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Abstract: Regenerative agricultural practices are a suitable path to feed the global population.
Integrated Crop–livestock systems (ICLSs) are key approaches once the area provides animal and
crop production resources. In Brazil, the expectation is to increase the area of ICLS fields by 5 million
hectares in the next five years. However, few methods have been tested regarding spatial and
temporal scales to map and monitor ICLS fields, and none of these methods use SAR data. Therefore,
in this work, we explored the potential of three machine and deep learning algorithms (random
forest, long short-term memory, and transformer) to perform early-season (with three-time windows)
mapping of ICLS fields. To explore the scalability of the proposed methods, we tested them in two
regions with different latitudes, cloud cover rates, field sizes, landscapes, and crop types. Finally,
the potential of SAR (Sentinel-1) and optical (Sentinel-2) data was tested. As a result, we found that
all proposed algorithms and sensors could correctly map both study sites. For Study Site 1(SS1), we
obtained an overall accuracy of 98% using the random forest classifier. For Study Site 2, we obtained
an overall accuracy of 99% using the long short-term memory net and the random forest. Further, the
early-season experiments were successful for both study sites (with an accuracy higher than 90% for
all time windows), and no significant difference in accuracy was found among them. Thus, this study
found that it is possible to map ICLSs in the early-season and in different latitudes by using diverse
algorithms and sensors.

Keywords: regenerative agriculture; transformer; LSTM; random forest; multisource; ICLS

1. Introduction

Currently, regenerative agriculture practices are essential for scaling up food pro-
duction to feed the growing world population while avoiding substantial environmental
impacts [1]. Integrated crop–livestock systems (ICLSs) are a common practice of regenera-
tive agriculture with synergy between crops and livestock [2]. Based on a spatial–temporal
integration of crop and livestock, ICLSs are a promising alternative to reaching sustainable
food production through land-use diversification. Thus, it aligns with the Sustainable
Development Goal (SDGs): food security (SDG2—Zero Hunger), the mitigation of envi-
ronmental impacts (SDG13—Climate Action), and land conservation (SDG15—Life on
Land) [3,4].

Due to the growing adoption of ICLSs in Brazil, driven by the Plan for Low Carbon
Emission in Agriculture—ABC Plan and ABC Plan+, a systematic monitoring system is
needed to identify new areas and monitor the existing sites. However, the main challenge
in remotely identifying and monitoring this type of practice is the highly dynamic nature of
the system, which results from the succession of different land uses and management [5].
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The use of remote sensing data for agricultural monitoring increased significantly
with the growing availability of high temporal, spatial, and spectral data [6]. Previous
studies succeeded in identifying ICLSs using optical data [7–9] once it presented detailed
information about the vegetation canopy. However, some factors decrease its applicability
for agricultural monitoring, such as the high cloud coverage in tropical regions and high
rates of pixel saturation [10–14]. Thus, synthetic aperture radar (SAR) data is an alternative
for tropical regions to use in land-use monitoring due to its all-weather observation capabil-
ities [15–17]. In addition, the target orientation affects the SAR signal, generating additional
information about the physical structure based on different signal polarizations [18].

Remote sensing satellite image time series (SITS) are efficient ways to map and monitor
areas with ICLS [19], mainly due to the high temporal dynamics of these systems. However,
there has been no detailed investigation of the optical and SAR data used to identify ICLSs.
Moreover, the studies have only dealt with a time window composed of the entire crop
season as input to reduce the high complexity of the time series [20]. These approaches
can limit the application of the methodologies for in-season purposes while consuming
more time and resources [21]. According to the annual report of the European Commission
for agricultural monitoring, the success of agricultural monitoring consists of accurately
mapping the early season of crops. [22–24]. Having this information before the end of the
season could be essential for the decision-making process [25]. Nonetheless, differentiating
crops without an entire season’s time series could be challenging, mainly when crops share
the same growing season [26].

In this context, deep learning algorithms have been considered a breakthrough ap-
proach in the research field of remote sensing. They represent the state-of-the-art for
crop-type mapping. Deep architectures, such as recurrent neural networks—RNN and
transformers, have recently attracted broad attention for the handling of highly complex
information in time series analyses. They tend to perform better with reduced data. The
RNNs are capable of dealing with data sequences in such a way that the output of the
previous time-step is the input data for the current step [27], allowing the architecture to
handle temporal problems [28]. Vaswani et al. [29] proposed the transformer architecture
for natural language processing based on a sequential analysis. It can combine multiple
self-attention layers with short connections [30]. The self-attention network can handle
temporal data and manage complex inputs. However, there is very little published research
on testing this network for crop mapping [31–33] although promising results have been
achieved for a small number of studies.

In this context, this study explores the potential of Sentinel-1 and Sentinel-2 data, deep
and machine learning algorithms, and time windows in different study areas to map ICLSs,
addressing the following research questions: (i) is it suitable to perform an ICLS mapping
in different site locations with a common methodology? (ii) How do sensor type, algorithm
architecture, and time window size affect classification accuracy? Thus, the objectives of
this study were to map ICLS fields at two different site locations, using SAR and optical
data, deep learning algorithms, and early-season-based detection, and to assess significant
differences in the obtained accuracy in each location, sensor, algorithm, and time window.

2. Materials and Methods
2.1. Study Sites

Two study sites were selected to evaluate the performance of different sensors and
algorithms to map the early-season of regenerative agricultural practices. In this study, we
focused on the practice of integrating crops and livestock in a dynamic system. The ICLS
has three main objectives, (i) reduce the soil cyclical nutrient loss and consequently increase
plant productivity, (ii) organize agricultural practices in such a way that contributes to
the ecosystem services, and (iii) increase resilience from an economic and environmental
point of view [34]. The integrated system could be composed of agriculture, forestry, and
livestock activities, and those activities could occur as intercropping, crop rotation, or
crop succession [35]. In Brazilian agriculture, the main crops usually present in ICLSs
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are soy, corn, and rice, typically followed or consorted by pasture [36]. Thus, the broad
range of possibilities regarding the ICLS leads to a very dynamic system with different
configurations depending on the approach selected by the farmer. The study sites were
dispersed across the Brazilian territory and presented distinct edaphoclimatic conditions
and crop types. For both study sites, the one year season period ranged from September to
August.

Study Site 1 (SS1) was a farm located in the western portion of Sao Paulo state. It
had surrounding fields in the municipality of Caiuá, at coordinates 21◦36′26.3′′S and
51◦51′57.9′′W (Figure 1a). The property had an area of 2033.15 hectares, and the soils were
predominately sandy loam Ultisols. The region has a climate Aw type, corresponding
to tropical climate conditions with a dry season in the winter (June–August) and a rainy
season in the summer (December–April) [37]. The average temperature of the region is
24.1 ◦C, and the average annual precipitation is 1496 mm [37].
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pattern, the Savitzky–Golay filter was applied. 

Figure 1. (a) Location of study sites and ground reference points; (b) frequency of Sentinel-1 and
Sentinel-2 images used and precipitation rates over the season by study site; (c) NDVI temporal
signatures of ICLS samples in Mato Grosso and Sao Paulo states, Brazil. The NDVI values were
extracted from a sampled pixel inside an ICLS field in each study site. To better illustrate the pattern,
the Savitzky–Golay filter was applied.

Study Site 2 (SS2) was located in the north portion of Mato Grosso state and comprised
the Santa Carmem and Sinop municipalities at coordinates 11◦55′9.40′′S and 55◦ 6′16.52′′W
(Figure 1a). According to the Koppen classification, the region has an Am type (short
dry season) [37]. The average temperature of the region is 30 ◦C, and the average annual
precipitation ranges from 1800 to 2300 mm and is considered the wettest portion of the Aw
climate in Brazil [37].

At SS1, the process of implementing the ICLS started in 2013 [2]. According to the
farm owners, the main objectives for the implementation of the ICLS were the recovery
and improvement of pastures with a cost reduction, the conservation of soil, increasing the
amount of soil organic matter, having productive pastures in the winter (dry), reducing the
consumption of animal feed, and diversifying the production system and invoicing/income.
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In this ICLS, soybean and forage species (Brachiaria and Panicum) were inter-cropped in the
first and second seasons.

In the SS2, some farms had been producing cattle since 1989. Since 2004, some
producers adopted ICLS, which resulted in a 3.7% higher productivity than the producers
who used a mono-culture approach [38]. For SS2, the ICLS fields were composed of corn,
followed by pasture, or soybeans, followed by pasture. Figure 1c exposes the ICLS field
behavior in SS1 and SS2. In SS1, the crop season was preceded and succeeded by pasture
with grazing, while the crop season in SS2 was preceded by fallow and succeeded by
pasture with grazing.

According to the National Supply Company (CONAB), the first season corresponded
to the summer season (Oct–Mar), and the second season corresponded to the winter season
(Apr–Sep) for both sites [39].

The idea to use two study sites goes beyond exploring the method’s flexibility for
different study areas. Both locations have different crop types. Furthermore, it is essential
to highlight that SS1 is very different from SS2 in terms of precipitation rates (Figure 1b),
directly impacting the clear optical image acquisition and the SAR backscatter. Finally, the
two study sites have different sizes of fields. The fields of SS1 were generally small (mean
size of 1.13 hectares). In contrast, since SS2 mainly comprised agricultural areas (cash crops)
instead of pasture, it was less segmented and had larger fields (mean size of 10.91 hectares).

2.2. Field Data Collection

Figure 1a illustrates the ground reference data distribution for both areas. For both
study sites, a field survey was conducted, the fields were visited, and the ground truth label
was annotated and geo-referenced. For SS1, 1205 points were collected for the 2019/2020
season. In SS2, 1118 points were collected for the 2020/2021 season. SS1 contained the
classes: ICLS (20.7% of samples), native forest (35.4% of samples), pasture (25% of samples),
pasture consortium (7.5% of samples), eucalyptus (6.7% of samples), and wet areas (3.9%
of samples). SS2 had four classes: ICLS (4.4% of samples), native forest (68% of samples),
pasture (13.4% of samples), and double crop (14.1% of samples). We highlight that, for both
study sites, the data are imbalanced.

2.3. Remote Sensing Data Collection and Preprocessing

Images from the Sentinel-1 C-band SAR and Sentinel-2 multispectral instrument (MSI)
satellites, freely available at the Copernicus Open Access Hub, were used to carry out this
study. For each study site, the acquisition period was the same as the ground truth data
collection. Thus, the acquisition period was from September to August (2019–2020 for SS1,
and 2020–2021 for SS2).

The image preprocessing for Sentinel-1 was carried out by the Sentinel Application
Platform (SNAP) software offered by the European Space Agency (ESA). The Sentinel-1
constellation comprises two satellites, Sentinel-1 A and Sentinel-1 B, both of which use
the C band (in the 5.495 GHz frequency) with a spatial resolution of 10 m and a temporal
resolution of 12 days. For this study, we used images from the wide interferometric (IW)
acquisition mode, which provides dual polarization (vertical vertical—VV and vertical
horizontal—VH) with a processing Level 1 (ground range detected—GRD). First, the
images were calibrated to obtain the backscatter coefficients. The noise reduction Lee filter
(5 × 5) was then applied. Finally, a terrain correction was performed to correct geometric
distortions. The backscatter coefficients were converted to decibels (Db) to facilitate the
analysis of the results.

Regarding the preprocessing of Sentinel-2 products: they were obtained at Level- 1C
(the top of atmosphere reflectance). To obtain the surface reflectance, the atmospheric
correction was conducted using the Sen2Cor algorithm [40]. The product radiometric
resolution is 12 bits, with a swath width of 290 km and a wavelength that ranges from
443 nm to 2190 nm. The spatial resolution varies from 10 m to 60 m. All bands with a spatial
resolution coarser than 20 m were resampled to 10 m (nearest neighbor) and cropped to the
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area of interest. For SS1, images with cloud cover were removed, since only a few images
needed to be discarded. On the other hand, for SS2, the scene classification (SC) product
from the Sen2Cor package was used to mask cloud and shadow since less than 10% of
images would be available with 0% cloud cover [40].

In sequence, vegetation indices are frequently described as sensitive to cropland
differentiation, in addition to the fact that they bring essential information about crop
phenology and biomass [41]. Thus, the following vegetation indices were calculated for
Sentinel-1 and Sentinel-2 images (Table 1).

The Sentinel-2 cited indexes were chosen considering the literature review, which
highlighted their potential for crop mapping [8,42]. Regarding the indexes from Sentinel-1,
there was an increasing use of radar vegetation indexes for crop-type mapping [18,43].

Table 1. Sentinel-1 and Sentinel-2 indexes description.

Sensor Index Equation Reference

Sentinel-2 Normalized Difference Vegetation
Index—NDVI (NIR − RED)/(NIR + RED)

(NIR − REDEDGE)/(NIR + REDEDGE)
(2.5 × NIR − RED)/(NIR + 6RED − 7.5BLUE) + 1)

(REDEDGE/RED) (VH × 4)/(VH + VV)
VH/VV

[44]

Sentinel-2 Normalized Difference Red Edge
Index—NDRE [45]

Sentinel-2 Enhanced Vegetation Index—EVI [46]
Sentinel-2 RED EDGE 1 [47]
Sentinel-1 Radar Vegetation Index—RVI [48]
Sentinel-1 VH and VV ratio [49]

In addition to the indexes, from Sentinel-2, bands 2 (blue), 3 (green), 4 (red), 6 (red edge
2), 8 (NIR), and 10 (SWIR) were used as inputs. For Sentinel-1, the VV and VH polarizations
were used as inputs (We used Band 6 of the Sentinel 2 data as REDEDGE).

2.4. Multitemporal Segmentation

The crop-type mapping was conducted at the object level. Thus, segments were
generated for both study sites segments. The segments were generated based on the simple
non-iterative clustering (SNIC) algorithm [50], which is freely available on the Google Earth
Engine Platform [51]. The SNIC is a variation of the super-pixel algorithm. It efficiently
groups pixels with similar spectral values and recognizes individual objects [50,52]. For
each study site, the temporal interval used to run the algorithm was the same as the one
used to acquire ground truth and image data. Both study sites had a dynamic, spatial crop
distribution that varied through the season. To address this problem, the temporal median
values of NDVI were used. We ran the SNIC algorithm using the following parameters:
connectivity: 8; neighborhood size: 80; size: 3; and scale: 5. According to [53], this approach
is feasible for obtaining a multitemporal segmentation. Further, for all the available images,
the median and standard deviation values for each band and index described in Table 1
were calculated for each polygon and used together as input for the machine and deep
learning algorithms.

2.5. Machine and Deep Learning Algorithms

We evaluated three algorithms: the random forest (RF), long short-term memory
(LSTM) neural network, and transformer (TF) network. The last two are considered deep
learning methods, while RF is a machine learning algorithm.

The RF is an ensemble learning algorithm based on decision trees composed of
(i) nodes (attributes); (ii) branches (possible attribute values); and (iii) leaves, which are
respon sible for identifying the labels for a classification data set [54]. The approach di-
vides the input data into different sets and generates a decision tree for each. Among the
advantages of RF, its fast processing speed and stability could be cited, in addition to its
easy implementation and robustness [55,56]. This classifier is considered well-established
and is broadly applied for crop identification based on satellite data [57,58].
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The LSTM neural network was chosen because of its capability to identify the partic-
ular temporal behavior of an ICLS [8]. The LSTM network was developed by [59] and is
continuously developing. The most straightforward architecture proposed by the authors
contains one input, one hidden, and one output layer. The hidden layer contains memory
cells and corresponding gate units [60,61]. Compared with custom RNNs, the main idea
behind LSTMs is that an adapted cell tends to detect long-term dependencies between
variables, in addition the fact that it converges faster than the usual RNNs [62]. The LSTM
cell comprises one main layer and the other three gate controllers.

In LSTM cells, there is a main layer that has the principal purpose of analyzing the
inputs (x) and the previous state (in the short-term), h(−1). The other three layers work as
gates and have binary outputs for opening and closing. Those values are generated through
logistic regression [62]. In this context, there is the so-called “forget gate” that controls
which parts of the long-term state should be forgotten [63]. Next is the input gate, which
controls which parts of the current input should be added to the long-term memory [63].
Finally, there is the output gate, which is responsible for usefully extracting information
from the current cell state for being presented as an output [63]. Thereby, we believe that
the LSTM’s particular approach tends to understand the correlation between the occurrence
of different crops in the same field (such as in the case of an ICLS), differentiating this from
pasture or double crop, for example. Additionally, considering the early-season crop-type
mapping experiment, which will be conducted in this study, LSTM already demonstrated
an ability to identify crops before the end of the season [64].

The transformer architecture is considered state-of-the-art for some applications [65]. It
has presented a high accuracy for crop-type mapping [66]. It comprises a series of encoder-
decoder structures, in which each encoder has self-attention, and normalization layers,
which are followed by a feed-forward net [29]. The self-attention layers aim to identify
the regions with the most relevant features and thus indicate that the model needs to pay
attention to them [29]. Furthermore, this model automatically inputs positional encoders
for each input. The concept of multi-head self-attention was implemented, allowing the
model to pay attention to different regions at the same time [67]. Garnot et al. [31] used
a multi-head, self-attention approach to identify winter and summer cereal seasons. This
approach was helpful for paying attention to different parts of the crop cycle. Thus, we
believe that the multi-head attention mechanism may be able to identify the difference
between sequential annual crops and annual crops consorted with the pastures [30]. Still,
the transformer may adapt its attention mechanism differently for each time window,
making it feasible to work well with the early-season approach.

For all different approaches, the dataset was partitioned into 70% for training, 10% for
validation, and 20% for testing. To avoid bias in the classification, we did not use polygons
from the same field in more than one sampling category. Furthermore, the test dataset
had never been seen before by the algorithm. To evaluate the potential of early-season
classification for ICLS at both study sites, we tested three time windows: (i) the entire
season (September to August), (ii) nine months of data (September to June), and (iii) seven
months of data (September to April).

For the RF, the default value of 1000 n tress was used. The architectures used for the
LSTM and Transformer models are illustrated in Figure 2.
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Finally, to deal with the imbalanced dataset, synthetic samples were generated us-
ing the synthetic minority oversampling technique (SMOTE) algorithm [68], with the
kneighbors parameter equal to eight.

2.6. Results Evaluation

For both study sites, we analyzed three groups of accuracy based on our method steps:
(i) sensor accuracy, (ii) algorithm accuracy, and (iii) time-window accuracy. To identify the
statistical significance of the difference among the groups, the Fisher test (F-test) was used
and the p-values were generated [69,70]. Thus, if the difference in the accuracy average was
at the 5%, level, it was considered significant. For the experiments conducted for this study,
the critical values of the F-distribution were F(1,35):4.121, F(1,16):4.49, and F(2,15):3.68 [71].
Therefore, when the F value was higher than its correspondent critical value F-value it was
considered that the statistical variation was meaningful. Further, some model predictions
were qualitatively evaluated by visual inspection.

3. Results

The results showed that there was a significant difference between accuracy in SS1
and SS2 (Figure 3a). The F value was the highest (39.3) when compared with all other F
values (Figure 3). This reinforces our hypothesis that both study sites were different even
with inputs from the same source, using the same time windows and architectures.
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3.1. Sensor Accuracy

Regarding the performance of both sensors, the overall accuracy of the optical data for
SS1 was 9% higher than using the SAR data as an input (Table 2). In contrast, for SS2, the
optical data produced an accuracy 1% higher than the SAR data (Table 2). For the ICLS,
the results based on Sentinel-2 data were 5% higher than the SAR data in SS1 and were the
same for SS2 (Table 2). This indicates that the ICLS accuracy difference between sensors is
relevant for SS1 (F value > 3.68) but not for SS2 (F value < 3.68) (Figure 3a,b).

The higher accuracy was achieved by Sentinel-2 for SS1, while the overall accuracy for
SS2 using Sentinel-1 was slightly better. However, the F1-scores for either sensor did not
show a clear difference. (Table 2).

For the early-season analysis, the time reduction did not affect the overall accuracy
of the Sentinel-1 and Sentinel-2 results (Table 2). For the target class, the mean Sentinel 1
accuracy increased with the size of the time window (0.93 for Sep–Aug; 0.91 for Sep–Jun;
and 0.89 for Sep–Apr). For Sentinel-2 products, the target class accuracy was not affected,
with the mean accuracy being 0.92 for the Sep–Aug period, 0.95 for Sep–Jun, and 0.93 for
Sep–Apr (Table 2).
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Table 2. Overall and ICLS-focused accuracy values for each study area, sensor, classifier, and
time interval.

Study Site Algorithm Sensor Time
Window

F1 Score—
Overall

Precision—
ICLS

Recall—
ICLS

F1
Score—ICLS

RF Sentinel—1 Entire Season 0.87 0.92 0.92 0.92
RF Sentinel—1 Sep–Jun 0.86 0.94 0.87 0.91
RF Sentinel—1 Sep–Apr 0.87 0.9 0.95 0.92
RF Sentinel—2 Entire Season 0.98 1.00 0.98 0.99
RF Sentinel—2 Sep–Jun 0.98 1.00 0.98 0.99
RF Sentinel—2 Sep–Apr 0.97 1.00 0.98 0.99

LSTM Sentinel—1 Entire Season 0.89 0.97 0.94 0.95
LSTM Sentinel—1 Sep–Jun 0.88 1.00 0.97 0.98

SS1 LSTM
LSTM

Sentinel—1
Sentinel—2

Sep–Apr
Entire Season

0.89
0.96

0.97
0.94

0.97
1.00

0.97
0.97

LSTM Sentinel—2 Sep–Jun 0.97 1.00 1.00 1.00
LSTM Sentinel—2 Sep–Apr 0.95 0.97 1.00 0.98

TF Sentinel—1 Entire Season 0.86 1.00 1.00 1.00
TF Sentinel—1 Sep–Jun 0.85 0.97 0.94 0.95
TF Sentinel—1 Sep–Apr 0.86 0.96 0.87 0.92
TF Sentinel—2 Entire Season 0.96 1.00 1.00 1.00
TF Sentinel—2 Sep–Jun 0.97 1.00 1.00 1.00
TF Sentinel—2 Sep–Apr 0.95 1.00 1.00 1.00

RF Sentinel—1 Entire Season 1.00 1.00 0.92 0.96
RF Sentinel—1 Sep–Jun 0.99 1.00 0.83 0.91
RF Sentinel—1 Sep–Apr 0.99 0.92 0.92 0.92
RF Sentinel—2 Entire Season 0.98 0.9 0.75 0.82
RF Sentinel—2 Sep–Jun 0.99 0.92 1.00 0.96
RF Sentinel—2 Sep–Apr 0.99 1.00 0.83 0.91

LSTM Sentinel—1 Entire Season 0.99 0.91 0.83 0.87
LSTM Sentinel—1 Sep–Jun 0.98 0.83 0.83 0.83

SS2 LSTM
LSTM

Sentinel—1
Sentinel—2

Sep–Apr
Entire Season

0.98
0.98

0.82
0.91

0.75
0.83

0.78
0.87

LSTM Sentinel—2 Sep–Jun 0.99 0.92 0.92 0.92
LSTM Sentinel—2 Sep–Apr 0.97 0.83 0.83 0.83

TF Sentinel—1 Entire Season 0.97 1.00 0.83 0.91
TF Sentinel—1 Sep–Jun 0.98 1.00 0.83 0.90
TF Sentinel—1 Sep–Apr 0.97 0.91 0.83 0.87
TF Sentinel—2 Entire Season 0.97 1.00 0.83 0.91
TF Sentinel—2 Sep–Jun 0.97 1.00 0.75 0.86
TF Sentinel—2 Sep–Apr 0.96 0.91 0.83 0.87

3.2. Algorithm Accuracy

The architecture of the three algorithms did not vary (F < 3.68) considerably between
different study sites, time windows, or sensors (Figure 3c).

All algorithms achieved a high accuracy (higher than 0.85) for both study sites and
all time windows (Table 2). Regarding the overall accuracy, the RF and LSTM algorithms
reached the highest mean value (0.95), slightly higher than the TF model (0.93). However,
for our target class, TF and RF algorithms achieved a higher accuracy value (0.93), followed
by LSTM (0.91). The three architectures had the same lowest accuracy value (0.75) for ICLS
recall metric in SS2, at different time intervals and using different sensors.

None of the algorithms had a significant impact on accuracy due to the time window
reduction. The overall accuracy varied by approximately 1% for all algorithms (Table 2).
For the ICLS class RF, the TF algorithm maintained the same variance from the entire season
to Sep–Apr. However, TF had a higher difference (−4%) (Table 2).
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3.3. Early Season

For the overall accuracy and ICLS f1-score, the mean accuracy did not change for
the Sep–Aug and Sep–Jun time windows (Table 2). For the Sep–Apr time window, the
mean overall accuracy was 0.01 lower. For the target class, it was, on average, 0.03 lower
(Table 2). Figure 3d demonstrates that there was no statistical difference among the time
windows for any of the study sites. However, when using LSTM for SS2, Sentinel-1 achieved
lower accuracies, even though the entire season achieved an F1-score of 0.87 (Figure 3d).
Moreover, SS1 was less impacted by the time window reduction than SS2, in which all
results outperformed the 0.90 F1 scores for the ICLS (Figure 3d).

3.4. Predictions

Considering the most suitable algorithm (the algorithm with a higher F1 score and
shorter time window) for ICLS for each study site, we ran a prediction to evaluate the
practical application of the algorithms (Figure 4). Except for the eucalyptus and wet areas
classes in SS1, all values were higher than 0.90. In Figure 4, the confusion matrices are also
illustrated. For SS1, the highest confusion occurred between eucalyptus, pasture, and wet
areas. The confusion with pasture could be explained because the eucalyptus areas used in
training were generally young regrowth areas with a shrub aspect that is similar to certain
pasture fields. Further, the confusion of eucalyptus and pasture with wet areas could be
due to some training samples having been collected in regions close to the wet regions.
Finally, in SS1, the pasture class was barely confused with the pasture consortium. This
was expected since both classes contain pasture species.
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For SS2, some double crop fields were classified as ICLS; the algorithm could likely
not distinguish between the second crop and the pasture class. In sequence, some pasture
fields were classified as native forests. This could be due to an edge effect as native forest
areas surrounded most of the pasture fields in SS2.

In addition to the qualitative evaluation of the best models, we ran some predictions
using different models to demonstrate the relevance of this type of evaluation in addition
to its accuracy values (Figure 5). Firstly, for SS1, using models with similar F1 score values,
the LSTM model with a time window of Sep–Apr produced a higher F1-score (0.98) for
the ICLS than the LSTM model using the entire season (0.95). However, the ICLS fields
were less geometrically defined (Figure 5a,b). For the pasture class, the same situation
happened with the RF model: a higher F1 score (0.93) produced a noisier prediction than a
lower one (0.90) (Figure 5c,d). In sequence, despite a high F1 score (0.95) for the pasture
consortium, which was obtained using Sentinel-1 and RF, the pasture consortium field
was not identified. However, while using Sentinel-2, which had a slightly higher F1 score
(+0.05), the field was entirely identified (Figure 5e,f).
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For SS2, the RF model achieved an accuracy of 0.96 for the double crop class and
incorrectly classified it as an ICLS in some regions, while the LSTM achieved a lower
accuracy (0.92) without showing such confusion frequently (Figure 5e,f). For the ICLS,
the models with similar accuracy could present completely different predictions, as can
be observed in Figure 5i,j. Similar to the pasture class, both models, with different time
windows, presented a close accuracy (0.97 and 0.95) and very different predictions in certain
places (Figure 5k,l).
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4. Discussion

Despite the differences among the study sites, identifying the ICLS areas using the
same methodology was accomplished. This result is promising since many authors reported
on the complexity of using use the same model to map different latitudes, which usually
implicates different growing periods and crop phenological behavior [72,73]. Further, it
should be considered that both areas are surrounded by different landscapes. While SS1
was surrounded by pasture, SS2 was surrounded by double-crop fields and some pasture.
Thereby, achieving a high accuracy in both is meaningful since most of the landscape
surrounding the ICLS fields in Brazil is composed of pasture or double crop. In addition,
it was interesting to see that, even in SS2, where there was a high incidence of clouds,
especially during the growing season, it was still possible to identify the ICLS areas using
only optical data (RF/Sentinel-2: 0.96).

This study demonstrates that optical data achieved superior results to SAR data for
crop-type mapping in agreement with the literature [74]. This could suggest that the rich
spectral dimension of Sentinel-2 overcame the temporal resolution due to cloud cover.
Thereby, even with some gaps in the time series, the Sentinel-2 classification reached better
results. It can be highlighted that, for SS1, it is feasible to work with optical products,
especially Sentinel-2, for which there was a tile overlap in the study area. For SS2, SAR
products had a higher temporal availability during the primary growing season (November
to March) (Figure 1b). However, even with a lack of Sentinel-2 images, it achieved a higher
overall accuracy (0.98 for all time windows) than Sentinel-1 (0.91 (Sep–Apr), 0.91 (Sep–Jun),
and 0.95 (Sep–Aug)).

The highest variation in accuracy occurred for Sentinel-1 (−4%). This could mean
that the spectral information contained in optical data was even more important than the
temporal resolution of Sentinel-1. In this context, many authors explored the potential of
Sentinel-2 spectral information for mapping crops [75,76]. On the other hand, Sentinel-1
data also generated high-accuracy results and predictions [77]. This indicates that it would
be possible to use this data source in case there are no optical data available. Many studies
have shown the potential of SAR as input for crop-type mapping [78,79]. Recently, another
subject of study has been the synergic use of both sensors for crop-type mapping. This type
of approach usually overcomes the use of a single sensor. Thus, it would be interesting to
see this analysis conducted using both datasets fused [80,81].

Regarding model performance, the random forest model obtained the same and some-
times higher accuracy than the deep learning models tested, as was identified previously by
many studies [82,83]. Thus, as demonstrated, ICLS areas can be identified without complex
algorithms. However, for future approaches, the transferability of those models should be
tested since some authors indicated that the random forest model tends to perform transfer
learning worse than deep learning models [84]. Therefore, inter-year and inter-region
model transfer should be conducted to verify the generalization potential of these models
when they are aiming at mapping ICLS fields.

Evaluating the early-season results, it is clear that this approach could be used with no
meaningful statistical difference in accuracy. This is a relevant finding since early-season
maps could support the producers and decision-makers earlier than the entire-season
approaches [20]. Fritz et al. (2019) mentioned that the early-season mapping of crops is
a current gap in the use of remote sensing applied to crop mapping [85]. Additionally, it
was interesting to see that even in SS2, the accuracy remained high, even when there were
few images available (Figures 1b and 2). Thus, those results demonstrated the feasibility
of mapping an ICLS, even at the beginning of the livestock implementation cycle (i.e., the
Sep–Apr time window).

Despite some high accuracies, there is still space for refinement since some classes
were erroneously predicted. Noisy predictions occurred for all models, sensors, and time
windows, indicating no pattern (Figure 5). On the other hand, since some models tested
were early-season ones, in a practical application it would be possible to validate the
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predictions in the field if needed. Finally, the importance of evaluating the results beyond
the accuracy values, which could hide the prediction uncertainties, was demonstrated.

5. Conclusions

This study demonstrated that it is feasible to map ICLSs in regions with different
latitudes, cloud cover rates, and diverse land uses surrounding them using remote sensing
data and a common methodology. Further, both sensors (optical and SAR) could also
produce ICLS maps with a similar accuracy for the overall classification and target class.
Regarding the algorithms, it was demonstrated that all machine and deep learning archi-
tectures were able to similarly map ICLS fields. Furthermore, using the entire time series
was not necessary to achieve high accuracy (higher than 85%): it was demonstrated that
the time window size does not affect meaningfully the accuracy.

Additionally, it was essential to expose not only the accuracy values but also the
predictions. This supports the idea of estimating the practical implementation of the tested
algorithms. This approach demonstrated that even a high accuracy could produce noisy
predictions.

Finally, since the early-season analysis was successful, as a next step we suggest that
an even shorter interval could be tested to find the earliest date at which it is possible to
identify ICLS fields.
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