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Leaf water potential is one of the main parameters used to assess water relations in plants by revealing levels of 
tissue hydration. It is commonly measured with the Scholander pressure chamber; which demands hard work and 
a time-consuming process. On the other hand, there is a diversified literature demonstrating the assessments of 
several plant variables via indices of leaf reflectance, that also present direct and indirect relationships with water 
potential. The aim of this work is to exploit spectral variables to estimate the water potential of coffee plants by 
using computational intelligence approaches. Data was collected in the cities of Santo Antônio do Amparo and 
Diamantina, Brazil, from 2014 to 2018. Two neural networks (Multi-Layer Perceptron) were designed to estimate 
and classify leaf water potential based on spectral variables. Moreover, a classifier and an estimator based on 
decision tree were also developed. The results showed that the artificial neural network model was superior as 
an estimator when compared with the decision tree model, with an average confidence index of 0.8550. On 
the other hand, decision trees showed a slightly higher performance as a classifier, with an overall accuracy of 
88.8% and a Kappa index of 70.07%. We concluded that the leaf reflectance indices may be properly used to 
build accurate models for estimating coffee water potential. The indices PRI, NDVI, CRI1 and SIPI were the most 
relevant ones for estimating and classifying the coffee water potential.
1. Introduction

The rational use of water resources in agriculture, both for saving 
water and improving plant yield, is an aspect of great relevance for 
sustainable production systems. Overall, such demands make it highly 
necessary to seek alternative technologies that benefit the water man-

agement in croplands.

Knowledge of the plant water relations is essential to establish suit-

able agricultural practices. In this vein, there are several variables able 
to describe the plant water status; among them, the leaf water poten-
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tial (𝜓𝑎𝑚) is the most highlighted. This index is often directly measured 
via Scholander pressure chamber, in which leaf samples collected from 
plants are submitted to different pressures to assess 𝜓𝑎𝑚 [1]. However, 
this is a hard labor and time-consuming method which demands a 
longer period of analyses and raises safety concerns, such as the risk 
of explosion. Moreover, it is also classified as a destructive method 
and thus can cause damage to the plant tissue. Hence, some studies 
have addressed the indirect assessment of 𝜓𝑎𝑚 by using spectral in-

dices related to the leaf reflectance of targeted plants with promising

results [25].
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One of the ways to obtain spectral indices is by applying remote 
sensing and field spectrometers. These methods work by measuring the 
percentage of light reflected by the plant leaves as function of different 
light wavelengths. Based on these values, the indices are calculated via 
equations that already exist in the literature.

The foliar reflectance indices combined with one or more bands can 
provide information about water status due to changes in spectral re-

flectance properties occasioned by variations in plant water content, 
antioxidants levels, photosynthetic pigments content, and photosyn-

thetic rates [8]. There is a correlation between visible and red-edge, 
near-infrared spectral indices, and crop water content [18]. Reflectance 
spectral presents many possibilities of indices because there are several 
patterns of absorption by water or pigments in those regions in response 
to plant dehydration. Among these reflectance indices, the PRI (Photo-

chemical Reflectance Index) is correlated with the photosynthetic and 
fluorescence parameters of chlorophyll, and can be used as a reliable 
indicator of water deficit - an abiotic limiting factor of photosynthesis. 
This index is sensitive to the oxidation of pigments from the xanthophyll 
cycle, which is one of the mechanisms to dissipate the energy of radi-

ation under water deficit conditions [25]. Although PRI characterizes 
photosynthetic efficiency, the plant senescence reflectance index PSRI 
(Plant Senescence Reflectance Index) and the SIPI (Structure Insensi-

tive Pigment index) respond sensitive to changes in the proportion of 
carotenoids and chlorophyll and were used as a quantitative measure of 
leaf senescence events [19]. The NDVI (Normalized Difference Vegeta-

tion Index) is more closely sensitive to the presence of chlorophylls and 
is used as input variable in models and algorithms to estimate the wa-

ter potential by remote sensing in coffee [15]. By using different water 
absorption characteristics regardless of chlorophyll concentration, the 
WBI (water band index) has been reported to be an effective indicator 
of water stress, thereby indicating changes in the relative water con-

tent [4]. Other indices - such as ARI1 (anthocyanin reflectance index) 
and CRI1 (carotenoid reflectance index) - are associated with pigment 
absorption bands related to antioxidant responses, mechanisms of pho-

toprotection and adaptation to light, as well as for the early diagnosis 
of water stress in plants [24].

The aforementioned papers have investigated the relations between 
spectral indices and the water potential, but for different cultivars, 
except the work of Maciel et al. [15] that focused on satellite im-

ages to estimate the leaf water potential of coffee. Unlike these, the 
proposed work aimed to exploit spectral variables captured by a mini-

spectrometer to estimate the water potential of coffee plants by using 
computational intelligence approaches. To do this, we employed artifi-

cial neural networks (ANN) [13] and decision trees [23]. Due to their 
high generalization capacity, ANN are able to map the behavior of 
functions, even if they are non-linear and/or discontinuous [13]. The 
decision trees are capable of classifying samples into groups, and esti-

mating their behavior according to characteristics values. In addition, 
they allow mapping data in a simple and easy way to understand, even 
of high dimensions, which is very useful to pattern recognition systems 
[12]. In this paper, these tools are used to classify the water potential of 
coffee trees, thereby identifying whether their water status is adequate, 
without requiring Scholander pressure chambers.

Coffee cultivation plays a fundamental role in terms of social and 
economic development in Brazil. Responsible for the generation of jobs, 
taxes and formation of the Brazilian foreign exchange earnings, coffee 
production is well-known as an important activity of the agricultural 
and economic sector of the country [9].

2. Methodology

2.1. Database

This work used a spectral database built by the team of researchers 
from the Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG) 
2

and Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA). The 
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Table 1

Division of leaf water potential 
data classes.

Class Break

C1 0 to -0.9429

C2 -0.9429 to -1.8857

C3 -1.8857 to -2.8286

C4 -2.8286 to -3.7715

C5 -3.7715 to -4.7144

C6 -4.7144 to -5.6573

C7 -5.6573 to -6.6002

samples were collected in the 2014-2018 timeframe, in arabica coffee 
fields located in the cities of Santo Antônio do Amparo and Diamantina, 
Minas Gerais, Brazil.

The data set consists of 1280 events with 9 characteristics, as fol-

lows:

• Photochemical Reflectance Index - PRI (Reflectance ratio: R531-

R570/R531+R570) [10];

• Plant Senescence Reflectance Index - PSRI (Reflectance ratio: R680-

R500/R570) [16];

• Normalized Difference Vegetation Index - NDVI (Reflectance ratio: 
R800-R680/R800+R680) [21];

• Water Band Index - WBU (Reflectance ratio: R900 /R970) [19];

• Anthocyanin Reflectance Index - ARI1 (Reflectance ratio: 1/R550 -
1/R700) [20];

• Carotenoid Reflectance Index - CRI1 (Reflectance ratio: 1/R510) 
[14];

• Structure Insensitive Pigment Index - SIPI (Reflectance ratio: R800-

R445/R800+R680) [21];

• Flavonol Reflectance Index - FRI (Reflectance ratio: R800/R410-

R800/R460) [17]

The variables were obtained by a mini-spectrometer, while the cor-

responding water potential (𝜓𝑎𝑚) was measured with a Scholander 
pressure chamber. The data were collected on eleven different periods 
(dates), seeking to capture the effect of seasonal climatic variations in 
the region. This variable was converted into numerical values, which 
ranged from 1 to 4 according to the season, respectively, as follows: 1, 
spring; 2, summer; 3, autumn; and 4, winter.

For data estimation, normalized values of water potential were con-

sidered. Moreover, for classification purposes, the targets were divided 
into classes, according to the water potential value, which totalled 7 
classes (Table 1).

2.2. Pre-processing

The outliers were manually eliminated, and then the samples nor-

malized, to avoid any data biases [13]. The set scale of [0 1] was 
adopted as a rule of normalization for all data. Equation (1) was used 
to accomplish the normalization.

𝑝𝑛 =
(𝑝− 𝑝𝑚𝑖𝑛)

(𝑝𝑚𝑎𝑥) − (𝑝𝑚𝑖𝑛)
(1)

where 𝑝𝑛 is the normalized value; 𝑝 is the original value of a given 
variable; 𝑝𝑚𝑖𝑛 is the lowest value; and 𝑝𝑚𝑎𝑥 is the highest value.

The target values were multiplied by -1, thereby turning them pos-

itive, which makes it better of being visualized in a graphic format. 
After normalization, the data were shuffled at each interaction of the 
algorithm, and divided into 70% for training, 20% for validation (used 
for cross-validation) and 10% for testing.

Finally, an analysis of correlation was carried out to select the most 
relevant variables and to identify redundancies. For that, a linear cor-

relation between variables and targets was performed, thereby elimi-
nating those that showed either low (low relevance) or high correlation 
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Table 2

Kappa classification.

Kappa Value Performance

0.81 to 1.00 Great

0.61 to 0.80 Very Good

0.41 to 0.60 Good

0.21 to 0.40 Reasonable

0.00 to 0.20 Bad

< 0.0 Terrible

(high redundancy) with each other, reducing thus the dimensionality of 
the problem [13].

2.3. Performance evaluation metrics

Seeking to evaluate the performance of the developed classifiers, 
confusion matrices were set up. In addition, the Kappa index, proposed 
by Cohen [6], was used as a parameter.

The Kappa index is obtained by the analysis of the confusion matrix 
and is determined based on Equation (2). It is a suitable measure to 
assess the accuracy of a classifier, because it considers all the elements 
of the confusion matrix, differently from the global accuracy which uses 
only the main diagonal.

𝐾 =
(𝑃𝑜 − 𝑃𝑒)
1 − 𝑃𝑒

(2)

where 𝐾 is the coefficient of Kappa, 𝑃𝑜 and 𝑃𝑒 are defined by Equations 
(3) and (4), respectively.

𝑃𝑜 =
∑ 𝑛𝑖𝑖

𝑛
(3)

𝑃𝑒 =
∑ (𝑛𝑖.𝑛𝑗 )

𝑛2
(4)

where 𝑛𝑖𝑖 is the number of elements correctly classified, 𝑛 is the total of 
samples, 𝑛𝑖 is the sum of the i-th line elements; and 𝑛𝑗 the sum of the 
j-th column, considering 𝑖 = 𝑗.

Once the Kappa coefficient was determined, the results can be clas-

sified according to Table 2, which provides the measure of the system’s 
performance.

Seeking to assess estimators’ performance, the average relative er-

ror, overall mean and standard deviation for test interactions were 
initially determined. In addition, the average confidence index, best 
confidence index and standard deviation were also calculated.

The performance analysis of the estimators was carried out by cal-

culating the correlation (𝜌), concordance (𝑑), and the confidence (𝑖𝑑) 
indices, which represent the accuracy, reliability and confidence of the 
model, respectively.

The correlation index was obtained using the Pearson coefficient, 
according to Equation (5).

𝜌 = 𝑐𝑜𝑣(𝑋,𝑌 )√
𝑣𝑎𝑟(𝑋).𝑣𝑎𝑟(𝑌 )

(5)

where X and Y are the vectors to be correlated, and 𝜌 is the correlation 
coefficient of Pearson.

The concordance index is given by Equation (6), where 𝑃𝑖 is the 
estimated value; 𝑂𝑖 is the observed value; and 𝑂 is the mean of observed 
values [22].

𝑑 = 1 −
∑
(𝑃𝑖 −𝑂𝑖)2∑

(|𝑃𝑖 −𝑂|+ |𝑂𝑖 −𝑂|)2 (6)

The confidence index (𝑖𝑑) was accomplished by the product of cor-

relation (𝜌) and concordance (𝑑), and can be used as an indicator of 
estimators’ performance. Camargo and Sentelhas [3] proposed the clas-

sification of performance of estimators based on Table 3, which was also 
used by Soares et al. [22] and by Batista et al. [2] as a methodological 
3

strategy to analyze their results.
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Table 3

𝑖𝑑 value classification.

𝑖𝑑 value Performance

> 0.85 Great

0.76 to 0.85 Very Good

0.66 to 0.75 Good

0.61 to 0.65 Median

0.51 to 0.60 Sufferable

0.41 to 0.50 Bad

< 0.40 Terrible

Table 4

Correlation matrix.

Ψ𝑎𝑚 PRI PSRI NDVI WBU ARI1 CRI1 SIPI FRI Data

Ψ𝑎𝑚 1

PRI 0.27 1

PSRI -0.04 -0.19 1

NDVI 0.20 0.49 -0.24 1

WBU 0.04 -0.03 0.02 0.07 1

ARI1 -0.04 0.34 0.03 0.56 -0.11 1

CRI1 0.20 0.42 0.04 0.61 -0.18 0.53 1

SIPI 0.27 0.30 -0.08 0.60 0.08 0.07 0.46 1

FRI 0.10 0.05 0.02 0.25 -0.10 0.09 0.55 0.58 1

Date 0.22 0.02 -0.09 0.02 -0.38 0.01 0.13 0.09 0.08 1

Table 5

The range for each region of the 
electromagnetic spectrum.

Color Break

Violet 400 to 450 nm

Blue 451 to 520 nm

Green 521 to 570 nm

Red 571 to 700 nm

Yellow 681 to 740 nm

Orange 740 to 800 nm

3. Results and discussions

This section presents the results and discussions of the proposed clas-

sification and regression systems, and is divided into four subsections: 
feature selection; classifiers, estimators and comparative results.

3.1. Feature selection

Based on the procedures of performance analysis proposed in Sec-

tion 2.2, a correlation matrix is presented in Table 4. Overall, it rep-

resents the correlation matrix between all attributes including target 
(𝜓𝑎𝑚). Firstly, indices presenting the highest correlation values with the 
target were selected. The highest correlation values among attributes

were identified as redundancy occurrences and, therefore, they were 
discarded.

Based on the correlation results, PSRI, ARI1 and FRI indexes were 
eliminated, as they presented high redundancy and low relevance. The 
reflectance indices combine the hyper spectral reflectance into two or 
three wavelengths, which is simultaneously using a common range of 
the spectrum. The range considered for each region of the electromag-

netic spectrum is shown in Table 5.

Despite do not presenting redundancy with other characteristics, the 
WBU index was also removed, because it showed a low correlation with 
the target (𝜓𝑎𝑚). The water band index reflects the water absorption in 
the mesophyll and increases as a function of decreases in water content. 
However, coffee displays a high relative water content in the leaf (RWC) 
to retain a high volume of water under dehydration conditions, which 
impossibilities a correlation with the WBI index [19]. Therefore, the 
selected indices were PRI, NDVI, CRI1, and SIPI. The variable Date was 

also selected.
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Table 6

Confusion matrix of the best result with 100 interactions for ANN in %.

C1 C2 C3 C4 C5 C6 C7

C1 90.85 4.96 1.89 1.37 0.90 0.02 0.00

C2 2.18 95.51 0.38 1.54 0.26 0.13 0.00

C3 3.58 2.68 81.07 7.80 4.09 0.25 0.51

C4 15.35 4.18 22.32 23.72 31.16 3.25 0.00

C5 15.14 4.59 5.4 26.60 33.95 13.76 0.92

C6 1.92 3.84 1.92 13.46 30.76 26.92 21.15

C7 0.00 0.00 0.00 0.00 5.62 18.47 75.90

The indices PRI, SIPI and NDNI offer ways to quantify vegetation’s 
ability to use incident light for photosynthesis. The water deficit directly 
affects the reflectance properties of leaves, changes often occur in the 
visible spectral region rather than in the infrared because of the sen-

sitivity of chlorophyll to physiological disturbances. The correlations 
of NDVI, CRI and SIPI with 𝜓𝑎𝑚 may indicate that variations in wa-

ter potential cause changes in the contents of chlorophyll, carotenoids 
and in the relationship between these pigments, respectively. These 
changes may contribute to photoprotection, photosynthetic acclimation 
and photosynthetic efficiency in coffee plants, because the chlorophylls 
and carotenoids are part of the essential structures of the photosyn-

thetic antenna, and help stabilize chlorophyll-protein complexes. Fur-

thermore, the PRI index indicates that changes in water potential in 
coffee plants are associated with the photosynthetic and fluorescence 
parameters of chlorophyll. Therefore, PRI, SIPI and NDNI could be used 
as a reliable indicator of water deficit as an abiotic factor limiting pho-

tosynthesis.

3.2. Classifiers

In this section, the results obtained with the proposed classifiers are 
presented and discussed.

The number of neurons in each layer of the artificial neural network, 
and the corresponding activation function was found experimentally by 
using the training data set. It was found that the best neural network 
configuration has five input nodes, five neurons in the hidden layer 
and seven output neurons, each one representing a class. The confusion 
matrix shown in Table 6 was created containing the best-defined archi-

tecture resulted of 100 interactions. It is possible to observe that classes 
C1, C2, C3 and C7, that are the classes with higher number of data, 
presented the best hits.

A solution to improve the ANN performance for classes C4, C5 and 
C6, which present a lower number of occurrences, is to balance the 
data distribution between classes. The lower number of occurrences in 
classes C4, C5 and C6 is justified by the fact that there was less oc-

currence of water potential lower than -3 MPa under field conditions 
during the studied period (year). Except for 2014, when there was a 
low rainfall, which contributed to enriching the number of occurrences 
in class 7. In addition, another alternative would be the samples quan-

tity rebalance by using other approaches to perform data augmentation, 
like the Synthetic Minority Oversampling Technique (SMOTE) [5].

Considering the confusion matrix of the best result for the ANN 
model (Table 6), the index Kappa was calculated according to Equation 
(2). This presented a value of 67.21%, thereby labeling the classifier as 
“very good” (Table 2).

For decision tree construction, 100 interactions were accomplished 
for each pruning configuration. The confusion matrix of the best result 
is shown in Table 7. In this case, the Kappa index presented a value of 
71.07%, which categorize the classifier as “very good” (Table 2). Thus, 
it places in the same category as the classifier based on artificial neural 
4

networks, despite the higher Kappa coefficient.
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Table 7

Confusion matrix of the best result with 100 interactions for Decision Tree in 
%.

C1 C2 C3 C4 C5 C6 C7

C1 91.57 4.82 1.64 1.20 0.76 0.00 0.00

C2 5.00 93.11 1.44 0.00 0.44 0.00 0.00

C3 2.69 3.09 87.33 3.50 3.36 0.00 0.00

C4 9.42 0.67 14.81 39.39 32.99 2.69 0.00

C5 12.30 3.17 9.52 31.34 35.71 6.74 1.19

C6 0.00 0.00 0.00 0.00 17.54 59.64 22.80

C7 0.00 0.00 0.00 0.00 0.00 17.62 82.38

Fig. 1. Dispersion of the estimated data in the ANN model.

3.3. Estimators

To define the number of neurons in the layers of the ANN used for 
regression, besides determining the best activation functions, a similar 
procedure to the previously used for the classifier was performed, in 
which 100 runnings were carried out. For the construction of decision 
tree regression, 100 runnings were also performed for each pruning 
configuration.

Figs. 1 and 2 present the real water potential values versus the 
estimated ones (for one of the 100 runnings) and illustrate the data dis-

persion in relation to the ideal line, for the ANN and the decision tree 
models, respectively. Note that there are more values of water potential 
in the range 0 to 3 MPa. Also, it is in this range that the greatest disper-

sions between the actual and estimated values occur. The more distant 
from the line, the greater the errors associated with the observed points. 
It is noted that the ANN model presents more data dispersion for small 
values of water potential while the decision tree model presents a rela-

tively constant dispersion for different values of water potential.

Overall, the performance of both estimators (ANN and decision tree) 
can be considered satisfactory, since the ANN model was classified 
as “Great” and the decision tree as “Very Good” by the criterion of 
Camargo and Sentelhas [3], with a low standard deviation in 100 inter-

actions, which demonstrates the constancy of the results (see Table 8). 
Moreover, the mean relative error (ERM) of 7.27 ± 4.44% and 3.85 ±
4.27%, for the ANN and decision tree models, respectively, reinforced 
the integrity of the results.

3.4. Comparative results

In order to define the best technique, Tables 8 and 9 were set up, 
which expose the best results obtained in the regression and classifi-
cation systems, respectively. 𝜎𝐸𝑅𝑀 in Table 8 represents the standard 
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Fig. 2. Dispersion of the estimated data in the decision tree model.

Table 8

Results for the regression systems based on Artificial Neural Networks (ANN) 
and Decision Trees (DT).

Technique ERM 𝜎𝐸𝑅𝑀 𝜎𝑖𝑑 𝜇𝑖𝑑 𝑖𝑑𝑚𝑎𝑥

ANN 7.27 4.44 0.0739 0.8550 0.9544

DT 3.85 4.27 0.0909 0.8299 0.9443

Table 9

Results for the classification systems based on Artificial Neural Networks (ANN) 
and Decision Trees (DT).

𝐸𝑄𝑀 𝜎𝐸𝑄𝑀 ↓𝐸𝑄𝑀 𝐻𝑖𝑡 P.C. P.C. (%)

ANN 0.1203 0.0523 0.0055 87.9% 4 23.7%
DT 0.1113 0.0255 0.0547 88.8% 5 35.7%

deviation of the ERM, 𝜇𝑖𝑑 the average confidence index, 𝜎𝑖𝑑 its standard 
deviation, and 𝑖𝑑𝑚𝑎𝑥 represents the highest confidence index obtained.

Based on the analysis presented in Table 8, it is observed that the 
decision tree model displayed lower values of both mean relative er-

ror and relative error deviation, and it can be justified by the fact that 
decision trees only return fixed values, and its estimation is performed 
via classification into many classes, thus preventing intermediate val-

ues, which lead to smaller deviations in the estimated values. However, 
the artificial neural network showed a higher average confidence index, 
as compared to observed in decision tree, which demonstrates its better 
constancy. Finally, the ANN model presented a higher confidence index 
in its best interaction as compared to that accomplished by the decision 
tree at the same circumstances. These results demonstrate a greater ca-

pacity for generalization of ANN, for the regression problem, listing it 
as the best tool for this scenario, considering the confidence index as 
the performance evaluation criterion.

For the classification results shown in Table 9, 𝐸𝑄𝑀 represents the 
mean square error, ↓ 𝐸𝑄𝑀 is the smallest 𝐸𝑄𝑀 obtained; 𝜎𝐸𝑄𝑀 is 
the standard deviation of 𝐸𝑄𝑀 , 𝑃𝐶 represents the “Worst Class”, 𝑃𝐶
(%) is its corresponding percentage of hits, and 𝐻𝑖𝑡 refers to the global 
hit percentage. Based on Table 9, it is possible to infer that the deci-

sion tree was superior to the neural network in almost every aspects, 
except for the smallest mean square error of a single interaction, which 
corresponded to 0.0055 and 0.0547 for ANN and decision tree, respec-

tively. This is likely justified by the singularities of the samples used in 
the tests of this specific analysis, not necessarily reflecting the superior-
5

ity of the neural network, since, as already mentioned, its performance 
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was inferior regarding both the average value and standard deviation 
of the 𝐸𝑄𝑀 .

Another point considered when these results are analyzed is the per-

centage of correct answers in the worst class. As observed, this value 
was higher for the decision tree, evidencing their greater generaliza-

tion capacity for this case, which corroborates other results presented 
in Table 9.

Considering the percentage of correct answers, the average of 𝐸𝑄𝑀
in the interactions, and its standard deviation, no significant differences 
were observed, but the decision tree remained also slightly better in 
such aspects. Finally, when Kappa coefficient is observed, it is possible 
to note that the decision tree maintained as superior (71.07% against 
67.21% of the ANN classifier), justifying its choice as the best classifi-

cation methodology in comparison with the ANN-based one.

4. Conclusions

Leaf water potential is one of the main parameters used to assess 
water relations in plants by revealing levels of tissue hydration. In this 
paper, we exploited indices of leaf reflectance extracted form a mini-

spectrometer to estimate the water potential of coffee plants by using 
artificial neural networks and decision trees approaches. In addition, we 
also investigated the capability of these approaches in acting as classi-

fiers, by changing the problem from estimation to classification. To do 
this, the leaf water potential values were segmented into clusters.

As the study was carried out in different places in terms of climatic 
conditions (Santo Antônio do Amparo city – region with a shorter dry 
period and Diamantina city – a region with a longer dry period), the 
data include wide ranges of water potential that allow the creation 
of generic models for different regions. In addition, the study period 
comprised varied climatic conditions (from 2014 to 2018 – a long and 
representative set of coffee crops), including an extreme drought event 
that occurred in 2014. In addition, the proposed models take advantage 
of being simple, since only four variables are required (PRI, NDVI, CRI1, 
SIPI and Date) to perform the water potential estimation/classification.

The results showed the slightly superiority of the neural network 
model for the estimation task and of the decision tree model for the 
classification task. Thus, it allows their application in similar problems 
(as in this study) according to the adopted approach (classification or 
estimation/regression).

It is worth considering that decision trees facilitate the understand-

ing of operations that underlie the results, since they are composed of 
“If, Then” rules. On the other hand, the artificial neural networks can 
even be easily replicated using a sequence of sums and multiplications 
after being trained. They are considered a black box system in which it 
is unknown the pathway to the results. Therefore, such characteristics 
must be considered during the choice of the methodology to be used, as 
the results did not show major differences in performance.

For future works, the authors intend to implement the developed ap-

proaches in embedded systems in association with a mini-spectrometer, 
which may provide an indirect measure of water potential of coffee 
plants based only on the observed spectral indices, thus not requiring 
Scholander pressure chambers. Also, we intend to exploit other ma-

chine learning methods, like support vector machines, gaussian process 
regression, and deep learning-based algorithms, which have been ex-

tensively used for classification and regression purposes [7,11].

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Data availability
Data will be made available on request.



Smart Agricultural Technology 4 (2023) 100213P.H. Nunes, E.V. Pierangeli, M.O. Santos et al.

Acknowledgement

The project team thanks National Council for Scientific and Tech-

nological Development – CNPq, FAPEMIG, CAPES, Consórcio Pesquisa 
Café and INCT Café for their support.

References

[1] J. Barnes, L. Balaguer, E. Manrique, S. Elvira, A. Davison, A reappraisal of the use 
of dmso for the extraction and determination of chlorophylls a and b in lichens and 
higher plants, Environ. Exp. Bot. 32 (2) (1992) 85–100.

[2] L.A. Batista, R.J. Guimarães, F.J. Pereira, G.R. Carvalho, E.M.d. Castro, Leaf 
anatomy and water potential in the coffee cultivars tolerance to water stress, Rev. 
Ciênc. Agron. 41 (09 2010) 475–481.

[3] A. Camargo, P. Sentelhas, Performance evaluation of different potential evapotran-

spiration estimating methods in the state of São Paulo, Brazil, Rev. Bras. Agromete-

orol. 5 (01 1997) 89–97.

[4] L. Caturegli, S. Matteoli, M. Gaetani, N. Grossi, S. Magni, A. Minelli, G. Corsini, D. 
Remorini, M. Volterrani, Effects of water stress on spectral reflectance of bermuda-

grass, Sci. Rep. 10 (1) (2020) 15055.

[5] N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, Smote: synthetic minority 
over-sampling technique, J. Artif. Intell. Res. 16 (2002) 321–357.

[6] J. Cohen, A coefficient of agreement for nominal scales, Educ. Psychol. Meas. 20 (1) 
(1960) 37–46.

[7] B. Daryayehsalameh, M.A. Ayari, A. Tounsi, A. Khandakar, B. Vaferi, Differentiation 
among stability regimes of alumina-water nanofluids using smart classifiers, Adv. 
Nano Res. 12 (5) (2022) 489–499.

[8] S. Elsayed, S. El-Hendawy, M. Khadr, O. Elsherbiny, N. Al-Suhaibani, Y.H. Dewir, 
M.U. Tahir, M. Mubushar, W. Darwish, Integration of spectral reflectance indices 
and adaptive neuro-fuzzy inference system for assessing the growth performance 
and yield of potato under different drip irrigation regimes, Chemosensors 9 (3) 
(2021).

[9] EMBRAPA, Café, https://www .embrapa .br /busca -de -noticias /-/noticia /77921739 /
faturamento -das -lavouras -dos -cafes -do -brasil -alcanca -r -56 -bilhoes -em -2022, 2023. 
(Accessed 9 March 2023).

[10] J. Gamon, J. Peñuelas, C. Field, A narrow-waveband spectral index that 
tracks diurnal changes in photosynthetic efficiency, Remote Sens. Environ. 
41 (1) (1992) 35–44, https://doi .org /10 .1016 /0034 -4257(92 )90059 -S, https://

www .sciencedirect .com /science /article /pii /003442579290059S.

[11] A. Garg, P. Aggarwal, Y. Aggarwal, M. Belarbi, H. Chalak, A. Tounsi, R. Gulia, Ma-

chine learning models for predicting the compressive strength of concrete containing 
nano silica, Comput. Concr. 30 (1) (2022) 33–42.

[12] L. Genc, M. Inalpulat, U. Kizil, M. Merik, S.E. Smith, M. Mendes, Determination of 
water stress with spectral reflectance on sweet corn (Zea mays L.) using classification 
tree (CT) analysis, Photochem. Photobiol. 100 (1) (10 2013) 81–90.

[13] S. Haykin, Neural Networks and Learning Machines, 3rd edición, Prentice Hall, New 
York, 2008.

[14] W. Kong, W. Huang, X. Zhou, Remote estimation of carotenoid/chlorophyll ratio in 
vertical layers using canopy multi-angle spectral data, in: 2016 Fifth International 
Conference on Agro-Geoinformatics (Agro-Geoinformatics), July 2016, pp. 1–5.

[15] D.A. Maciel, V.A. Silva, H.M.R. Alves, M.M.L. Volpato, J.P.R.A.d. Barbosa, V.C.O.d. 
Souza, M.O. Santos, H.R.d.O. Silveira, M.F. Dantas, A.F.d. Freitas, G.R. Carvalho, J. 
Oliveira dos Santos, Leaf water potential of coffee estimated by landsat-8 images, 
PLoS ONE 15 (3) (03 2020) 1–13.

[16] M.N. Merzlyak, A.A. Gitelson, O.B. Chivkunova, V.Y. Rakitin, Non-destructive opti-

cal detection of pigment changes during leaf senescence and fruit ripening, Physiol. 
Plant. 106 (1) (1999) 135–141.

[17] M.N. Merzlyak, A.E. Solovchenko, A.I. Smagin, A.A. Gitelson, Apple flavonols dur-

ing fruit adaptation to solar radiation: spectral features and technique for non-

destructive assessment, J. Plant Physiol. 162 (2) (2005) 151–160.

[18] I. Pôças, T.A. Paço, P. Paredes, M. Cunha, L.S. Pereira, Estimation of actual crop co-

efficients using remotely sensed vegetation indices and soil water balance modelled 
data, Remote Sens. 7 (3) (2015) 2373–2400.

[19] J. Penuelas, J. Gamon, A. Fredeen, J. Merino, C. Field, Reflectance indices associated 
with physiological changes in nitrogen- and water-limited sunflower leaves, Remote 
Sens. Environ. 48 (2) (1994) 135–146.

[20] J.R. Reyes, J.S. Bohórquez, W.I. Alama, Hyperspectral analysis based anthocyanin 
index (ari2) during cocoa bean fermentation process, in: En: 2015 Asia-Pacific Con-

ference on Computer Aided System Engineering, July 2015, pp. 169–172.

[21] L. Serrano, C. González-Flor, G. Gorchs, Assessment of grape yield and composition 
using the reflectance based water index in Mediterranean rainfed vineyards, Remote 
Sens. Environ. 118 (2012) 249–258.

[22] F.C. Soares, A.D. Robaina, M.X. Peiter, J.L. Russi, G.A. Vivian, Artificial neural net-

works to estimate soil water retention, Rev. Ciênc. Rural 44 (2) (2014) 293–300.

[23] S. Theodoridis, K. Koutroumbas, Pattern Recognition, fourth edition, Academic 
Press, 2009.

[24] R. Tosin, I. Pôças, H. Novo, J. Teixeira, N. Fontes, A. Graça, M. Cunha, Assessing 
predawn leaf water potential based on hyperspectral data and pigment’s concentra-

tion of vitis vinifera l. In the Douro wine region, Sci. Hortic. 278 (2021) 109860.

[25] C. Zhang, E. Pattey, J. Liu, H. Cai, J. Shang, T. Dong, Retrieving leaf and canopy 
water content of winter wheat using vegetation water indices, IEEE J. Sel. Top. Appl. 
Earth Obs. Remote Sens. 11 (1) (2018) 112–126.
6

http://refhub.elsevier.com/S2772-3755(23)00043-6/bib20C932C1F2681D87CAAB4F0DFEFD77CDs1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib20C932C1F2681D87CAAB4F0DFEFD77CDs1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib20C932C1F2681D87CAAB4F0DFEFD77CDs1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bibA816D2BA18E9ECE6280911773BEC5987s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bibA816D2BA18E9ECE6280911773BEC5987s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bibA816D2BA18E9ECE6280911773BEC5987s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib6C05E5699ABD32A1F9647B0449A5C94As1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib6C05E5699ABD32A1F9647B0449A5C94As1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib6C05E5699ABD32A1F9647B0449A5C94As1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bibF44A857E53673D32B7D3F561C6F8220As1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bibF44A857E53673D32B7D3F561C6F8220As1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bibF44A857E53673D32B7D3F561C6F8220As1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib81312E2C9E085FD70ED30AE61F765D38s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib81312E2C9E085FD70ED30AE61F765D38s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib556793D7BE4AC298F65D3B9E189EBCABs1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib556793D7BE4AC298F65D3B9E189EBCABs1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib18CBB814A60C2D6EAF6B00E876979216s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib18CBB814A60C2D6EAF6B00E876979216s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib18CBB814A60C2D6EAF6B00E876979216s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bibF71825866F10FFE83C1CE4EAC7A0B1F8s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bibF71825866F10FFE83C1CE4EAC7A0B1F8s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bibF71825866F10FFE83C1CE4EAC7A0B1F8s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bibF71825866F10FFE83C1CE4EAC7A0B1F8s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bibF71825866F10FFE83C1CE4EAC7A0B1F8s1
https://www.embrapa.br/busca-de-noticias/-/noticia/77921739/faturamento-das-lavouras-dos-cafes-do-brasil-alcanca-r-56-bilhoes-em-2022
https://www.embrapa.br/busca-de-noticias/-/noticia/77921739/faturamento-das-lavouras-dos-cafes-do-brasil-alcanca-r-56-bilhoes-em-2022
https://doi.org/10.1016/0034-4257(92)90059-S
https://www.sciencedirect.com/science/article/pii/003442579290059S
https://www.sciencedirect.com/science/article/pii/003442579290059S
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib5F33344223D65441595EEC6F4ACEBFE9s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib5F33344223D65441595EEC6F4ACEBFE9s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib5F33344223D65441595EEC6F4ACEBFE9s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib7B441C1FAAE400DD892C2E730B159713s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib7B441C1FAAE400DD892C2E730B159713s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib7B441C1FAAE400DD892C2E730B159713s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib1C2B825BE98CC785BB131195B1692CE7s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib1C2B825BE98CC785BB131195B1692CE7s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib45F48A2B3043D55F82D91DEA527BF9F9s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib45F48A2B3043D55F82D91DEA527BF9F9s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib45F48A2B3043D55F82D91DEA527BF9F9s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib7B63050E30BFE07AF61704B487FB93A3s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib7B63050E30BFE07AF61704B487FB93A3s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib7B63050E30BFE07AF61704B487FB93A3s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib7B63050E30BFE07AF61704B487FB93A3s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib4E123828652C161261D7E3FFA82BC95Ds1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib4E123828652C161261D7E3FFA82BC95Ds1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib4E123828652C161261D7E3FFA82BC95Ds1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib680F07B9EEA64858B79681A2003C0011s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib680F07B9EEA64858B79681A2003C0011s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib680F07B9EEA64858B79681A2003C0011s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib1A3A08C51E35D70F4414CF8891CDC511s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib1A3A08C51E35D70F4414CF8891CDC511s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib1A3A08C51E35D70F4414CF8891CDC511s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bibD14DDDE3EB59B4281F44EEB74BD1578Bs1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bibD14DDDE3EB59B4281F44EEB74BD1578Bs1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bibD14DDDE3EB59B4281F44EEB74BD1578Bs1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bibEAB1547140D5B7D0E20CD6B9CC0ED629s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bibEAB1547140D5B7D0E20CD6B9CC0ED629s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bibEAB1547140D5B7D0E20CD6B9CC0ED629s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib08AB1BDFC722CE33F62E4347D9FE6FBEs1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib08AB1BDFC722CE33F62E4347D9FE6FBEs1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib08AB1BDFC722CE33F62E4347D9FE6FBEs1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib5412D209FBE2D44BFCCD5BB2ABB60A1Ds1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib5412D209FBE2D44BFCCD5BB2ABB60A1Ds1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bibB6B54F1462CE7FF2C9B3D6E3C1BE5476s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bibB6B54F1462CE7FF2C9B3D6E3C1BE5476s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib8EE78C8E3710925FBF76DFF48D43C724s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib8EE78C8E3710925FBF76DFF48D43C724s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bib8EE78C8E3710925FBF76DFF48D43C724s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bibA9D2AEB984C0586E21EE089214AD9A78s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bibA9D2AEB984C0586E21EE089214AD9A78s1
http://refhub.elsevier.com/S2772-3755(23)00043-6/bibA9D2AEB984C0586E21EE089214AD9A78s1

	Predicting coffee water potential from spectral reflectance indices with neural networks
	1 Introduction
	2 Methodology
	2.1 Database
	2.2 Pre-processing
	2.3 Performance evaluation metrics

	3 Results and discussions
	3.1 Feature selection
	3.2 Classifiers
	3.3 Estimators
	3.4 Comparative results

	4 Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgement
	References


