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ABSTRACT

Agricultural monitoring systems based on optical satellite
imagery aim to provide up-to-date information regarding
large scale food production. However, the frequent presence
of clouds during the annual crop cycle in tropical regions
hampers image acquisition and leads to the use of images
from active sensors (Radar), which are less affected by
meteorological conditions such as precipitation. The present
work aimed to identify the impacts of precipitation on the
backscattering coefficient from Sentinel-1, in areas with
agricultural landscape. We found no correlation between the
precipitation and backscattering. In terms of classification
accuracy, looks more advantageous to keep all crop images,
given the greater accuracy and the shorter time in the
processing.
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1. INTRODUCTION

In the current population growth scenario , an increase of
70% in food production will be needed by 2050 compared
to 2005 [1]. To achieve this goal, it is necessary to
improve agricultural monitoring systems for better land
use management and sustainable food production. Remote
sensing techniques play a pivotal role in agricultural
monitoring systems due to their ability to cover large
areas [2]. However, most of these assessments are carried
out with optical sensors, which are limited to the presence
of clouds in tropical regions [3]. FFor this reason, the use of
synthetic aperture radar (SAR) data has been exploited, since
they are less affected by cloud interference [4], [5].

Despite the growing interest in using SAR data for
agriculture, some factors directly affect its properties, such
as the dielectric constant, which is related to humidity
and precipitation [6]. Nevertheless, there is no consensus
about how precipitation interferes with the backscattering
coefficient.

Thus, this work aims to evaluate the use of SAR data for
agricultural monitoring during periods of precipitation. From
the results obtained it will be possible to infer the impact
of precipitation on the backscattering coefficient in different
cropsand phenological stages.

2. MATERIAL AND METHODS

2.1. Study area

The study area is located in Sinop - Mato Grosso state (Figure
1). The region has climate type Am according to the Köppen
classification, with short dry season [7]. The average annual
precipitation ranges from 1800 to 2300 mm (Figure 2). The
landscape of the region is composed of forest, pasture, and
crops.

At the end of the crop year from 2020 to 2021, land
use and land cover information were collected through field
campaigns (Figure 1).

Figure 1: Study Area in Sinop region, Mato Grosso, Brazil.

Figure 2: Monthly accumulated precipitation in the Sinop
region, Mato Grosso, Brazil. Source: NASA POWER
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2.2. Precipitation Data

The precipitation data were obtained fromthe MERRA-2
Satellite provided by the Prediction Of Worldwide Energy
Resources (NASA POWER) platform. This product has a
spatial resolution of 200 meters and precipitation information
of millimeters per day. We acquired daily precipitation from
September 2020 to August 2021 (one agricultural year), for
the study area.

2.3. SAR data

We acquired SAR images from Sentinel 1 (A/B) satellites,
which use a C band, with a frequency of 5.495 GHz,
spatial resolution of 10 meters, and temporal resolution
of 12 days (ESA, 2021). We acquired the acquisition
mode Interferometric Wide (IW), which provides double
polarization (vertical-vertical - VV and vertical-horizontal -
VH). The other features of the images are processing Level
1, Single look complex (SLC), and Ground Range Detect
(GRD). A total of 23 images were downloaded.

In addition, the preprocessing step was performed in
the Sentinel Application Platform (SNAP) software. The
preprocessing consisted of calibrating the images to obtain
the backscatter coefficients, conversion of backscatter to
decibels (Db), noise reduction using the Lee filter, and a
terrain correction to correct geometric distortions [8] [9].

In addition to the VV and VH backscatter coefficients,
coherence products were also acquired through
Interferometry techniques (InSAR). InSAR is a technique
that explores the phase difference between two SAR images,
acquired under the same geometric conditions [10]. The
similarity between both images works as a measure of the
stability of the targets, and, therefore, has been applied in
several studies aimed at agricultural monitoring [11]. Thus,
from the Alaska Satellite Facility platform, 31 coherence
products were obtained for the study area [12].

2.4. Optical data

To compare the phenological stage of the crop, precipitation
levels, and their impacts on the backscatter coefficients,
NDVI (Normalized Difference Vegetation Index) [13] images
of Sentinel-2 satellite were acquired using Google Earth
Engine (GEE) [14] platform. In total, 180 images were
acquired for the agricultural year 2020/2021.

NDV I =
NIR−RED

NIR+RED
(1)

Where NIR is the near infrared band and RED the red band.

The VV, VH, coherence, and NDVI data were normalized
on a scale from 0 to 1 as shown in 3, 4 and 5. In addition,
to evaluate the practical implications of removing or keeping
products with precipitation occurrence, using Google Earth
Engine [15], a supervised classification was executed. Two
different scenarios were tested, the first using all the products

in one season of agricultural year (Sep - Aug), and the second
only the products without precipitation in the 24 hours before
image collection.

The classifier Support Vector Machine (SVM) [16] was
used to classify the images into three different classes: native
vegetation, pasture, and double crop. Confusion matrices
were also generated for both scenarios and a table with
accuracy for each scenario and the kappa index.

Due to the lack of representative classes by crop (number
of samples greater than 30), it was decided to group the NDVI
values of all crops to evaluate the impact of precipitation on
the backscatter coefficient and coherence according to NDVI
values. Then, the normalized NDVI values were subtracted
from the mean and median values of the VV and VH and
coherence signals (Table 1). Regarding precipitation, values
were also grouped (considering the day of the satellite pass
and the previous day) into classes, to compare whether the
difference between NDVI and SAR values were altered
according to the variation of precipitation values.

3. RESULTS

The behavior of the attributes analyzed mainly about crop
development and precipitation, both backscatter values
increase with the development of the crop and then decrease
(Figure 3, 4 and 5). The behavior of coherence is the opposite,
before the development of the crop it presents values closer
to 1, indicating less change in the profile of the soil cover,
and from the development of the crop, the value of coherence
decreases, the alteration of the phenological stage of the plant
causes this reduction, until at the end of the crop cycle the
coherence value increases again and reaches values close to 1.

Figure 3: NDVI, Coherence, and Precipitation

Figure 4: NDVI, VH Backscatter, and Precipitation

Then, according to the data presented in the Tables 1
and 2 with the NDVI and Precipitation intervals, NDVI
is below 0.50, the mean and median differences between
NDVI and backscatter (both VH and VV) are greater, but

https://proceedings.science/p/164853?lang=pt-br 3089

https://proceedings.science/p/164853?lang=pt-br


Figure 5: NDVI, VV Backscatter, and Precipitation

are reduced as NDVI increases. However, such values do
not vary proportionally to precipitation, even when it reaches
values greater than 20 mm. There is no proportional, or
even expressive, change in any NDVI interval. This result
goes according to the one proposed by [17] which verified a
significant difference in backscattering in exposed soil areas,
but not as significant in vegetated areas.

NDVI Average NDVI - VH Median NDVI - VH Average NDVI - VV Median NDVI - VV Precipitation
<50 -0.2379 -0.2429 -0.1992 -0.1983 <1
<50 -0.4377 -0.4336 -0.4129 -0.4074 1-5
<50 -0.4261 -0.4359 -0.4146 -0.4309 5-10
<50 -0.5424 -0.5484 -0.5315 -0.5358 10-20
<50 -0.3657 -0.3368 -0.3052 -0.2844 20-30

50-75 -0.0852 -0.0882 -0.0454 -0.0468 <1
50-75 -0.1427 -0.1515 -0.1004 -0.0983 1-5
50-75 -0.1272 -0.1312 -0.0653 -0.0696 5-10
50-75 -0.1992 -0.2217 -0.1426 -0.1760 10-20
50-75 -0.1578 -0.1593 -0.0885 -0.0962 20-30
>75 0.0293 0.0109 0.0694 0.0633 <1
>75 0.0589 0.0611 0.0762 0.0739 1-5
>75 0.0850 0.0854 0.1395 0.1464 5-10
>75 - - - - 10-20
>75 0.0050 -0.0097 0.0627 0.0616 20-30

Table 1: NDVI difference values and VH, VV bands, grouped
by precipitation and NDVI.

NDVI Average NDVI - corr Median NDVI - corr Precipitation
<50 -0.5391 -0.6384 <1
<50 -0.0343 0.0340 1-5
<50 -0.3116 -0.3604 5-10
<50 -0.0521 -0.0260 10-20
<50 -0.0604 -0.0821 20-30

50-75 0.2332 0.2599 <1
50-75 0.3591 0.3750 1-5
50-75 0.3301 0.3662 5-10
50-75 0.3762 0.3898 10-20
50-75 0.2198 0.2927 20-30
>75 0.5048 0.5216 <1
>75 0.5438 0.5646 1-5
>75 0.3521 0.3347 5-10
>75 - - 10-20
>75 0.3766 0.4941 20-30

Table 2: NDVI difference values with coherence band, grouped
by precipitation and NDVI.

Figures 6 and 7 obtained from the classification allowed
us to visualize the distribution of training points in the study
area. In these figures it is possible to see the behavior when
we removed the images with precipitation in the previous 24
hours, that have a more significant presence of the pasture
class.

Native Pasture Double Crop
Native 44 2 0
Pasture 2 31 3

Double Crop 1 2 87

Table 3: Confusion matrix with all crop year data

Native Pasture Double Crop
Native 38 1 0
Pasture 3 15 4

Double Crop 0 12 99

Table 4: Confusion matrix only with products without
precipitation in the last 24 hours

Full No Precipitation
Accuracy 0,93 0,88

Kappa 0,88 0,78

Table 5: Accuracy and kappa index values

Figure 6: Classification SVM for the study area and location of
land use and land cover data collected in the Sinop region, Mato

Grosso, Brazil, using all available images.

Figure 7: Classification SVM for the study area and location of
land use and land cover data collected in the Sinop region, Mato

Grosso, Brazil, using only images without previous
precipitation.

4. DISCUSSION

Similarly, about the mean and median differences
between NDVI and coherence, there was a progression
of negative differences to positive differences during the
crop development cycle, however, this variation occurred
almost uniformly, regardless of precipitation values. It is
noted that, due to the temporal resolution of Sentinel-1, it
was not expected that the coherence would present clear
variations directly linked to precipitation values, but it could
be assumed that with high precipitation values, coherence
was unable to detect changes between images, which was not
observed.
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Therefore, the results demonstrate the non-influence of
precipitation on backscatter values for areas with crops.
Indicating that the precipitation variable may not be
significant as a criterion for removing Sentinel-1 products
from a homogeneous dataset, unlike that proposed by [18].

With the accuracy and kappa index of the classification
(Table ??), in addition to the confusion matrices (Table 3
and Table 5), the best case scenario is the one that uses all
images of the period. This remains contrary to that proposed
by [18], concerning the use of precipitation as a criterion for
the removal or not of Sentinel 1 products.

However, it is worth noting that the spatial resolution of
the meteorological data, of 200 meters, may have influenced
the results since the precipitation data were the same for the
entire study area. This fact may have been crucial so that
precipitation did not appear to be a criterion for the removal
or not of Sentinel-1 products.

5. CONCLUSIONS

In this work, we verified the degree of impact of precipitation
on the backscatter coefficient of SAR images . In any
polarization and also on coherence products, there was a
clear impact on signal values in agricultural crop areas.

Moreover, after performing a supervised classification
with and without the removal of data in the occurrence
of precipitation in the 24 hours before the passage of
Sentinel 1, there was no advantage in removing the dates
with precipitation in the 24 hours before the passage of
the satellite. Also, it was possible to notice that both
accuracy and kappa index had worse performance when the
classification was made by removing products with possible
interference of precipitation the previous 24 hours. Thus, at
first, it is suggested that such products should not be removed
from the database when precipitation occurs.

As further steps we suggest that this analysis be repeated
using local meteorological stations, aiming to increase the
precision of the results. Also, it suggested that the same study
be repeated using other SAR products, to evaluate possible
impacts in different wavelengths.
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