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Abstract
Coffee is a universal beverage that drives a multi-industry market on a global basis.

Today, the sustainability of coffee production is threatened by accelerated climate

changes. In this work, we propose the implementation of genomic-assisted breeding

for climate-smart coffee in Coffea canephora. This species is adapted to higher tem-

peratures and is more resilient to biotic and abiotic stresses. After evaluating two

populations, over multiple harvests, and under severe drought weather condition,

we dissected the genetic architecture of yield, disease resistance, and quality-related

traits. By integrating genome-wide association studies and diallel analyses, our con-

tribution is four-fold: (i) we identified a set of molecular markers with major effects

associated with disease resistance and post-harvest traits, while yield and plant archi-

tecture presented a polygenic background; (ii) we demonstrated the relevance of

nonadditive gene actions and projected hybrid vigor when genotypes from different
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geographically botanical groups are crossed; (iii) we computed medium-to-large her-

itability values for most of the traits, representing potential for fast genetic progress;

and (iv) we provided a first step toward implementing molecular breeding to accel-

erate improvements in C. canephora. Altogether, this work is a blueprint for how

quantitative genetics and genomics can assist coffee breeding and support the supply

chain in the face of the current global changes.

1 INTRODUCTION

Coffee is a widely consumed beverage that drives a vibrant
industry, which contributes significantly to the economies of
several tropical and developing countries. Globally, it is esti-
mated that more than 100 million of growers are benefited
from the coffee supply chain and over 2.2 billion cups of
coffee are consumed daily (Krishnan et al., 2021). Despite
this importance, its sustainability is facing critical challenges,
including accelerated climate changes, price volatility, lim-
ited access to genetic resources, and the presence of new
pests and diseases (Davis et al., 2021; Van der Vossen et al.,
2015). Due to these factors, coffee breeding programs have
a pivotal role to play by increasing the phenotypic perfor-
mances and releasing new climate-smart coffee cultivars, that
is, a set of plants that combine resilience to biotic and abiotic
factors, sustainable mechanization, high-yield, and superior
drink quality.

With widespread morphological and physiological varia-
tions, coffee domestication has a rich evolutionary history
with intense human interventions. The beverage popularly
known as coffee is made from roasted and ground beans of two
main species: Coffea arabica, an autogamous and polyploid
species, which mostly contributes to the aroma and sweet fla-
vor; and Coffea canephora (also called Robusta coffee), an
outcrossing and diploid species that produces a greater yield
than Arabica varieties, is more resistant to diseases, and pro-
vides approximately double the amount of caffeine (Ferrão
et al., 2019b). While Arabica coffee represents ∼ 60% of
the global production and is considered the main source of
drink quality, it has been recently argued that the species does
not have the potential to attain the level of climate resiliency
required under the existing climate change projections (Davis
et al., 2021). For example, it is estimated that C. arabica
production in Latino America may be reduced in the order
of 80% by 2050 (Imbach et al., 2017). At the root of it all
is a startling vulnerability: the cultivated Arabica is a deli-
cate crop, quite susceptible to diseases, and with a narrow
genetic diversity (Anthony et al., 2002; Cubry et al., 2008;
Lashermes et al., 1999; Silvestrini et al., 2007). As an alter-
native, C. canephora is more adapted to higher temperatures
and is resilient to biotic and abiotic stresses that raise the
species as a potential candidate for more climate-smart cul-

tivars (Ferrão et al., 2019b). However, to make it possible
(and sustainable), global efforts have been devoted to improv-
ing cup quality, making C. canephora more attractive to
consumers.

In the recent decades, numerous breeding schemes have
been proposed for C. canephora species, mostly focused on
yield traits. To this end, sexual and asexual breeding strate-
gies are commonly employed in recurrent selection designs,
where the best genotypes are either used as parents in future
crosses or released as clonal cultivars (Ferrão et al., 2019).
To rigorously improve the coffee quality through breeding,
understanding the genetic architecture of complex traits is
essential. For example, breeders have guided their decisions
based on the level of genetic control (i.e., heritability), mag-
nitude of gene action effects, correlations between traits, and
dynamics of genotype-by-environment interactions (Mustiga
et al., 2018). The use of matting designs provides the means to
determine the genetic control of complex traits by estimating
combining abilities and the contribution of additive and non-
additive gene actions on the phenotypic variation. While in
Arabica coffee, the use of hybrid vigor by exploring the spe-
cific combining ability (SCA) effects is a well-documented
practice (Cilas et al., 1998; Mohammed, 2011; Walyaro,
1983); combining abilities reported in C. canephora remain
elusive at this stage, with results restricted to certain genetic
backgrounds and being trait-specific (Cilas & Bouharmont,
2005; Cilas et al., 2003; Leroy et al., 1993, 2014).

A more contemporaneous alternative to dissect the genetic
architecture of complex traits is using genomic information.
Genome-wide association studies (GWAS) provide the means
to determine the genetic control of complex traits by mea-
suring a vast number of genetic variants spanning the entire
genome and identifying regions affecting the phenotype of
interest (Pritchard et al., 2000; Yu et al., 2006). Characteristic
features of GWAS include identifying relevant variables that
can be used either for marker assisted selection (MAS) or as
potential target for gene editing in plant breeding. When com-
pared to traditional QTL analyses, GWAS has the advantage
to increase the mapping resolution by using populations with
low levels of linkage disequilibrium (LD) and considering a
deep history of recombination events. Despite the relevance,
genomic association analyses in coffee are still confined to
few traits, with most of the investigations performed in small
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population sizes, with a restricted genetic diversity and low
marker densities.

From a statistical standpoint, most of the GWAS studies
reported in the plant literature have been carried out using
single-variant association analysis. A more recent line of evi-
dence, however, suggests the use of multilocus (or polygenic)
approaches as an alternative to increase power and generate a
more robust estimate of genetic variances (Fernando et al.,
2017; Zhou et al., 2013). Specifically, polygenic modeling
connects trait variation to all molecular markers simultane-
ously leveraging the ability to estimate effect sizes jointly, by
taking LD structure into account (Guan & Stephens, 2011;
Nariai et al., 2017). These methods can also parse the rela-
tive contributions of genetic variants with measurable versus
near-infinitesimal effects to trait genetic variance, that also
makes this approach particularly attractive to dissect the
genetic architecture of complex trait (Gompert et al., 2019).
In this regard, Zhou et al. (2013) proposed the use of a
Bayesian sparse linear mixed model (BSLMM), which is a
hybrid approach between traditional linear mixed models and
Bayesian variable selection regression approaches. Among
the key advantages, BSLMM is capable of learning the genetic
architecture from the data, yielding good performance across
a wide range of scenarios (Bresadola et al., 2019; Comeault
et al., 2014; Ferrão et al., 2020; Gompert et al., 2019; Guan &
Stephens, 2011; Lloyd-Jones et al., 2017; Nariai et al., 2017).

Aiming to provide new insights into the genetic basis of
Coffea canephora traits, we integrated diallel and GWAS ana-
lyzes with the following main objectives: (i) estimate genetic
parameters and decompose the genetic variances into addi-
tive and nonadditive genetic effects; (ii) dissect the genetic
architecture of important coffee traits; (iii) identify potential
genomic regions controlling yield and quality-related traits
using a BSLMM, and finally, (iv) propose an alternative for
future coffee breeding programs focused on genomic-assisted
breeding. Altogether, we argue that improvements focused
on C. canephora could be a milestone for the coffee indus-
try, with great potential for return on investment because
of its genetic diversity, resilience, and productivity. In this
study, we present a blueprint on how the use of quantitative
genetics and genomics can assist developing climate-smart
cultivars.

2 MATERIAL AND METHODS

2.1 Plant material and experimental design

The populations used in this study were generated as part
of the coffee breeding program at the Instituto Capixaba de
Pesquisa, Assistência Técnica e Extensão Rural (Incaper), in
partnership with Embrapa Café, Brazil. Incaper is one of the
main coffee research institutions in Brazil. Since 1985, the

Core Ideas
∙ Sustainability of coffee production is threatened by

accelerated climate changes.
∙ Coffea canephora is more adapted to higher tem-

peratures and resilient to biotic and abiotic stresses,
which make the species a strategic candidate for the
development of climate-smart cultivars.

∙ By integrating genome-wide association analyses
(GWAS) and Diallel populations, we described
the genetic basis of coffee traits evaluated under
drought weather conditions.

∙ We identified a set of molecular markers with
major effects associated with disease resistance
and post-harvest traits, while yield and plant
architecture presented a polygenic background.

∙ We emphasize the importance of genomic-assisted
breeding by proposing a recurrent selection
scheme integrating genomic prediction and
marker-assisted selection.

institution has an active breeding program of C. canephora
and has released more than 10 cultivars widely used for
Brazilian growers. In this investigation, among thousands of
genetic materials maintained in the germplasm collection, we
focused on the selection of 10 superior founders (P02, P03,
P07, P11, P23, P24, P73, P83, P110, and P149) to com-
pose two complementary breeding populations for genetic
analyses. These genotypes were visually selected due their
outstanding agronomical traits, including high production,
resistance to rust disease (Hemileia vastatrix), resilience to
drought conditions, and different maturity date (Figure 1a).
Recently, the genetic diversity of such materials was described
using 18 simple sequence repeat (SSR) molecular markers (L.
C. Souza et al., 2021), and the clones were grouped into two
main clusters (Figure 1b).

First, a Diallel population was established to decompose
the observed genetic variance into additive and nonadditive
genetic effects. The 10 superior clones were crossed and eval-
uated in a full diallel fashion design. After a first screening,
the best 97 progenies were cloned and installed as a partial
diallel, in a randomized block design with three repetitions,
and evaluated for six consecutive harvest-production (from
2014 to 2019). In this investigation, the results of the partial
diallel were used to estimate combining abilities and genetic
parameters.

A second and more diverse breeding population was used
for complementary genomic analyses. Referred here as GWAS
population, this population was designed by selecting 7 of
the 10 founders (P02, P03, P07, P11, P24, P73, and P149) to
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4 of 19 FERRÃO ET AL.The Plant Genome

F I G U R E 1 Schematic representation of two breeding populations used to dissect the genetic architecture of morphoagronomic, yield, disease
resistance, post-harvest, and drink quality traits in Coffea canephora. (a) Description of the 10 genitors used as founders; (b) principal component
analyses reporting the genetic diversity of the founders computed using 18 simple sequence repeat (SSR) molecular markers population; (c) Diallel
population was established from the selection of 10 superior coffee genotypes. After a first screening, the best 97 progenies plus the parental
genotypes were established as a partial diallel in a randomized block design and used to estimate combining abilities. The GWAS population is a
more diverse breeding population used for genomic analyses. Seven contrasting parents from the Diallel population plus 18 new founders were
selected, planted in an isolated field, and allowed to cross pollinate. The 222 best genotypes were cloned and assigned to a randomized complete
block design. Please, see the Supporting Information Appendix for additional details on the plant material.

create a base population for recurrent selection. To increase
the diversity, we included 18 additional genotypes in an
isolated seed orchard and allowed them to cross-pollinate.
These 18 new genotypes were visually selected from the
germplasm collection, based on their higher production per-
formance and tolerance to biotic and abiotic stresses. After
a first screening, 222 progenies were selected, cloned, and
assigned to a randomized complete block design with three
replications. Progenies were evaluated for four consecutive
harvest-production years (2008–2011). This admixture pop-
ulation was genotyped and phenotyped to infer the genomic
architecture of complex coffee traits.

2.2 Traits measurements

In this study, a total of 27 coffee traits encompassing 5
main categories were considered: morphoagronomic, dis-
ease resistance, yield, post-harvest, and drink quality. In

the morphoagronomic group, we investigated the maturation
time (MAT), uniformity of the maturation (UNIF), bean size
(GSIZ), plant architecture (PRT), vigor (VIGOR), and the
general scale (GSCE)—that is a visual metric assessed by
breeders and indicate the overall performance of a genotype.
For disease resistance, a total of four traits were visually eval-
uated, including coffee leaf rust (RUST), coffee leaf mine
(LMINER), cercospora leaf spot, also called brown eye spot
or berry blotch (CERC), and leave blight (LBLIGHT). All
morphoagronomic traits were visually measured by multiple
experienced breeders across several years to reduce bias and
subjectivity. Further details on each of the traits measured are
described in Supporting Information Appendix.

Yield was measured as 60-kg bags per hectare, and the
general stability was assessed by dividing the production in
biannual periods. The first biennium (Y1) corresponded to
the production for 2014 and 2015. Second biennium (Y2),
the estimated yield for third and fourth harvest, carried
out in 2016 and 2017. Third biennium (Y3) represents the
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yield estimated in 2018 and 2019. Finally, an average yield
(YIELD) was computed considering all years (from 2014
to 2019).

For post-harvest, a sample of 2 kg of ripened fruits was
processed in two stages, herein referred to as CHERRY
and GREEN. By CHERRY we mean the weight (in grams)
of dried coffee fruits after using a natural method (sun-
dried beans). After depulping, by getting rid of the skin and
mucilage, we weighted the GREEN beans. For additional
post-harvest evaluations, we sampled 300 g of raw beans
and classified the bean size and shape using a set of sieves.
Namely, we used a round sieve M17 (flat and large beans),
round sieve M15 (flat and medium beans), oblong sieve M10
(small "moca" beans), round sieve M13 (medium "moca"
beans), and RES (sticks, stones, broken grains, among others
residual observed during the post-harvest evaluation).

Finally, sensory traits related to drink quality were eval-
uated using the hybrids in the Diallel population. Samples
were subjected to sensory analyses by four Q-Grader judges.
The evaluated attributes were aroma liking, flavor liking,
retronasal, sourness, sweetness, perception, equilibrium, and
overall liking, according to the Coffee Quality Institute
(CQI), in collaboration with the Uganda Coffee Development
Authority (UCDA) (Uganda Coffee Development Authority,
2012).

Both populations were installed in a representative envi-
ronment (location) for the Brazilian production: Marilândia
Experimental Unit (FEM)—latitude 19024′ south, longitude
40031′ west and 70 m altitude. All phenotypes were measured
in a system of partial irrigation, or “irrigation under demand.”
More details about the breeding populations and traits mea-
sured are described in the Supporting Information Appendix
and Tables S1 and S2.

2.3 Genotypic data

The GWAS population was genotyped using the Genotype-by-
Sequencing (GBS) (Elshire et al., 2011). The DNA samples
were digested using the ApeKI restriction enzyme, and
96 samples were multiplexed per Illumina flow cell for
sequencing. The GBS analysis pipeline was implemented
with the TASSEL-GBS software, version 4.3.7 (Glaubitz
et al., 2014). Sequenced tags were aligned against the C.
canephora genome assembly (Denoeud et al., 2014). SNPs
were extracted and filtered as follows: (i) triallelic SNPs were
removed; (ii) SNPs with minor allele frequency less than
1% were removed; and (iii) SNPs with genotypes that were
called in less than 50% of the samples were discarded. After
following the quality-control steps, a total of 58,723 SNPs
were retained. Further details about the genotypic data are
described by Ferrão et al. (2017) and Ferrão et al. (2019a).

2.4 Combining abilities

For the Diallel population, breeding values were predicted
using best linear unbiased prediction (BLUP) and restricted
maximum likelihood approach (REML) to estimate vari-
ance components, as follows: 𝑦𝑖𝑗𝑘 = μ + 𝑔𝑗 + 𝑔𝑘 + 𝑠𝑗𝑘 +
𝑏𝑖 + 𝑒𝑖𝑗𝑘; where y is the phenotype already pre-corrected for
the year effect, μ is the population mean; 𝑔𝑗 and 𝑔𝑘 are the
GCA (general combining ability) effects for the jth and kth
parents, respectively; 𝑠𝑖𝑘 is the SCA (specific combining abil-
ity) effect for the cross of the jth and kth parents; 𝑏𝑖 is the
block effect; and 𝑒𝑖𝑗𝑘 is the experimental error. GCA and
SCA effects were both modeled as random effects, where 𝑔𝑗 ∼
𝑁(0, σ2

𝑔𝑗
) 𝑔𝑘 ∼ 𝑁(0, σ2

𝑔𝑘
) and 𝑠 ∼ 𝑁(0, σ2

𝑠
), respectively. The

choice of treating genotypes as random effects was made
due to the highly unbalanced nature of the data. Normality
and independence were also assumed for the experimental
error, distributed as 𝑒 ∼ 𝑁(0, σ2

𝑒
). Components of variance

were tested using the likelihood ratio test (LRT) and the sig-
nificance verified by the Chi-square test with 1 degree of
freedom.

Broad-sense (H) heritability was calculated at the entry
mean level as: 𝐻2 = (σ2

𝑎
+ σ2

𝑑
)∕(σ2

𝑎
+ σ2

𝑑
+ σ2

𝑒
∕𝑟) , where r

is the number of repetitions (blocks); σ2
𝑎
, σ2

𝑑
, and σ2

𝑒
are

the additive, dominance, and residual components of vari-
ance associated with the GCA, SCA, and experimental errors,
respectively. Baker’ s ratio (PR) (Baker, 1978) was estimated
using the following equation: 𝑃𝑅 = 2σ2

𝑎
∕(2σ2

𝑎
+ σ2

𝑔
). PR

indicates whether a trait is governed by dominant or addi-
tive gene action, where a value below 0.5 indicates that SCA
effects were predominant, and the trait would be controlled by
nonadditive gene action. All phenotypic analyses were carried
out using the ASReml-R software (Butler et al., 2009).

2.5 Variance components estimated using
Bayesian whole-genome regression models

Variance components for additive and nonadditive effects
were estimated in the GWAS population using a multi-kernel
approach. To this end, we considered the following statis-
tical model in a matrix notation: 𝑦 = 𝑋β +𝑊1𝑎 +𝑊2𝑑 +
𝑊3𝑡 +𝑊4𝑟 + 𝑒, where y is the vector of predicted pheno-
types pre-corrected for the blocks and year effects, β is the
vector of fixed effects (overall mean), and e is the vector of
the random residual effect as follows: 𝑒 ∼ 𝑁(0, 𝐼σ2

𝑒
), where

σ2
𝑒

is the residual variance. The incidences matrix X and W
relate observations in y to fixed and random effects, respec-
tively. The random additive effect is defined by a as follows:
𝑎 ∼ 𝑁(0, 𝐺𝐴σ2𝐴), and was conditioned on the GA additive
genomic relationship matrix as defined for VanRaden (2008).
The random dominance effect is defined by d as follows:
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6 of 19 FERRÃO ET AL.The Plant Genome

𝑑 ∼ 𝑁(0, 𝐺𝐷σ2𝐷), where GD is the dominance genomic rela-
tionship matrices as defined by Vitezica et al. (2013). Epistatic
effect for additive-by-additive and additive-by-dominance are
equivalent to the random effects that follow the multivariate
Gaussian distributions, whose variance–covariance matrices
are proportional to the Hadamard products of the correspond-
ing relationship matrices. Therefore, the random effects for
the epistatic effects t and r, are defined, respectively, as the
following: 𝑡 ∼ 𝑁(0, 𝐺𝐴𝐴σ2𝐴𝐴) and 𝑟 ∼ 𝑁(0, 𝐺𝐴𝐷σ2𝐴𝐷). The
Hadamard product of genomic relationship matrices has been
shown to capture variance from first order epistatic effects by
Muñoz et al. (2014). All genomic relationship matrices were
computed using the AGHmatrix R-package (Amadeu et al.,
2016).

Bayesian regression models were fitted using Markov
Chain Monte Carlo (MCMC) implementations in the R pack-
age BGLR (Pérez & de los Campos, 2014), using the default
hyperparameter and prior settings. For the posterior density,
we ran the Markov chain for 100,000 time steps, with a burn-
in of 10,000. For estimating genetic variance components,
we calculated genotypic value in each MCMC sample after
burn-in (Alves et al., 2019; Ishimori et al., 2020; Lehermeier

et al., 2017) as: �̂�𝑚 =
𝐿∑

𝑧=1
𝑚𝑖𝑧�̂�𝑧 , where �̂�𝑚is the estimated

genetic value of the ith individual for the additive, dominant,
or epistatic effects, �̂�𝑧 is the estimated marker effect for a
given genetic parametrization (additive or nonadditive) for
the marker z, and 𝑚𝑖𝑧 is the marker score. The total genetic
variance and variance components (σ2

𝐴
, σ2

𝐷
, σ2

𝐴𝐴
, σ2

𝐴𝐷
) were

calculated as the variance of estimated values across all
genotypes in each MCMC sample.

2.6 Polygenic genome-wide association
studies (GWAS)

We fit BSLMM as implemented in the GEMMA (option–
bslmm 1). Unlike traditional GWAS analyses, the polygenic
GWAS fits a single model with all genetic variants considered
simultaneously. In particular, the phenotypic value is modeled
as a function of a polygenic term and a vector of measur-
able effects, assuming that the SNP effects are sampled from
a point-normal distribution. In a matrix notation, the model
is: 𝑦 = 1𝑛 μ +𝑋β + 𝑢 + ε, where y is an n-vector of pheno-
type measured in n individuals; X is a n x p design matrix
of genotypes measured on the same individuals at p genetic
markers, relative to additive and dominance effects; β is the
SNP effect sampled from a mixture of two distributions, one
that expects many small effects and another that generates few
strong effects, as follows: β𝑖 ∼ π𝑁(σ2

𝑘
τ−1) + (1 − π)δ0, where

σ2
𝑘

controls the expected magnitude of nonzero SNP effects
and δ0 denotes a point mass at zero; u is the polygenic term
as previously described; and ϵ is a random independent error

term. Additionally, we tested the importance of additive and
dominance gene actions. We fit BSLMM for each trait with 2
MCMC chains using the default settings implemented in the
GEMMA software. Full details about the model formulation
are described by Zhou et al. (2013).

The hierarchical structure of the model provides a means
to estimate additional parameters that describe aspects of the
genetic architecture of each trait. Assuming sparsity-inducing
priors on the regression coefficients, we can estimate the
amount of phenotypic variance explained either by loci with
detectable effects ("sparse effects") or by the polygenic com-
ponent ("random effects" estimated from the kinship matrix).
This set of parameters includes the proportion of pheno-
typic variance explained by the sparse effects and random
effects (PVE) and the proportion of PVE explained by the
sparse effects only (PGE). The hyper-parameters n_gamma
and rho are computed from the data and are estimates of the
number of sparse effects loci involved in determining the phe-
notype and the proportion of genetic variance explained by
genetic variants with major effects, respectively. The poste-
rior inclusion probability (PIP) for each SNP is the probability
that each SNP has a nonzero effect and therefore should
be included in the model. We used a conservative thresh-
old of PIP > 0.4 to identify candidate SNPs associated
with phenotypes. This threshold is an order of magnitude
higher than the widely used PIP > 0.01 or 0.1 (Chaves
et al., 2016; Comeault et al., 2014; Gompert et al., 2013),
a fact that reduces the probability of uncovering spurious
associations.

Neighboring genetic markers in a genomic region are
expected to have some redundancy and therefore to have lower
individual PIPs (Bresadola et al., 2019; Fernando et al., 2017).
To aggregate information from neighboring molecular mark-
ers, we used the SNPRelate R package (Zheng et al., 2012),
and an LD-based SNP pruning was carried out to remove
SNPs within a genomic window of 1 kb. All single nucleotide
polymorphisms that exceeded the threshold (PIP > 0.4) were
characterized in silico for their genomic position and func-
tional effect. The Coffee Genome Hub database (Dereeper
et al., 2015) was used to identify C. canephora genes located
in the interval of 100 Kbp encompassing significant SNPs, as
suggested by Sant’Ana et al. (2018).

We compared the BSLMM results for the additive gene
action with traditional GWAS analyses, where SNP-trait asso-
ciation are based on a linear mixed model accounting for
population structure (Q) and relative kinship (K) matrices.
Correction for multiple testing using a Bonferroni test and a
threshold of 0.05 was applied to determine significant associ-
ations. We approximated the phenotypic variation explained
by each candidate SNP using the coefficient of determina-
tion (R2), computed as simple linear regression between the
phenotypic value and the SNP marker parametrization. Tradi-
tional GWAS analyses were carried out using the GWASpoly
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FERRÃO ET AL. 7 of 19The Plant Genome

R package (Rosyara et al., 2016) and the additive gene action
model.

3 RESULTS

3.1 Phenotypic dispersion and combining
abilities using diallel analyses

We first accessed the phenotypic dispersion observed in the
Diallel population. The hybrids showed higher phenotypic
performances for most traits, when compared to the parents.
Regarding the data dispersion, in general, the empirical dis-
tribution was reasonably symmetric for all traits (Figure S1).
Among the main phenotypes collected here, yield potential is
one of the most important. We observed moderate average val-
ues (39 bag/hc), a value that sharply contrasts with the yield
potential observed in the same Brazilian area --some high-tech
coffee farms have reported,on average, 100 bags/hc. Impor-
tantly, our experiments were all carried out without regular
irrigation, since our main goal is to mimic drought conditions
and leverage the selection of more resilient materials.

The genetic architecture of coffee traits was investigated
by estimating broad-sense heritability (Table 1 and Table
S3). We observed traits with different genetic bases and
heritability values ranging from 0.027 to 0.94. While ripen-
ing time (MAT) trait recorded the highest heritability value,
leaves blight (LBLIGHT) showed the lowest value. Traits
related to yield stability presented moderate-to-high heritabil-
ity values—a result that was also reported in previous coffee
studies (Cilas et al., 2003; Leroy et al., 1997; Montagnon et al.,
2003). Post-harvest traits also showed large heritability sug-
gesting fast genetic progress when incorporated in breeding
designs. Clear exception was observed for the sensory traits.
Flavor is a complex and multifactorial trait, highly influenced
by the environment. These aspects not only adversely affect
the heritability values, but also delay the genetic progress.
The proportion of additive and nonadditive genetic variation
was estimated using the Baker’s ratio (BR). For most traits,
values lower than 0.5 were observed suggesting a larger influ-
ence of SCA variance compared to GCA variance. The use of
matting designs provides valuable information on combining
abilities for selecting superior parents and hybrids (Tables S4
and S5). We identified promising hybrids by predicting the
random effects associated with the SCA effects (Figure S2).

The relationship between traits was measured using a prin-
cipal component analysis (PCA) (Figure 2a) (for more detail,
see the Supporting Information Appendix and Figure S3). For
yield, the most contrasting value was observed in the bien-
nium 2 (YB2) showing the lowest correlation value with the
other traits—an indication of a lack of annual production sta-
bility in coffee bean production over different years. Yield
and quality traits were positively correlated indicating that

both traits can be improved simultaneously. Disease traits also
showed positive correlation values, with traits grouped in the
second quadrant of the PCA. Post-harvest and morphoagro-
nomic traits resulted in a broader dispersion in the PCA plan.
For the post-harvest traits, we observed two clear groups in
the quadrant II and IV. While M13 and M15 sieve showed a
very distinct pattern and positive correlation with bean size
(GSIZ), the beans retained at the M10 sieve seem more corre-
lated to processed coffee bean traits (CHERRY, GREEN, and
RES traits). Morphoagronomic traits were arranged across the
entire plane. Both maturation (MAT) and flowering time (FL)
were positively correlated. The traits that mostly contributed
to the phenotypic variation per category, accounting informa-
tion from the PC1 and PC2, were M13, OVLIKING, GSIZ,
YIELD, and LMINER (Figure S4).

To further evaluate the opportunity to explore crosses using
more divergent materials, we estimated the phenotypic perfor-
mance of the hybrids as a function of the genetic dissimilarity
between the parental genotypes (Figure 2b and Figure S5).
Our fundamental hypothesis is that when contrasting parental
genotypes are crossed, it could lead to heterosis and, there-
fore, increase the phenotypic performance of the siblings. For
most of the traits, we observed a poor phenotypic perfor-
mance for hybrids originating from parents with low genetic
dissimilarity between them. When paired with the comb-
ing abilities previously reported, we observed that traits with
an important nonadditive component (e.g., yield stability
and quality traits) showed a positive trend and better phe-
notypic performance when genetically distant parents were
crossed.

3.2 Variance components estimated via
whole-genome prediction

After speculating about the genetic architecture using the
Diallel population, we dissect the genetic basis using a more
diverse population and molecular information. When results
from combining abilities and multi-kernel results are con-
trasted in both populations, we observed the importance of
nonadditive for most of the traits (Figure 3a). Considering
yield stability, for example, variance components estimated
for the nonadditive effect contributed significantly to the
observed phenotypic variation. Interestingly, the variance
components associated with additive variation had a reason-
able contribution for post-harvest traits, for RES and M15
traits. In terms of magnitude, disease-related traits showed
contrasting values over both populations, with larger resid-
uals estimated in the Diallel population when compared to
the GWAS population. A further assessment was performed in
the GWAS population, where we used molecular information
to explore the importance of epistatic effects (Figure 3b). For
traits like PRT and YIELD, the dominance effects showed a
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8 of 19 FERRÃO ET AL.The Plant Genome

T A B L E 1 Descriptive analyses of coffee traits evaluated in the Diallel population for five classes of coffee traits: morphoagronomic (MA);
disease resistance (disease), yield stability (yield), post-harvest (PH), and drink quality (Quality).

Trait Abr. Direction Class Unit Avg SD h2 Baker
Flower time FL – MA Days 276.888 10.789 0.896 0.369

Maturation MAT – MA 1–7 3.138 0.679 0.947 0.643

Uniformity UNIF Low MA 1–3 1.503 0.243 0.579 0.057

Bean Size GSIZ High MA 1–7 4.281 0.649 0.813 0.536

Plant architecture PRT Low MA 1–3 2.138 0.349 0.785 0.385

Vigor VIGOR High MA 1–9 6.839 0.551 0.792 0.304

General scale GSCE High MA 1–9 6.438 0.471 0.657 0.154

Architecture GL Low MA 1–3 1.541 0.316 0.845 0.346

Rust RUST Low Disease 1–9 2.386 0.516 0.778 0.243

Cercospora CERC Low Disease 1–9 2.367 0.328 0.610 0.107

Leaves blight LBLIGHT Low Disease 1–9 1.224 0.342 0.027 0.012

Leaf mine LMINER Low Disease 1–9 2.972 0.396 0.517 0.178

2014–2015 YB1 High Yield bag/hc 32.978 14.565 0.840 0.524

2016–2017 YB2 High Yield bag/hc 50.358 18.669 0.694 0.170

2018–2019 YB3 High Yield bag/hc 34.840 15.295 0.528 0.256

Average yield YIELD High Yield bag/hc 39.165 10.862 0.829 0.488

Green beans GREEN Low PH ratio* 1.915 0.137 0.796 0.185

Dried coffee CHERRY Low PH ratio* 4.325 0.459 0.759 0.257

Sieve size M15 Low PH % 24.393 14.440 0.955 0.873

Sieve size M13 High PH % 34.930 13.597 0.933 0.819

Sieve size M10 Low PH % 24.183 7.271 0.880 0.467

Sieve residual RES Low PH % 40.887 14.381 0.907 0.737

Aroma liking AROMA High Quality 1–10 7.285 0.338 0.254 0.023

Flavor liking FLAVOR High Quality 1–10 7.478 0.399 0.370 0.002

Retronasal RETRO High Quality 1–10 7.024 0.303 0.133 0.008

Sourness ACIDITY High Quality 1–10 7.170 0.325 0.263 0.025

Sweetness SWEET High Quality 1–10 7.407 0.403 0.366 0.039

Perception HEDONIC High Quality 1–10 7.381 0.392 0.323 0.403

Equilibrium EQUIL High Quality 1–10 7.259 0.325 0.317 0.266

Overall liking OVLIKING High Quality 1–100 78.284 2.587 0.240 0.413

Abbreviations: Avg, average; SD, standard deviation; h2, broad sense heritability; Baker, Baker’s Ratio.
*ratio: ratio between harvested ripened fruits and dried (CHERRY) and processed beans (GREEN). A value of 2 for CHERRY, for example, means a ratio of 2:1, where
2 kg of ripened fruits resulted in 1 kg of dried coffee (CHERRY bean). Analogously, a value of 4 for GREEN means that 4 kg of ripened fruits resulted in 1 kg of raw
coffee.

considerably larger importance than epistatic effects. For oth-
ers, inter and intra-locus variation showed similar projections
and less importance on explaining the phenotypic variation,
when compared to the additivity.

3.3 Genetic architecture accessed using
polygenic GWAS analysis

Genome-wide association analyses were performed using
a BSLMM. A total of 45,989 SNPs distributed across
11 C. canephora chromosomes were tested for association

using additive and dominance models. Molecular informa-
tion explained a considerable proportion of the phenotypic
variation using both parametrizations (Figure 4a). Point esti-
mates of PVE indicated values ranging from 0.43 for the M10
trait (with a probability interval of 0.16–0.73) to 0.97 for the
MAT trait (with a probability interval of 0.90–0.99), both
using the additive model. The BSLMM formulation makes
it possible to estimate additional parameters that describe
aspects related to the trait’s genetic architecture. The PGE,
for example, is interpreted as the proportion of the PVE due
to SNPs with measurable effects and it is an approxima-
tion about the importance of markers with major effects on
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FERRÃO ET AL. 9 of 19The Plant Genome

F I G U R E 2 (a) Principal component analysis (PCA) displaying the importance of each coffee trait on the phenotypic variation, using the
Diallel population. (b) Linear relationship between the phenotypic performance (adjusted means) of the hybrids and their genetic dissimilarity
computed using single sequence repeat (SSR) markers for four traits evaluated in the Diallel population.

the expression of the respective phenotypic trait. The MAT
trait presented the largest PGE value with a point estimate of
0.88. GREEN and CHERRY, both traits associated with post-
harvest, also showed large PGE values and theoretically with
simpler genetic architecture. For most of the traits, large PGE
were reported for the dominance parametrization.

We also assessed two additional parameters using the
BSLMM model. The hyper-parameter gamma denotes the
posterior samples of number of variants with major effect,
while the hyper-parameter rho approximates the proportion
of genetic variance explained by genetic variants with major
effect. Thus, rho mass near to zero indicates a highly poly-
genic genetic basis, while mass values near to 1 means few
major effect loci controlling the genetic architecture of the
trait. Together, both can be used to shed additional light on the
genetic architecture of coffee traits. For most coffee traits, we
observed high point estimate values for gamma (> 10) indi-
cating a polygenic background (Figure 4b). Accordingly, low
rho values were also estimated (Figure 4c). Evidence of oli-
gogenic traits were observed for PRT, LBLIGHT, GREEN,
and CHERRY traits. Interestingly, results from LBLIGHT
disease are largely contrasting when diallel and GWAS results
are compared, which might be explained for a larger disease
infection in the GWAS population.

3.4 Genotype–phenotype associations and
candidate genes associated with yield and
quality-related traits

Traits with oligogenic nature are more appropriate to be
assayed in MAS designs. To estimate the strength of the asso-
ciation between genotypic variation at individual SNP and
phenotypic variation, we inferred the PIP that each genetic

variant should be included in the model (see more details in
the Supporting Information Appendix S2). Consistent with
the genetic projection previously reported, we could map
SNPs with large effects (PIP > 0.8) for PRT, LBLIGHT,
GREEN, and CHERRY traits using additive and dominance
gene parametrizations (Figure 5). In a lower scale (PIP > 0.4),
we identified additional associations related to bean produc-
tion (YIELD) and post-harvest (RES) traits. Remarkably, for
GREEN trait, a single maker in chromosome 1 explained by
itself more than 30% of the phenotypic variance, while in
chromosome 9, a single marker explained more than 25% of
the phenotypic variance for LBLIGHT (Table S6). In chro-
mosome 1, we co-localized a marker associated with a QTL
explaining more than 10% of the phenotypic variance for
CHERRY and GREEN trait. In chromosome 6, using a domi-
nance parametrization, we noticed a single marker explaining
18% of the PRT variation. In lower magnitude, for YIELD, a
SNP in chromosome 5 explained 15% of the phenotypic vari-
ance. Moreover, as a first assessment, we identified multiple
candidate genes flanking SNPs significantly associated with
almost all traits based on the annotation of the C. canephora
genome.

4 DISCUSSION

4.1 Coffea canephora as an alternative for
climate-resilient coffee

Coffee is a popular brewed beverage resulting from a com-
plex and fascinating value chain, that from the seed to the
cup needs to be cultivated, harvested, processed, roasted, and
brewed to be consumed as our daily coffee. On the basis of
this chain, we have plant breeding and its fundamental role on
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10 of 19 FERRÃO ET AL.The Plant Genome

F I G U R E 3 (a) Genetic variance projections computed using phenotypic and genomic data using the Diallel and the genome-wide association
studies (GWAS) populations, respectively. (b) Variance projections characterizing the genetic architecture for each trait, including additive,
dominance, epistasis, and residual variances. Credibility intervals of effect classes for each trait was presented and computed using Bayesian
multi-kernel regression models.

releasing new cultivars. A current challenge faced by the cof-
fee community (and breeders) is the projected climate changes
and the necessity for developing more climate-resilient cul-
tivars. In a scenario where Arabica production dictates the
global market, it has been argued that such a species is not
particularly resilient to the projected climate changes. An
alarming projection indicates a reduction greater than 50%
in coffee production in future years, with losses affecting the
livelihoods of 100 million people working in the coffee chain
(Davis et al., 2021; Imbach et al., 2017; Ovalle-Rivera et al.,
2015). Our fundamental hypothesis is that the climatic unsuit-
ability of coffee farms may be mitigated (or counteracted) by
seeking more resilient cultivars. Thus, by providing a better
picture of the genetic architecture of important traits, we sug-
gest that genomic-assisted breeding is the best alternative to
increase genetic gains and shorten the breeding cycle.

In this work, we introduced the concept of climate-smart
coffee and relied on the relevance of C. canephora for further
improvements. Popularly known as Robusta (and Conilon),
the species has high socio-economic importance contributing
to the livelihoods of millions of smallholder farmers around
the world. Beans from Robusta (and Conilon) have been
used in the coffee industry as the main source of instant and
espresso coffee. With more caffeine and soluble solids, its

brewed coffee has a full bodied, plentiful, and thick crema.
Beans from C. canephora are also very popular in the blends
with Arabica coffee, reducing costs of the regular coffee
and conferring a strong and decisive body to the beverage
(Bozzola et al., 2021). Recently, Robusta (and Conilon) cof-
fee has been raised to be the next milestone in the coffee
industry (Bozzola et al., 2021). Tracing a parallel with C. ara-
bica, the species is more cost efficient, producing more with
less requirement for water and pesticides. In the Diallel pop-
ulation, for example, we reported an average production of
almost 40 bags per hectare, in a condition of partial irrigation.
Comparatively, in 2022, the average yield of Arabica coffee
production in Brazil was estimated to be 22 bags (60 kg) per
hectare (CONAB, 2022). The incidence of disease was also
substantially lower, when compared to Arabica cultivars—
a fact that is also well-reported in the coffee literature (Van
der Vossen et al., 2015). Such features are particularly inter-
esting in a scenario of rising temperatures, erratic rainfall,
and more intense extreme weather events that are projected
to render certain producing areas less suitable to the existing
technologies.

When C. canephora is projected as an alternative to sup-
ply the coffee chain in the long term, arguably, drink quality
is the main challenge. Since the 60s, the coffee industry
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FERRÃO ET AL. 11 of 19The Plant Genome

F I G U R E 4 (a) Genetic projection using Bayesian sparse linear-mixed model (BSLMM) and the additive (add) and dominance (dom) gene
actions models. In BSLMM, the genetic term is divided as: PVE, the proportion of phenotypic variance explained by the polygenic term and PGE, the
proportion of the PVE explained by SNPs with a nonzero effect; (b) number of SNPs with measurable associations (gamma) estimated via BSLMM;
(c) an approximation to proportion of genetic variance explained by variants with major effect (rho), where rho close to 0 indicates highly polygenic
basis, while rho close to unitary values suggests few major effect loci. Vertical lines denote the 97.5% equal-tail probability intervals (ETPIs).

F I G U R E 5 Values of posterior inclusion probabilities (PIPs) per 1 kb window for all selected traits in a population of Coffeea canephora.
Windows with PIP ≥ 0.8 are marked with a vertical line where this threshold is exceeded are indicated. We used a more liberal threshold and
indicated traits with PIP > 0.4
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12 of 19 FERRÃO ET AL.The Plant Genome

has experienced a new movement, in which a new genera-
tion of more sophisticated consumers is looking for quality
associated with sustainability (Bozzola et al., 2021). So far,
few studies have been reported addressing breeding for fla-
vor preference in C. canephora (Gamboa-Becerra et al., 2019;
Montagnon et al., 1998). Herein, we emphasize that quality
can be effectively addressed via plant breeding. Correlation
analyses suggested that sensory traits can be improved without
compromising other important traits, including yield and dis-
ease resistance—a fact that was also reported by Montagnon
et al. (1998). In the Diallel population, we reported an aver-
age value of 78 points for overall liking. As a reference, a
minimum score of 80 points has been suggested by special-
ists to be considered as fine Robusta coffee (Uganda Coffee
Development Authority, 2012). We observed some material
with values larger than 80 points producing more than 50
bags per hectare, that ultimately justify selection and crosses
addressing drink quality and yield performance.

Relying on quality, good coffee has been described as a
pleasant sensation, a balanced combination of aroma, fla-
vor, and body in the absence of faults (Seninde & Chambers,
2020; Sunarharum et al., 2014). The C. canephora cultivated
in Brazil has some unique attributes, including greater bit-
terness, consistency and astringency, and less acidity and
fruity flavor, when compared to Arabica coffee (Ferrão et al.,
2019b). Also, it has a distinctive body enriched by choco-
late notes and a persistent aftertaste. These aspects make
the Robusta beverage genuinely distinct from Arabic coffee.
Only in 2010, the CQI created specific standards and pro-
tocols to unify the language used to judge Robusta quality.
Considering that such standards are relatively recent, modern
breeding programs are transitioned to incorporate such eval-
uations into the breeding pipeline, a fact that is necessary for
long-term gains.

4.2 Nonadditive gene actions can accelerate
coffee improvements

Combining ability has long been used by breeders as an
important index of hybrid vigor and parental selection. When
GCA and SCA are estimated, insights on the relevance of dif-
ferent gene actions on the phenotypic variation are provided.
From a practical standpoint, such information is of particu-
lar interest because: (i) they can assist in mate allocation; (ii)
contribute to improving the selection accuracy when breeding
values are predicted on the bases of additive and nonadditive
effects; and (iii) can be used to enhance nonadditive genetic
variation through the definition of appropriate crossbreeding
breeding schemes.

In C. canephora, we speculate that the relevance of addi-
tive and nonadditive genetic sources is closely related with
the domestication history of the species. With a broad scope
for regional and historical influences (Cubry et al., 2008;

Gomez et al., 2009), the C. canephora planted in Brazil
retain a large genetic diversity and is mainly structured in
two botanical groups: (i) Kouillou (or “Conilon” coffee or
SG1 group), that is originated from Central Africa and bet-
ter adapted to the Brazilian weather and climate conditions;
and the (ii) Robusta coffee (SG2 group), originated from the
same African region, but with distinct phenotypic characteris-
tics including larger fruits and leaves, resistance to coffee leaf
rust, and less resilience to drought conditions (Ferrão et al.,
2019b; F. D. E. F. Souza et al., 2013). After investigating the
genetic diversity on the parental genotypes (more details in
Tables S7 and S8), we hypothesized that genetic gains could
be maximized by crossing both pools and obtaining superior
crossbred progenies.

Crosses involving genetically distinct pools are a well-
reported practice in C. canephora (Leroy et al., 1993;
Montagnon et al., 2008). Although promising, the relevance
of SCA effects (and therefore heterosis) for different traits
is not conclusive in the coffee literature. In the Cameroon
coffee breeding program, Cilas et al. (2003) and Cilas and
Bouharmont (2005) suggested that GCA values were always
greater than the SCA effects, when genetic materials from
the "Robusta" group were used. More in agreement with our
results, Carvalho et al. (2019), Oliveira et al. (2018), and
Alkimim et al. (2021) described superior phenotypic per-
formances when genotypes from "Conilon" and "Robusta"
groups were crossed. Hybrid vigor was also reported in breed-
ing programs conducted in Côte d’Ivoire, in which the authors
reported promising results when crosses between geographi-
cally diverse pools were carried out (Montagnon et al., 2008).
Collectively, all these results are suggesting that nonadditive
sources in coffee, and hence the relevance of SCA effects,
might be more prevalent to certain genetic backgrounds and
trait-specifics in C. canephora.

4.3 GWAS analysis supports the use of
genomic-assisted selection for coffee
improvements

Traditionally, genetic architecture of complex traits has been
accomplished by scanning recombinant mapping families
using a QTL mapping approach. In coffee, QTL have been
reported for the incompatibility S locus (Lashermes et al.,
1996), pollen viability restoration (Coulibaly et al., 2003), dis-
ease resistance (de Almeida et al., 2021), root traits (Achar
et al., 2015), fructification time (Akaffou et al., 2003), mor-
phological traits (Michel et al., 2007), and more recently, for
yield and quality-related traits (Leroy et al., 2011). Despite
the relevance, QTL studies required either a detailed popula-
tion pedigree or controlled crosses, restricting the conclusions
to a certain genetic background (Comeault et al., 2014).
Herein, we take advantage of lower levels of LD using a
more diverse population and large SNP density to perform
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phenotypegenotype associations and infer the genetic basis of
complex traits.

Along this study, we emphasized the benefits of esti-
mating genetic parameters using GWAS polygenic models,
when compared to single-variant association. Although the
implicit genetic model of any complex traits is essentially
polygenic, most of the GWAS analyses have been carried out
by associating phenotypic variation and each genetic locus
independently. Despite the attractiveness of its simplicity, the
use of single-SNP regression can be misapplied with respect
to our understanding of the underlying genetic mechanism
(Guan & Stephens, 2011; Sabatti, 2013; Fernando et al.,
2017). In this study, for the first time in the C. canephora liter-
ature, we reported the use of polygenic GWAS models. When
contrasted to conventional single-markers GWAS methods,
there is a recent line of evidence supporting its benefits on
genetic analyses. For example, Goddard et al. (2016) advocate
that it is illogical fitting one SNP at a time as fixed effects,
keeping all the rest of the markers as random effects. Simi-
larly, Sabatti (2013) alerted for eventual biased marker effects
when relevant regressors are excluded in single-locus GWAS
models. In a recent study, Wang and Xu (2019) reported
more statistical power when polygenic models were compared
to single-SNP versions, while de Los Campos et al. (2023)
reported the use of such approach for fine mapping in human
studies.

Analogous to the p values traditionally presented in the
form of Manhattan plots for GWAS analyses, the PIP is a
probabilistic metric used for association analyses in the con-
text of polygenic GWAS (Lucas et al., 2018; Wang & Xu,
2019). When traditional single-SNP and polygenic GWAS
approaches were compared for the additive effects, we noticed
high concordance on the genomic regions pinpointed by
both methods for traits with an oligogenic nature (Figures
S6–S14). Another important difference on the interpretation
of both methods is that polygenic models typically eliminate
the tower-like structure observed in traditional Manhattan
plots, leaving a single peak standing alone. Wang and Xu
(2019) argue that a single peak in association analyses is sup-
posed to be better, because the signal is cleaner and stronger.
Comparatively, the absence of multiple testing correction is
also a new trend, since the strength of the associations are
reported probabilistically using the PIP values. While most
studies are reporting a threshold of PIP > 0.1 to declare can-
didate markers (Armstrong et al., 2018; Chaves et al., 2016;
Lucas et al., 2018), herein we used a more conservative value
(PIP > 0.4). Another key difference in the model formulation
is the use of an extra fixed effects for correction of cryp-
tic relatedness. There is cumulative evidence indicating that
the genetic relationships between the individuals can be cap-
tured by the markers themselves, without the requirement for
additional corrections for the population or sample structure
(Kärkkäinen & Sillanpää, 2012).

Using the parameters estimated via BSLMM, we concluded
that most of the coffee traits have a complex nature. For traits
with a quantitative nature, we argue that genomic-assisted
breeding can be more effective when framed in a genomic
selection context. Genomic selection relies on high-density
genotyping, so that most loci that regulate a trait are in LD
with one or more molecular markers. Contrary to genomic
selection, a more direct form of marker-assisted selection
relies on the use of few molecular markers to predict the
genetic merit. For that, markers associated with morpho-
logical (PRT), post-harvest (RES, GREEN, and CHERRY),
yield stability (YIELD), and disease resistance (RUST and
LBLIGHT) showed an oligogenic nature, with few molecu-
lar markers accounting for a large portion of the phenotypic
variance.

For morphological traits, we highlight a major QTL for the
PRT trait identified in the chromosome 2. Expressed later
during the coffee development, the full potential of plant
architecture is commonly screened in coffee trees after 3 or 4
years of plant development. For the first time reported in the
coffee literature, a molecular marker associated with pheno-
typic variation on PRT could be used to select upright plant
architectures in earlier stages and potentially accelerate the
breeding process for machine harvest. In a scenario where
several countries have faced labor shortages, leveraging the
selection of cultivars more prone to the mechanization of
harvesting operations can be beneficial for the entire coffee
chain.

Also relevant, climate-smart cultivars involve a new gener-
ation of cultivars more resilient to infestation of insects and
disease. We reported simple genetic architecture for both rust
(RUST) and leaf blight (LBLIGHT) —both important coffee
diseases. While RUST resistance has long been studied in cof-
fee using family approaches (Alkimim et al., 2017; Pestana
et al., 2015), we presented novel evidences of a group of major
QTL markers associated with LBLIGHT resistance. The most
interesting association was a genomic region mapped in chro-
mosome 3, with a putative gene encoding a disease resistance
protein RGA3. Briefly, plants respond to insect and pathogen
invasion via pathogen recognition receptors (PRRs) in the cell
(Noman et al., 2019). Resistance gene analogs (RGAs) are
responsible for intracellular signaling in the cell to activate
plant defense genes.

Another region of particular interest was identified in the
chromosome 5, with an SNP associated with yield stabil-
ity. Although it is not technically classified as “major QTL”
(PIP < 0.), we encourage future validation studies to target
this genomic region, given the importance of the trait for
the crop. Among the multiple genes detected in this genomic
window, the most interesting was related to protein kinase
domain-containing and zinc finger family. Interestingly, both
domains were also related to drought tolerance and grain yield
in rice, when assayed in an expression profiling trial using
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F I G U R E 6 Reciprocal recurrent selection assisted by molecular markers applied to Coffea canephora. Both botanical groups (Robusta and
Conilon) are suggested to be improved independently, following the four major steps of population improvement associated to cyclical breeding
design. Rapid-cycle assisted by marker-assisted selection (MAS) is advised. Heterosis is leveraged by selecting the best inter-specific hybrids, based
on genomic prediction methodology.

RNAs from stress-treated plants (Jeong et al., 2010). An addi-
tional line of evidence was reported by Coelho de Sousa
et al. (2022), who also reported markers with large effects
in the same chromosome using artificial neural networks for
association analyses.

Altogether, for MAS implementation, we have restricted
our discussion on three main QTL that can lead to a direct
impact on developing climate-smart cultivars by leveraging
yield, disease resistance, and harvest mechanization. We also
reported other important associations for bean size and out-
turn index of transforming raw coffee into processed beans
(Table S9). Being aware that all biological significances of the
associations are primarily speculative, we view the work pre-
sented here as just a starting point and believe that our results
are sufficiently promising to justify further validations at the
molecular level.

4.4 Genomic-assisted breeding: A new
paradigm for fast coffee improvements

Collectively, our results suggest that future coffee efforts
should be focused on exploring the hybrid vigor between
both botanical groups but assisted by molecular breeding.
In C. arabica, for example, a first generation of hybrids
was developed between 1990 and 2013 by a consortium of
research and coffee organizations (Turreira, 2022). Designed
as crossbreeding between phylogenetically distant cultivars
from American and wild cultivars from Africa, the hybrids
gained popularity among growers in Central America because
the high production, cup quality, and resistance to pests
and diseases (Turreira, 2022; Van der Vossen et al., 2015).

For C. canephora, we proposed a reciprocal recurrent selec-
tion scheme integrated with marker-assisted selection, where
crosses between "Robusta" and "Conilon" pools are explored
and the best inter-specific hybrids are considered for product
development or population improvement (Figure 6). Similar
breeding scheme usage was also discussed by Leroy et al.
(1993) and Ferrão et al. (2019); here we introduce the nov-
elty of taking into account genomic information, framed in
the form of MAS and genomic prediction.

To explore the hybrid vigor, we first stress the importance
of identifying contrasting parents in both population pools.
To this end, a specific set of molecular markers (e.g., SSR
marker system) can be used to classify divergent parents,
as suggested in C. canephora by Ferrão et al., Rodrigues
et al. (2015), and L. C. Souza et al. (2021). After defining the
parental crosses, both populations can be improved indepen-
dently. The selection criteria based on phenotypic selection
or via genomic-assisted breeding are notably different. When
guided exclusively by visual selection, population improve-
ment is a laborious process that involves large experimental
areas and a minimum of four production harvests in coffee to
estimate the value per se of a genotype. At this stage, we argue
that MAS has its momentum. Markers reported in this study
with a large effect on the phenotypic variance of a give trait
can assist the selection of promising materials in both genetic
pools accelerating the breeding process. As a tangible exam-
ple, Akpertey et al. (2020) reported SNPs in C. canephora
assayed using KASP markers. A similar technology could be
used in this breeding design.

The second stage in a reciprocal recurrent selection design
relies on generating and selecting the best inter-specific
hybrids. We propose to use genomic prediction. Unlike the
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MAS approach, genomic prediction relies on higher marker
density and therefore leads to a larger predictive ability.
There are several lines of evidence, including in coffee, sup-
porting the benefits of genomic selection in reducing time
and accelerating genetic gains (Alkimim et al., 2020; Car-
valho et al., 2019; Ferrão et al., 2017, 2019a; Sousa et al.,
2019). However, to be applicable in coffee, we stress the
importance of developing a large training population for accu-
rate estimation of genomic estimated breeding values. Future
investigations should also consider drink-quality and multi-
environmental trails for the success of genomic selection
investigation.

A major challenge faced in this study was the fact that the
phenotyping C. canephora is a perennial crop with a long
generation cycle that requires large experimental areas. From
a genetic standpoint, the species is subjected to inbreeding
depression, late expression of target traits, and susceptibility
to seasonal variations. All these aspects make the breeding
process strictly challenging and labor-intensive. To circum-
vent it, we opted to visually assess some of the traits addressed
in this study. Although a common practice in plant breed-
ing, visual scores are more prone to errors and subjectivity,
even when performed by experienced breeders. This may
have been the case of the contrasting results observed in
the Diallel and GWAS populations for the LBLIGHT, MAT,
and LMINER traits. We sought to reduce the subjectivity on
visual evaluations, by collecting phenotypic data with expe-
rienced breeders over multiple years. The use of phenomics
is a cutting-edge area prompting further research by the cof-
fee community. Automatic phenotype acquisition based on
image analyses has the potential to be included in the breed-
ing design (Figure 6) and improve the throughput and quality
of phenotypic data acquisition.

5 CONCLUSION

Altogether, in this study, we have demonstrated that improve-
ments in C. canephora can be accelerated using genomic-
assisted breeding. We highlight two main contributions: (i)
we draw attention to the importance of nonadditive effects
and suggested that future breeding strategies might consider
"Robusta" and "Conilon" as independent genetic pools in
reciprocal recurrent selection assisted by molecular mark-
ers; (ii) we dissected the genetic architecture of coffee traits
and highlighted a group of oligogenic and polygenic traits
that are more suitable to be assayed in genomic selection
and MAS experiments, respectively. Overall, when com-
pared to traditional phenotypic methods, we expect that
the methods presented here can maximize future genetic
gains and accelerate the breeding of climate-smart coffee
cultivars.
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