference between the 

observed total dry mass and the dry mass of leaves and stems. (Figures 7A and 8C), a 

condition also reported by [33] and [34]. According to [35], the presence of senescent ma-

terial negatively affects the ratio of vegetation index and biomass, material that is present 

in higher proportion in the INT system. As the vegetation senescence process affects re-

flectance at different wavelengths, variations in NDVI can be attributed not only to the 

amount of forage mass but also to the tissue death process [36,37]. 

In the SILV system (Figure 9), the fresh mass generated by SAFER and the dry mass 

of leaves and stems (Msfc) were the parameters that showed the best correlation. In the 

INT system (Figure 10), despite the total dry mass being higher, the points are concen-

trated between ~7000 and ~11,000 kg ha−1, which could affect estimates in which the 

masses were outside this range. The model with the best precision in the system was the 

one using the leaf dry mass. Defining the animal stocking rate based on these pasture 

variables is beneficial since it does not consider the dead matter still in the plant, a limiting 

factor for the quality of forage with lower nutritional value [38]. 

Fresh mass calculated from SAFER models proved to be suitable for estimating pas-

ture parameters, especially in the SILV system. However, it is expected that the fresh mass 

estimated by SAFER was higher than the actual drought, the region where the work was 

carried out, and the crop, as well as the sensor used, may have contributed to these values 

not being reached by the SAFER model combined with the Monteith Radiation Use Effi-

ciency (RUE) model. SAFER, a model that allows estimation of energy balance parame-

ters, was developed and validated for the Brazilian semiarid region and with Landsat im-

ages (TM and ETM sensor), an imaging sensor on board an orbital platform with charac-

teristics different from the CropCircle sensor [12]. The region in which it was developed 

has higher mean air temperature and lower annual precipitation compared to the munic-

ipality of São Carlos, where this work was carried out. These aspects affect evapotranspi-

ration, so the model calibration, specifically the regression coefficients of the evapotran-

spiration ratio (Equation (11)), for the cerrado region of São Paulo could contribute to bet-

ter results, as performed by [39] for corn cultivation in the semiarid region of Bahia. 

Although it has already been applied to pastures with MODIS images, allowing us 

to find the forage fresh mass of up to 2500 kg ha−1 month−1 for pastures at different levels 

of degradation, [13] did not validate the data estimated by SAFER with real field data. 

Based on what was discussed, this work is of great relevance and innovative character, as 

it compares the data estimated by SAFER with real data for pasture. 

In addition, data from orbital and aerial platforms have already been used as input 

to the SAFER model, but it was not found in the literature with data from non-imaging 

and proximal sensors such as CropCircle. As described in the works with orbital images, 

in which Landsat 8 images used with SAFER allowed the estimation of energy balance 

variables [40,41]. [42] observed the successful application of multispectral sensor images 

on board a remotely piloted aircraft (RPA) to obtain water productivity from SAFER. The 

characteristics/resolutions of these sensors, as well as the distances from the targets at the 

time of data acquisition, lead to different results for the same target. In addition, the im-

ages used so far are passive and are prone to the influence of the radiation source and 

atmospheric interference [43]. Although fresh mass values were not reached by SAFER 
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with a proximal sensor consistent with the data collected in the field, it can be said, based 

on the correlation, that its application was promising, allowing the generation of accurate 

and precise linear regression models for estimating pasture variables. The silvopastoral 

system models in the test phase performed better than those reported in the literature, 

including the application of machine learning [31,44,45]. 

Ref. [31], when applying proximal remote sensing data to estimate forage mass (leaf 

+ stem), observed models with better performance in the animal production system in the 

shadow when compared to the full-sun system. Even so, the best R2 found, with MSR 

vegetation index, was 0.67, with a relative error of 25.9%. By using a model generated 

from the junction of NDVI and plant height, derived from the LIDAR sensor, [46] obtained 

more accurate forage estimates than when using models with only the NDVI as input. The 

combined application of orbital remote sensing data and weather data through artificial 

neural networks, carried out by [44], proved more promising in forage estimation than 

only the use of Sentinel-2 data. Based on this, the methodology proposed in this study 

combines variables that have shown some type of success in forage estimation, proximal 

remote sensing (NDVI) and meteorological data. 

The option for the proximal sensor was made considering the forage disposal in the 

silvopastoral system. The presence of the arboreal component, in this case, eucalyptus, 

would influence the pixel reflectance value if satellite images with free access were used, 

causing spectral mixing between brachiaria and eucalyptus, which would lead to estima-

tion errors. Another important factor is the intention to facilitate the dissemination of the 

method and make it as usual as possible. By not generating images that require knowledge 

for processing and interpretation, the application becomes simpler, allowing even fewer 

technician producers to apply it. 

5. Conclusions 

This study proposes to evaluate the forage mass estimation methodology in animal 

production systems using the SAFER model combined with the Montheit radiation use 

efficiency (RUE) model. In addition, it uses proximal remote sensing data to feed the 

SAFER model, a situation not observed in the specialized literature so far. 

The integration of the SAFER model and the Monteith model allowed us to obtain a 

fast and promising forage estimation method. The integration of meteorological and remote 

sensing data, proposed by this model, proved to be efficient in estimating the mass of 

Urochloa (syn. Brachiaria) brizantha cv. Piatã in the silvopastoral animal production sys-

tems and full sun, with better performance in the silvopastoral system. Future works will 

consider the development of an intuitive application to estimate forage mass with the 

SAFER model. 
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