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Passiflora setacea D.C. is a wild species native to the Brazilian Cerrado, with agronomic and medicinal 
potentials. The cultivar BRS Pérola do Cerrado is the first registered and protected cultivar of a wild 
Passiflora and has become an alternative to the passion fruit market due to its desirable characteristics 
for food, ornamental and pharmaceutic industries. Since plant tissue culture techniques are considered 
important tools for large-scale production of plants and bioactive compounds, the goal of this work was 
to evaluate the flavonoid content and the antioxidant potential of hydroethanolic leaf extracts from in 
vivo and micropropagated plants of this new cultivar. Phytochemical analysis was performed by HPLC-
UV-ESI-MS/TOF. Antioxidant activity was evaluated by the DPPH and the iron-chelating assays. The 
activities of antioxidant enzymes catalase, superoxide dismutase and ascorbate peroxidase (CAT, SOD 
and APX) were also determined. Two di-C-glucosyl flavonoids derivatives from apigenin were registered 
as major constituents in both leaf extracts analyzed and were identified as vicenin-2 and schaftoside. 
Despite the low antioxidant potential observed by the DPPH assay, leaf extracts from both in vivo and 
micropropagated plants showed high chelating capacity. Although no differences in the activity of SOD 
and CAT were observed, the specific activity of APX was increased in leaf extracts of micropropagated 
plants. These results suggest that in vitro plants can be used as an alternative for flavonoid production 
from cultivar BRS Pérola do Cerrado. 
 
Key words: Flavonoid content, phytochemical analysis, antioxidant potential, leaf extracts, Passiflora setacea. 

 
 
INTRODUCTION 
 
The genus Passiflora comprises approximately 525 
species, grouped into five subgenera that are found in 
tropical and subtropical regions. It is considered the  most 

economically important genus of the Passifloracea family, 
since some species are consumed in natura or in the 
food industry.  It  also  has  a  great ornamental   potential 
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due to the diversity of colors and shapes of its flowers 
(Faleiro et al., 2019). Moreover, some species are well 
known in folk medicine worldwide because of their 
pharmacological activities as sedatives, anxiolytics, 
analgesics, and anti-inflammatories. Several compounds, 
such as flavonoids, alkaloids and saponins have been 
identified in their fruits, leaves, flowers, stems and roots 
(Smruthi et al., 2021).  

Passiflora setacea D.C. is a wild species native to the 
Brazilian Cerrado, with edible fruits, resistant to Fusarium 
oxysporum, Fusarium solani, Phytophthora, and to the 
Passion fruit woodiness virus (PWV) (Braga et al., 2006; 
Pereira et al., 2019). It is also used in folk medicine in the 
treatment of insomnia (Carvalho et al., 2018). The cultivar 
BRS Pérola do Cerrado, launched in 2013 by Embrapa 
(Brazilian Agricultural Research Corporation), is the first 
registered (RNC Nº 21714) and protected cultivar of a 
wild Passiflora species (SNPC Certificate Nº 20120197) 
(Viana et al., 2016). Its fruits are rich in mineral salts as 
well as phenolic compounds and proanthocyanidins, 
which are associated to antioxidant activity (Carvalho et 
al., 2018). Hence, it has become an alternative to the 
passion fruit market due to its desirable characteristics for 
food, ornamental and pharmaceutic industries (Faleiro et 
al., 2018). 

Plant tissue culture techniques are considered 
important tools for large-scale production of bioactive 
compounds, since in vitro cultures allow high plant 
multiplication rates and the modulation of both 
morphogenic and biosynthetic capacities by modifying 
physical and chemical parameters (Chandran et al., 
2020). Several authors have reported in vitro production 
of bioactive substances in Passiflora species, including 
flavonoids, in micropropagated plants of Passiflora 
caerulea L., Passiflora incarnata L. (Ozarowski and 
Thiem, 2013) and Passiflora foetida L. and Passiflora 
suberosa L. (Simão et al., 2018). 

The stressful in vitro conditions may induce the 
accumulation of reactive oxygen species (ROS), leading 
to lipid peroxidation, protein oxidation and even cell death 
(Pashkovskiy et al., 2018). Although ROS formation is 
considered a normal physiological process and an 
important cell signaling element, their overproduction 
may exceed the antioxidant capacity of the cells, resulting 
in oxidative stress (Kim et al., 2017). In order to maintain 
basal levels of ROS and protect against oxidative stress, 
plant cells exhibit both non-enzymatic and enzymatic 
defenses (Yu et al., 2017).  

Non-enzymatic antioxidant systems include flavonoids, 
which are commonly found in leaves and fruits of 
Passiflora spp. and have been used as chemical markers 
in the genus, due to their structural diversity and chemical 
stability (Gosmann et al., 2011). Most of them are 
classified as C-glucolsyl flavonoids derived from apigenin 
and luteolin, and frequently found as isomers (Ozarowski 
et al., 2018). Some authors have already reported the 
presence of  the  flavonoids  orientin,  isoorientin,  vitexin,    
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vitexin-2´´-O-rhaminoside and isovitexin, as well as acid 
ascorbic, polyamines, terpenes and carotenoids, in leaf 
and fruit pulp extracts from P. setacea and in its cultivar 
BRS Pérola do Cerrado (Santana et al., 2015; Bomtempo 
et al., 2016; Gomes et al., 2017; Wosch et al., 2017; 
Carvalho et al., 2018; Sanchez et al., 2020; da Rosa et 
al., 2021).  

The objective of this work was to evaluate the flavonoid 
content and the antioxidant potential of hydroethanolic 
leaf extracts from in vivo and micropropagated plants of 
P. setacea cv BRS Pérola do Cerrado.  
 
 
MATERIALS AND METHODS 
 
Plant material and culture conditions 
 
Seeds of P. setacea cv BRS Pérola do Cerrado were gently 
provided by Embrapa Cerrados, Brazil. Seeds were transferred to 
pots containing Plantmax

® 
substrate for germination, and in vivo-

grown plants (Figure 1a) were maintained in a greenhouse for 
twelve months. Micropropagated plants (Figure 1b), derived from in 
vitro seed germination, were obtained as described by Santos-
Tierno et al. (2021) and maintained by bimonthly subcultures of 
stem segments (3 cm) on solidified half-strength MSM medium 
(MSM ½) (Monteiro et al., 2000). Plants were incubated in a growth 
chamber at 25±2°C under a 16 h photoperiod, using a total 
irradiance of 46 µmol m

-2
 s

-1
 provided by cool-white fluorescent 

lamps (Philips F40 CW). 
 
 

Extract preparation 
 
Leaves from in vivo and micropropagated plants were lyophilized 
for five days, then powdered and weighed. In order to determine the 
best flavonoid extraction procedure, the extracts from in vivo-grown 
plants were initially prepared using two methodologies: i) 40% 
ethanol (Tedia

®
, Brazil) under reflux for 1 h (Birk et al., 2005), or (ii) 

maceration in 90% ethanol with ultrasound-assisted extraction for 
15 min. After that, extracts from leaves of in vivo and 
micropropagated plants were prepared following the selected 
extraction procedure, using 1:50 plant:solvent (w/v). The solvents 
were then evaporated in a rotary evaporator (Marconi – M120) at 
40°C, before solubilization in methanol (Tedia

®
, Brazil). The yield of 

the extracts was calculated as follows:  
 
[extract (g)/dried sample (g)] × 100. 
 
 
Qualitative HPLC-DAD-UV analysis High-Performance 
 
High-Performance Liquid Chromatography coupled to a Diode-
Array Detector (HPLC-DAD-UV) was carried out using the 
Shimadzu Liquid Chromatograph system according to Costa et al. 
(2011), with modifications. The analyses were performed using a 
Thermo-Scientific

©
 Hypersil Gold RP18 column (250 mm × 4.6 mm 

i.d. × 5 Å particle size), at a flow rate of 1.0 mL/min and oven 
temperature at 25°C. Leaf extracts from in vivo plants were 
solubilized in methanol at a final concentration of 1.0 mg/mL and 
the injected volume was 10 μL. "The mobile phase consisted of 
solvents A (MilliQ® water acidified with 1% glacial acetic acid, pH 
adjusted to 3.0) and B (acetonitrile)," with the following gradient 
elution: 95% of A and 5% of B (0 - 2 min); 95 - 80% of A and 5 -
20% of B (2 - 30 min); 80% of A and 20% of B (30 - 40 min). All 
solvents were HPLC grade (Tedia

®
, Brazil). The UV absorption was 
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Figure 1. Plants of Passiflora setacea cv BRS Pérola do Cerrado. a) In vivo-grown plant 
maintained at greenhouse conditions for 12 months; b) Micropropagated plants maintained in 
vitro for two months. Bar = 4.0 cm. 

 
 
 

monitored at 340 nm. 
 
 

HPLC-UV-ESI-MS/TOF analysis 
 
Extracts of leaves from in vivo and micropropagated plants were 
also analyzed by High-Performance Liquid Chromatography 
coupled to UV detector and coupled to Time-of-Flight Mass 
Spectrometer Detector (MicrOTOF II Mass Spectrometer, Bruker 
Daltonics, MA, USA) equipped with electrospray ionization (200°C - 
9 μL/min - 4 psi) (HPLC-UV-ESI-MS/TOF). The analysis was 
performed using the same column and conditions described for 
HPLC-DAD-UV. Electrospray ion source (ESI)-MS spectra were 
acquired in both positive and negative ion modes and recorded in 
the range of m/z 50 to 1000, using nitrogen as the nebulizing gas 
(400 L/h), at 250°C. The ionization energy applied was 10 eV for 
both positive and negative modes. UV spectral data were recorded 
at 340 nm. Compounds identification was carried out by comparing 
the exact experimental mass of the pseudomolecular ion [M-H]

-
 with 

those of the MassBank (High Quality Mass Bank Database, 
available at https://massbank.eu/MassBank/), as well as UV 
spectrum, elution order and considering flavonoids previously 
identified in Passiflora genus. 

 
 

Determination of antioxidant activity 
 
The antioxidant potential of leaf extracts was determined by the 2,2-
diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity 
assay (Sánchez-Moreno et al., 1998), and the iron chelating assay 
was carried out according to Chew et al. (2009).  

The extract concentrations (g/L) required for quenching 50% of the 
initial DPPH radicals or quelating 50% of the Fe

2+
 (EC50), were 

determined graphically. The same procedure was carried out with 
quercetin (0.01 to 0.15 g/L) and ethylenediamine tetraacetic acid 
(EDTA) (0.001 to 0.03 g/L) solutions that were used as standard.  
 
 

Evaluation of antioxidant enzymes activity 
 
Protein extracts were prepared from fresh leaves (300 mg), 
according to Azevedo et al. (1998). The activities of the antioxidant 
enzymes superoxide dismutase (SOD), catalase (CAT) and 
ascorbate peroxidase (APX) were determined according to Vianna 
et al. (2019). 
 
 

Statistical analysis 
 
The assays for determining the antioxidant potential and activities 
of antioxidant enzymes were carried out in triplicates, in two 
independent experiments. Statistical evaluation of experimental 
data was performed by analysis of variance (ANOVA), followed by 
the post-test Tukey-Kramer for comparing all pairs of columns 
(0.05% significance level), using GraphPad Instat (GraphPad 
Software Inc., San Diego, CA). 
 
 

RESULTS AND DISCUSSION 
 

In this work, in order to determine the best flavonoid 
extraction procedure for  P.  setacea  cv  BRS  Pérola  do  
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Figure 2. HPLC-DAD-UV analysis of leaf extracts from in vivo-grown plants of Passiflora setacea cv BRS Pérola do Cerrado using 
two extraction methodologies. (a) Reflux for 1h (40% ethanol); (b) Ultrasound-assisted extraction for 15 min (90% ethanol). Detail 
shows the UV spectra of the peaks. 

 
 
 
Cerrado, two methods were evaluated using leaves from 
in vivo-grown plants. Preliminary HPLC-DAD-UV analysis 
revealed more peaks when the extract was prepared with 
90% ethanol using the ultrasound-assisted method in 
comparison to the extract prepared with 40% ethanol 
under reflux (Figure 2). Four compounds, with retention 
times ranging from 43 to 58 min and typical UV-vis 
spectra of carotenoids, were exclusively detected in the 
extracts prepared with the ultrasound-assisted method. 
This result could be associated with the higher levels of 
ethanol used by the extraction process, in addition to the 
propagation of ultrasonic waves, which disorganize the 
cell wall and cause leaking of cellular contents 
(Gunathilake et al., 2017; Castañeda-Valbuena et al., 
2021). 

Considering the extraction efficiency and the shorter 
maceration period required (15 min), the ultrasound-
assisted method was selected for the subsequent 
analyses. The yields of the leaf extracts from both in vivo 
and micropropagated plants obtained by the ultrasound-
assisted method were 14.80 and 13.38%, respectively. 

Compounds identification in leaf extracts from both in 
vivo and micropropagated plants performed by HPLC-
UV-ESI-MS/TOF analyses revealed similar 
chromatographic profiles. The exact masses of the 
pseudomolecular ions [M-H]

-
 were compared with 

literature data as described in the experimental and 
afforded  compounds  1   to    8 (Table  1  and  Figure  3). 

Sucrose and digalacturonic acid, commonly found in 
plant extracts and in the culture medium, were identified 
in the beginning of the chromatographic run. Two major 
constituents were registered in both leaf extracts: 
compound 6 at Rt 13.1 min (vicenin-2; [M-H]

-
 = 593.1951; 

C27H29O15) and compound 7 at Rt 13.4 min (schaftoside; 
[M-H]

-
 = 563.1824; C26H27O14). Other apigenin-C-

glucosyl-derivatives were detected in minor amounts. 
Apigenin-6-C-glucoside or isovitexin (Rt = 13.9 min, M-H

-
 

= 431.1289; C21H19O10) was detected in both leaf 
extracts. On the other hand, apigenin-6-C-glucoside-7-O-
glucoside (Rt = 11.5 min; [M-H]

-
 = 593.1958; C27H29O15) 

and apigenin-8-C-glucoside-7-O-glucoside (Rt = 12.8 
min; [M-H]

-
 = 593.1943; C27H29O15) were only detected in 

leaves from micropropagated plants. The modulation of 
bioactive compounds production in in vitro systems was 
also observed for Poliomintha glabrescens (García-Pérez 
et al., 2011), Salvia dolomitica (Bassolino et al., 2015), 
Agave salmiana (Puente-Garza et al., 2017) and 
Kaempferia parviflora (Park et al., 2021).   

The two major constituents from both leaf extracts 
studied here, vicenin-2 and schaftoside, have already 
been identified in Passiflora spp. (Araújo et al., 2017; 
Farag et al., 2016; Sakalem et al., 2012; Zucolloto et al., 
2011). Vicenin-2 has been detected in extracts from 
pericarp of Passiflora edulis (Sena et al., 2009; Zucolotto 
et al., 2009) and extracts from leaves and fruit pulp of 
Passiflora  tripartite  (Zucolotto  et al., 2011; Simirgiotis et  
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Table 1. Compounds detected by HPLC-UV-ESI-MS/TOF analysis in leaf extracts of Passiflora setacea cv BRS Pérola do Cerrado 
 

S/N 
Rt 

(min) 
[M-H] - 

Molecular 
Formula 

Suggested 

Compound 
Reference 

Plant Extract Relative area (%) extract leaf 

In vivo In vitro In vivo plants Micropropagated plants 

1 3.2 341.1044 C12H21O11 Sucrose - + + 36.2 67.9 

2 3.5 369.0655 C12H17O13 Digalacturonicacid - - + - 32.3 

3 4.4 739.3424 C33H39O19 Luteonin-7-O-dirhamnoside 3´-O-glucoside Sakalem et al. (2012) - + - 47.3 

4 11.5 593.1958 C27H29O15 Apigenin-6-C-glucoside-7-O-glucoside Ozarowski et al. (2018) - + - 7.8 

5 12.8 593.1943 C27H29O15 Apigenin-8-C-glucoside-7-O-glucoside Cvetkovikj et al. (2013) - + - 5.3 

6 13.1 593.1951 C27H29O15 Vicenin-2 (apigenin-6,8-C-diglucoside) Sakalem et al. (2012); Araujo et al. (2017) + + 100 100 

7 13.4 563.1824 C26H27O14 Schaftoside (apigenin-6-C-glucoside-8-C-riboside) Sakalem et al. (2012); Farag et al. (2016); Araujo et al. (2017) + + 59.8 45.4 

8 13.9 431.1289 C21H19O10 Isovitexin (apigenin-6-C-glucoside) Zucolotto et al. (2011); Farag et al. (2016) + + 8.8 5.7 
 

Compounds 3-6 showed UV λmax at 270 and 350 nm. 
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Figure 3. HPLC-ESI-MS analysis (negative mode) of leaf extracts of Passiflora setacea cv. BRS Pérola do Cerrado. a) Micropropagated 
plants; b) In vivo-grown plants. 

https://www.sciencedirect.com/science/article/pii/S0021967313000320?casa_token=LyAwVBXUr0EAAAAA:LTuHn-LMdTR0nekB7AjHGtakElG8vDXu_o7r3jqBjYdpiTYTQRhnlOQ7PuafJx5zAfQRVbSRpWE#!
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Table 2. Antioxidant potential of leaf extracts of Passiflora setacea cv BRS Pérola do Cerrado as 
determined by the DPPH and iron chelating assays. 
 

Sample 
EC50 (g/L) 

DPPH assay* Iron chelating assay* 

Quercetin 0.04±0.005
a
 - 

EDTA - 0.001±0.004
a
 

In vivo plants 64 ± 6.1
b
 1.9 ± 0.1

b
 

Micropropagated plants 64.4 ± 1.8
b
 2.5 ± 0.07

c
 

 

*Data expressed as means ± standard errors. Different lowercase letters within each column indicate data 
statistically different (Tukey test, p≤ 0.05). 

 
 
 
al., 2013). Schaftoside has been reported as the major 
constituent of P. incarnata (Abourashed et al., 2002) and 
in leaf extracts of Passiflora mucronata (Da Silva et al., 
2018). Both flavonoids have been associated with 
sedative, anxiolytic and analgesic activities (Sakalem et 
al., 2012). In addition, vicenin-2 has been related to 
antiplatelet and anticoagulant activities (Lee and Bae, 
2015), whereas schaftoside has been recently reported to 
be effective against the coronavirus SARS-CoV-2 (Yalçın 
et al., 2021). 

The antioxidant potential of extracts from leaves of in 
vivo and micropropagated plants of P. setacea cv BRS 
Pérola do Cerrado was also evaluated using two distinct 
techniques, the DPPH and iron chelation assays. 
Although several reports have studied the antioxidant 
potential of Passiflora species by the DPPH assay (Silva 
et al., 2013), the use of different and complementary 
techniques must be taken into consideration since plant-
derived compounds may show distinct mechanisms of 
action (Santos-Sanchéz et al., 2019).  

The DPPH radical scavenging capacity assay revealed 
a low antioxidant potential, with EC50 values of 64 ± 6.1 
and 64.4 ± 1.8 g/L in extracts from in vivo and 
micropropagated plants, respectively (Table 2). On the 
other hand, these extracts showed high iron chelating 
capacity, with significantly low EC50 values. Higher 
chelating capacity was observed in leaves from in vivo-
grown plants when compared with micropropagated 
plants (EC50 values 1.9 ± 0.1 and 2.5 ± 0.1 g/L, 
respectively) (Table 2). Since flavonoids with 5-hydroxy-
4-keto-2,3-double bond are able to chelate iron ions 
(Mladěnka et al., 2011), it is possible that this difference 
can be explained by the action of the apigenin type 
flavonoids that were found in this study (Table 1). Similar 
results were observed in root and rhizome extracts of 
Nardostachys chinensis and Valeriana officinalis (Wang 
et al., 2010a), root extracts of Periploca sepium (Wang et 
al., 2010b) and buds extracts of Brassica oleracea L. 
(Köksal and Gülçin, 2008). 

The activity of enzymes associated with the cellular 
antioxidant system, namely SOD, CAT and APX, was 
also evaluated in the leaf extracts. SOD catalyzes the 
dismutation  of   the   superoxide   radical  into  molecular 

oxygen and hydrogen peroxide and thus is considered an 
important defense against free radicals, whereas CAT 
and APX are responsible for the degradation of hydrogen 
peroxide mainly in peroxisomes and chloroplasts, 
respectively (Kim et al., 2017). In this study, although no 
statistical differences were observed in the specific 
activity of SOD and CAT extracted from both leaf tissues 
(Figure 4a and b), there was a significant increase in APX 
activity in leaves from micropropagated plants (Figure 
4c). These results might reflect the stressful conditions 
imposed by the in vitro environment, which led to an 
increase of hydrogen peroxide concentration and, thus, of 
the APX activity aiming its degradation. Moreover, 
considering that APX is the only enzyme responsible for 
maintaining low hydrogen peroxide levels in the 
chloroplasts, it is possible that its high activity rates, when 
compared with CAT activity, is associated with specific 
damages to the photosynthetic apparatus induced by in 
vitro conditions (Škodová-Sveráková et al., 2020). 

Hydrogen peroxide is not considered a highly reactive 
ROS. In high concentrations, however, it can interact with 
metallic ions, such as Fe

+3
, giving rise to hydroxyl 

radicals (OH
•
), which are considered one of the most 

relevant ROS, due to their potential to cause cell 
membrane damages and the absence of specific 
enzymatic mechanisms for their degradation 
(Kaczmarczyk et al., 2012; Sharma et al., 2012; 
Demidchik, 2015). Therefore, considering the increase in 
APX activity and the high iron chelating capacity 
observed here, it seems that both enzymatic and non-
enzymatic antioxidant systems are acting together in 
order to reduce OH

•
 formation (Hasanuzzaman et al., 

2020).   
In conclusion, the chromatographic analyses of 

leafextracts from both in vivo and micropropagated plants 
of P. setacea cv BRS Pérola do Cerrado described here 
detected the presence of vicenin-2 and schaftoside in 
higher content in comparison to the other flavonoids. 

 The antioxidant potential of the extracts was also 
evaluated, and despite the low capacity observed by the 
DPPH assay, a high antioxidant activity was accessed by 
the iron chelating assay, corroborating the importance of 
distinct and complementary assays in order to access the 
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Figure 4. Antioxidant enzymes activities in leaf extracts from in vivo and 
micropropagated plants of Passiflora setacea cv BRS Pérola do Cerrado. a) SOD 
activity, b) CAT activity, c) APX activity. Bars represent means and standard errors. 
Different letters within columns indicate statistically differences (Tukey test, p≤ 0.05).  

 
 
 

antioxidant potential of plant-derived compounds. These 
results suggest that in vitro plants can be used as an 
alternative for flavonoid production from cultivar BRS 
Pérola do Cerrado.  
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