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Abstract: Currently, Brazil is the leading producer of sugarcane in the world, with self-sufficiency
in the use of ethanol as a biofuel, as well as being one of the largest suppliers of sugar to the
world. This study aimed to develop a predictive model for sugarcane production based on data
extracted from aerial imagery obtained from drones or satellites, allowing the precise tracking of
plant development in the field. A model based on a semiparametric approach associated with the
inverse Gaussian distribution applied to vegetation indices (VIs), such as the Normalized Difference
Vegetation Index (NDVI) and Visible Atmospherically Resistant Index (VARI), was developed with
data from drone images obtained from two field experiments with randomized replications and four
sugarcane varieties. These experiments were performed under conditions identical to those applied
by sugarcane farmers. Further, the model validation was carried out by scaling up the analyses with
data extracted from Sentinel-2 images of several commercial sugarcane fields. Very often, in countries
such as Brazil, sugarcane crops occupy extensive areas. Consequently, the development of tools
capable of being operated remotely automatically benefits the management of this crop in the field by
avoiding laborious and time-consuming sampling and by promoting the reduction of operation costs.
The results of the model application in both sources of data, i.e., data from field experiments as well
as the data from commercial fields, showed a suitable level of overlap between the data of predicted
yield using VIs generated from drone and satellite images with the data of verified yield obtained by
measuring the production of experiments and commercial fields, indicating that the model is reliable
for forecasting productivity months before the harvest time.

Keywords: digital agriculture; inverse Gaussian distribution; RPAS; Saccharum officinarum L.

1. Introduction

Sugarcane crops (Saccharum officinarum L.) in Brazil play a major role in agriculture
because of their enormous contribution to the production of biofuel and sugar, as well as
the growing importance of sugarcane bagasse in new sectors, such as the generation of
bioelectricity and the supply of renewable raw material (Vandenberghe et al. [1]). Brazil
has been the world’s largest producer of sugarcane for decades (Cursi et al. [2]), and a key
reason for this success has been the fast and continuous adoption of novel technologies by
farmers and industries associated with the sugarcane production in recent decades.

According to the National Supply Agency-CONAB, a Brazilian governmental agency,
the sugarcane production in the 2022/23 agricultural season reached a total of 598.3 million
tons, which was 3.9% higher than the production in the last season in 2021/22, despite the
occurrence of severe droughts and heat in the last years. Thus, as stated above, Brazil has a
notable agronomic scenario to develop technologies applied to this crop.
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It is well known that sugarcane crops cover large areas in Brazil, making it challenging
to evaluate crop performance in real-time by using traditional monitoring tools. Conse-
quently, the use of modern approaches based on aerial images obtained either by satellite
or by remotely piloted aircraft systems (RPAS) may be a viable option for surveying vast
portions of lands cultivated with sugarcane in an inexpensive and rapid manner. Variations
in aerial images of the canopies of cultivated areas are typically tracked by using vegetation
indices calculated from data of wavelength bands collected during different stages of crop
development, at different locations, and in cultivated fields adopting different agricultural
practices. Therefore, slight variations in growth conditions can be identified, compared, and
correlated by applying mathematical models. These vegetation indices are typically obtained
using mathematical combinations among spectral band data from proximal, suborbital, and
orbital sensors that are related to the quantity and development stage of vegetation in the area
where the spectral measurement was collected (Hoffman and Todd [3]; Simoes et al. [4]).

For this reason, vegetation indices have been increasingly used in studies to charac-
terize biophysical parameters, such as leaf area and green biomass, which indicate the
presence and condition of vegetation at a given time due to their strong correlation with
absorbed solar light [5]. Thus, these indices can differentiate vegetated areas from non-
vegetated areas, as well as identify stages of the phenological cycle of a specific agricultural
crop [6]. Ref. [7] used the NDVI (normalized difference vegetation index) to determine the
effect of soil chemical attributes, soil type, and rainfall on cotton yields and yield variability,
while [8] evaluated water potential and NDVI variability in four plant species growing in
a saline semiarid ecosystem in southern Sonora, Mexico. For the estimation of sugarcane
yield, Ref. [9] developed a specific model which uses vegetation indices based on RGB
image, digital elevation model, and digital surface model obtained from a camera installed
in RPAS. According to the results obtained by these authors, the model had high accuracy
for sugarcane fields in Thailand. Furthermore, [10] used vegetation indices obtained from
multispectral cameras coupled to RPAS to estimate sugarcane yield at the planting row
level during three different growth stages in fields located in Brisbane, Australia. These au-
thors used a generalized linear model, where the results showed that the best predictions
occurred during the growth stage.

In this context, classical linear regression models are widely used in various fields
of study (Cho et al. [11]; Liu et al. [12]; and Chaboun et al. [13]) and linear regression
can accurately identify cause-and-effect relationships among variables of interest. How-
ever, some dataset scenarios must be treated more carefully, for example, when explanatory
variables have a nonlinear effect on a variable response. In this case, the application of a
semiparametric model should be more appropriate.

Indeed, assuming that not all co-variates exhibit a linear effect associated with func-
tional and arbitrary dependence on other explanatory variables, alternative approaches
beyond parametric regressions should be taken into consideration. Ref. [14] proposed semi-
parametric generalized linear models in which the linear predictors were assumed to be of
the additive semiparametric type. Further, Ref. [15] proposed a generalized additive model
(GAM) that combines the technical features of generalized linear models with additive
models while [16] combined a nonparametric regression with parametric regression into a
semiparametric regression. In addition, Ref. [17] developed a generalized additive model
for location, scale, and shape (GAMLSS) sufficiently flexible to enable the simultaneous
introduction of an extensive variable of parameters. As exemplified below, several authors
have applied semiparametric models within this context: Ref. [18] showed the advantages
of GAMLSS for modeling and interpretation of possible nonlinear climatic impacts during
the growth of eucalyptus trees; Ref. [19] proposed additive semiparametric models for
symmetric distributions; and Ref. [20] used semiparametric and stochastic frontier models
to estimate the efficiency of maize production by smallholders in Zimbabwe.

Against this background, the present study aimed to develop a statistical model based
on the analysis of data generated from two field experiments (Field A and Field B) culti-
vated with four commercial varieties of sugarcane, as described in detail in the Section 2.
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Data from multispectral images collected by RPAS at the peak of sugarcane development
were compared to agronomic data measured directly from these two sugarcane experi-
mental fields to correlate vegetation indices with sugarcane production. Afterward, the
model was validated using yield data obtained from commercial sugarcane fields and
vegetation indices calculated from the time series of the Sentinel-2 satellite available on
the Google Earth Engine platform. In this sense, the hypothesis tested in this study can be
summarized as the application of VIs as predictors for sugarcane yield through a model
based on semiparametric statistics.

It follows that the main highlights of this study are (1) RGB and multispectral images
of sugarcane fields obtained by drones or satellites are an accurate and fast source of data to
evaluate sugarcane growth and biomass accumulation; (2) Adjustment of semiparametric
regression models applied to vegetative indices allows the accurate prediction of sugarcane
traits such as sugarcane yield; (3) The use of remotely collected aerial imagery can be used
as an alternative to combine or even replace laborious, expensive, and time-consuming
practices in sugarcane fields; and (4) The model of sugarcane yield prediction demonstrated
a reliable ability to overlap predicted data with observed data.

2. Material and Methods
2.1. Field Experiments

In this study, experiments were carried out in sugarcane fields during the agricultural
season of 2020/2021. These experiments were installed in two different locations and four
varieties of sugarcane were selected based on the trait of the production cycle (Table 1).
The first experiment, identified as Field A, was started in March 2020 and ended with the
harvest in April 2021. The second experiment, identified as Field B, was started in June
2020 and ended with the harvest in February 2021. The crop management practices carried
out in both experiments were similar to those applied in commercial fields, and standard
agronomic operations were used for all treatments in both fields.

Table 1. Sugarcane varieties identification and production cycle.

# Sugarcane Varieties Used in Field A Sugarcane Varieties Used in Field B Varieties Cycle

1 CTC1007 CTC1007 Normal
2 RB966928 RB966928 Early
3 CV0618 CV0618 Early to normal
4 CV7870 CV7870 Normal

Figures 1 and 2 illustrate the setup of both experiments in the field and the experi-
mental design as it was allocated in the field. A randomized complete block design, with
28 replicates per variety, was used for each field experiment. Each experimental plot in
Field A consisted of four 10 m long lines, spaced by 1.5 m (for a total area of 60 m2 per plot),
whereas each experimental plot in Field B consisted of four 9 m long lines spaced by 1.5 m
(for a total area of 54 m2 per plot). There were 112 plots per field and therefore a total of
224 experimental plots in the study.

The experiment in Field A was set up in the rural area of Tambaú, São Paulo, Brazil
(−21.708543, −47.246643) using sugarcane stalks with an average length of 1.5 m as
seedlings for each variety (Figure 1a). The experiment in Field B was set up in the ru-
ral area of Piracicaba, São Paulo, Brazil (−22.773005, −47.580135) using two-month-old
plantlets as seedlings for each variety (Figure 1c). In Field B, a drip irrigation system was
used to supplement the water supply during the first three months to enable the plantlets
to take root and grow (Figure 1d).



AgriEngineering 2023, 5 701

(a) (b)

(c) (d)

Figure 1. The field experiment setup was carried out in two independent areas. (a,b) Field A.
(c,d) Field B. In Field A cane seedlings were used (a) while in Field B plantlets were used (c) and drip
irrigation (d) during the initial stage of development.

(a) (b)

Figure 2. Design of experimental Fields A and B and sugarcane varieties randomization. (a) Field A,
and (b) Field B. The orthomosaics were generated by a drone DJI Phantom 4 Pro equipped with RGB
and multispectral cameras during the maturation stage.

2.2. Vegetation Indices

An ideal vegetation index must reflect small variations in phenological phases during
vegetation growth and reduce or even cancel interferences from the type and condition of
the soil, the geometry of the incident light at the study site, and atmospheric conditions [21].
The NDVI [22] takes advantage of the difference in the reflectance values in the red wave-
length region (between 620 and 640 nm) of the visible spectrum and the near-infrared
region (between 720 and 740 nm) and is calculated using Equation (1):
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NDVI =
ρNIR − ρR
ρNIR + ρR

, (1)

where:

• ρR is the reflectance factor of the red band; and
• ρNIR is the reflectance factor of the near-infrared band.

When the image does not provide multispectral bands, such as those obtained by
RGB cameras, the VARI [23] becomes an accessible alternative. VARI is calculated based
on reflectance values from the regions of red light (between 620 and 640 nm), green light
(between 500 and 565 nm), and blue light (between 450 and 485 nm), using Equation (2):

VARI =
ρG − ρR

ρG + ρR − ρB
, (2)

where:

• ρB is the reflectance factor of the blue band;
• ρG is the reflectance factor of the green band; and
• ρR is the reflectance factor of the red band.

2.3. Data Acquisition, Preparation, and Processing

At the end of the sugarcane cycle, the parameter of sugar production identified as Tons
of Cane per Hectare (TCH) was determined by weighing each experimental plot during the
harvest. The weighing was carried out with the help of a pressure transmitter (VKP-011,
Velki, Brazil) coupled to the hydraulic line of the mechanical claws used to collect the
bulk of cane stalks harvested per plot. The recorded pressure was then converted from
atmospheres (atm) to kilograms (kg) and the weight of each plot was converted to TCH
considering the plot area (60 m2 for Field A and 54 m2 for Field B). In the case of the cane
evaluation from commercial sugarcane locations used to validate the model, the weighing
was performed directly on trucks used to transport the raw material to the mill by using
truck scales at the moment of delivery.

The climate data for field experiments A and B were compiled from the NASA Power
database as indicated by [24] for the entire period that the sugarcane crop was growing in
the field. The dataset was uploaded directly from [25].

For both experimental fields, images were collected in February 2021 (at the peak
of biomass accumulation during the phenological stage of sugarcane maturation) using
an RPAS Model DJI Phantom 4 Pro, equipped with two cameras: an RGB that could
capture images in the visible spectrum; and a multispectral camera adapted to the RPAS,
model Sentera Single Sensor NDVI. The second camera had three spectral channels that
enabled posterior calculation of the near-infrared and red bands and of the vegetation
indices that depend exclusively on these bands [26]. These images were used to generate
orthomosaics with a spatial resolution of approximately 2 cm/pixel for calculating the
VARI and approximately 5 cm/pixel for calculating NDVI.

The mean values of the NDVI and VARI pixels within each experimental plot were
calculated and used in this study (Figure 3) and applied in the model. Further, they were
compared to the yield data obtained by the weighing carried out for each experimental plot
in the field. The dataset composed of vegetation indices obtained from the orthomosaics
generated by RPAS and yield biometrics in the two experimental fields were used only as
training and testing stages of the model developement.

The VARI and NDVI indices were also calculated for sugarcane commercial locations
used to validate the proposed model, based on satellite images. Section 2.5 describes in
detail the procedure used for this calculation.
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(a) (b)

(c) (d)

Figure 3. RGB orthomosaic images obtained from RPAS in February 2021 and calculated mean of
vegetation indices: (a) NDVI and (b) VARI for Field A; (c) NDVI and (d) VARI for Field B. The legend
shows the scale for polygons representing the mean values of the indices in each plot, where lower
values are in red, average values are in yellow and higher values are in green.

2.4. Statistical Modeling

The reparameterization technique of [27] was used in this study as follows.
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Let f (y) denote a probability density function (pdf) defined as:

f (y) =
1√

2πσ2y3
exp

[
− 1

2µ2σ2y
(y − µ)2

]
, (3)

where y > 0, µ > 0 and σ > 0. Consequently E(Y) = µ and Var(Y) = σ2µ3.
The inverse Gaussian semiparametric regression model—We used a semiparamet-

ric regression model based on the inverse Gaussian (IG) distribution [27] in this study.
We adopted a penalized likelihood function for the IG semiparametric regression model.

Regression analysis is based on criteria for the distribution of Yi corresponding to a
vector of predictor variables, which is denoted by xi = (xi1, . . . , xip)

T and is a vector of
covariates that can be categorical or even linear in the response variable. Let ti = (ti1, . . . , ti J)

T

be the vector of predictor variables that have a nonlinear effect on the response variable.
The systematic component of µi is defined as follows:

µi = exp

(
xT

i β +
J

∑
ξ=1

fξ(tiξ)

)
i = 1, . . . , n, (4)

where β = (β11, . . . , β1p)
T is the vector of parameters, fξ(·) is an unknown arbitrary smooth

function related to the predictor variable with a nonlinear effect (ti) that is controlled in a
nonparametric way, for i = 1, . . . , n; and ξ = 1, . . . , J is the number of predictor variables
with nonlinear effects.

Penalized log-likelihood function—Before establishing the penalized log-likelihood
function, it is necessary to define the smoothing function. In this study, the cs(·) function is
used that is implemented in the gamlss [28] package available in open source R [29] and
based on the cubic smoothing splines function smooth.spline(·). Note that the cs(·) function
does not perform smoothing but uses the attributes in the vector to aid smoothing; for more
details see [30].

Thus, the penalized log-likelihood for θ and f for the observed sample, is defined as follows:

lp(θ, f) = −n
2

log(2πσ2)− 3
2

n

∑
i=1

log(yi)−
1

2σ2

n

∑
i=1

[
(yi − µi)

2

µ2
i yi

]

−
J

∑
ξ=1

λξ

2
fT

ξ KξfT
ξ . (5)

where λξ > 0 is a smoothing parameter vector that characterizes the smoothness of
the curve, that is, it controls the quality of the curve fit. For the smoothed function
vector fξ = ( fξ(t1ξ), . . . , fξ(tqξ))

T , q is the number of distinct and ordered observations
of the covariate that is controlled in a nonparametric way, Kξ = Qξ R−1

ξ QT
ξ is a positive

definite matrix q × q, where Qξ is an order matrix q × (q − 2), and Rξ is an order matrix
(q − 2)× (q − 2); for more details, see Green and Silverman [31].

Thus, θ and f are estimated by maximizing Equation (5). We employ the RS estimation
algorithm [17] implemented in GAMLSS in the R package [28] for this purpose. The RS
algorithm does not use the expected values of the cross derivatives of the log-likelihood
but instead maximizes the likelihood function for each parameter (µ and σ) in cycles until
convergence is reached. Generally, the RS algorithm is stable and fast, and we have not
encountered any unforeseen problems regarding convergence and computational cost.

Residual analysis—Residual analysis is a very important tool for verifying whether a
considered model is adequate to explain the data. The quantile residuals (qrs) [32] for the
IG semiparametric regression model are as follows:

r̂i = Φ−1(ûi),

where Φ−1(·) is the inverse function of the standard normal cumulative distribution and ûi
is the qrs; more details can be found in gamlss [28].
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Comparison of the IG Semiparametric regression model with a multiple regression
model—To evaluate the performance of the proposed model developed in this study, the
comparison between the results from the IG semiparametric regression model against the
results from a multiple regression model, used as standard method, was carried out for the
same dataset applied during the model development and model validation. The parameters
of R2 and Root Mean Squared Error (RMSE) were calculated for both model approaches
and presented in Table 2.

Table 2. Estimated quantities for the fitted IG semiparametric regression model adjusted for sugar-
cane yield.

Effects Parameter Estimate SE p-Value

Intercept β0 1.461 0.415 <0.001
Block II β11 −0.003 0.025 0.899
Block III β21 −0.053 0.025 0.037
Block IV β31 −0.043 0.025 0.079
Field B β2 0.257 0.033 <0.001

Variety CV0618 β13 −0.077 0.025 0.002
Variety CV7870 β23 −0.101 0.025 <0.001

Variety
RB966928 β33 −0.029 0.025 0.251

log(σ) −4.377 0.047 <0.001

2.5. Model Validation

Validation is a crucial step for verifying the efficacy, precision, and accuracy of any
model. Therefore, the developed model was evaluated using the measured production
and the NDVI and VARI indices obtained from satellite images (Sentinel-2 at 10-m spatial
resolution) selected during the peak of biomass accumulation for the 30 fields of the six
commercial sugarcane locations labeled as A to F, and each location consisted of five fields
(see Table S2 and Figures S1–S7 in the Supplementary Materials).

The main difference between commercial fields and experimental fields was the size,
since experimental plots used for model development were in a scale of square meters,
while commercial locations used for validation were in a scale of hectares.

Similar to the procedure in the experimental stage using drone images, for each field
used during the validation, a synthesis image was generated via the Google Earth Engine
platform (GEE). The synthesis image of each field is the composition of the maximum value
of each pixel contained individually in each of the five plots of every location, considering
time-series of Sentinel-2 images, cloud-free, and with radiometric and atmospheric cor-
rection, within the period of 30 days during the vegetative peak of the agricultural crop
(coincident with the maturation phase).

Given the unavailability of dates provided in the validation dataset, MODIS satellite
time series were made available by using the Web application SATVeg (https://www.
satveg.cnptia.embrapa.br (accessed on 10 January 2023)). This application was used for
inference, in a graphic and visual way, of the time period of the vegetative peak and the
sugarcane harvesting for each plot of all locations used for validation. From its respective
composite image, for each plot, the mean value of the vegetation index (NDVI and VARI)
was calculated, making this new index dataset similar to the dataset used in the modeling
with the data from experimental fields A and B (Section 2.3). The TCH data for each of
these commercial locations was provided by the farmer/mill as described above.

3. Results and Discussion

In many practical applications, the response variable is affected by covariates, making
it essential to explore the relationship between the response variable and predictor variables.
There are also cases in which one or more covariates may have a nonlinear relationship
with the response variable. In these cases, it is necessary to use an adequate model and

https://www.satveg.cnptia.embrapa.br
https://www.satveg.cnptia.embrapa.br
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incorrect to use the typical linear regression model. Typically, the data fitness is checked
by using multiple linear regression models with normal distributions to verify that a
normal distribution is suitable for explaining the data. However, this study used an inverse
Gaussian (IG) distribution [27] instead of the normal distribution because fitting normal
regression models to data generated in this work produced residuals that did not have
a normal distribution and thus were in disagreement with the Shapiro–Wilk normality
test [33]. Consequently, it did not satisfy the assumption of normality of residuals.

3.1. Descriptive Analysis for the Model Development

Figure 4 shows the measured yield of tons of cane per hectare (TCH) for field experi-
ments A and B. Figure 4a shows the average production per sugarcane variety grouped for
the two experimental fields, while the Figure 4b shows the average production for each
sugarcane variety in each experimental field. Figure 4a also shows that the highest average
yields were obtained for the sugarcane varieties CTC1007 and RB966928 and the same result
was observed for the productivity of sugarcane varieties in each location separately, as
shown in Figure 4b. According to these results, a very similar tendency for the productivity
ranking among the sugarcane varieties tested was observed in both experimental fields.
These results agree with the concept that the genetic stability of the sugarcane varieties,
even when cultivated in different production systems, was not affected, indicating that the
experimental design was suitable for the proposed model.
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Figure 4. Average of sugarcane production in tons of cane per hectare (TCH). (a) Graphic for
production in Field A and Field B. (b) Graphic for the variety production at each experimental field.

The following variables were considered:

• yi: sugarcane yield (t/ha);
• xi1: block (I, II, III, and IV). In this case, we need three dummy variables, namely: (wi1,

wi2 and wi3);
• xi2: local (Field A and Field B); and
• xi3: variety (0 = CTC1007, 1 = CV0618, 2 = CV7870 and 3 = RB966928). Here, three

dummy variables were also used and defined as follows: (di1, di2 and di3);
• ti4: average NDVI; and
• ti5: average VARI, for i = 1, . . . , 224.

Here, xi1, xi2, and xi3 are categorical explanatory variables, and ti4 and ti5 are con-
tinuous predictor variables. Figure 5 presents an exploratory analysis of the relationship
between the response variable yi and the continuous explanatory variables ti4 (Figure 5a)
and ti5 (Figure 5b); note that there is a nonlinear relationship between the dependent
variable (yi) and the predictor variables. Thus, a semiparametric regression model must be
used for a more detailed interpretation of the action of ti4 and ti5 on (yi).
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Figure 5. Scatter diagrams for sugarcane production, NDVI average versus Productivity data (t/ha),
VARI average versus Productivity data (t/ha), from experimental Field A and B during model
development. (a) Productivity-t/ha (yi) versus NDVI average (ti4); (b) Productivity-t/ha (yi ) versus
VARI average (ti5).

3.2. Results of the IG Semiparametric Regression Model

The inverse Gaussian (IG) is a probability distribution that has been widely used in
recent decades to analyze data with right asymmetry. Using degradation data, Wang and
Xu [34] proposed a class of inverse Gaussian process models. To solve the multicollinearity
problem when present in the inverse Gaussian regression model, Shamany et al. [35] proposed
a two-parameter estimator, and demonstrated the excellent performance of the estimator,
using a real application of a chemometrics dataset. Recently Kinat et al. [36] proposed the use
of control charts based on generalized linear modeling (GLM) when the response variable
follows the inverse Gaussian distribution (IG). Meanwhile, Allison et al. [37] presented a new
class of goodness-of-fit tests for the inverse Gaussian distribution based on a characterization
of the cumulative distribution function.

Therefore, a semiparametric model based on an inverse Gaussian distribution (IG)
was developed to predict the sugarcane yield based on VI data. There are three categorical
covariates and two predictor variables with a nonlinear effect on yi. Thus, a semiparametric
regression model based on the IG distribution was applied with the use of the systematic
component (Equation (4)) and the prediction of variables (described in Section 3.1). Figure 6
presents the steps to arrive at the IG semiparametric regression model. From that, the
model below was obtained:

µi = exp

(
β0 + β11wi1 + β21wi2 + β31wi3 + β2xi2 + β13di1 + β23di2 + β33di3 +

5

∑
ξ=4

fξ(tiξ)

)
.

Next, we present the results of the adjusted regression model. Table 3 presents the
estimates, with their respective standard errors (SEs) and p values, for the adjusted model.
The covariates xi1, xi2, and xi3 are statistically significant at the 5% level, showing that there
is a difference between blocks, experimental fields, and varieties in relation to the sugarcane
yield. The variables Block I, Field A, and variety CTC 1007 were fixed as intercepts for
this analysis.

In terms of the generalized R-squared [38] the model was able to explain 73.8% (R2 = 0.7376)
of the data. Figure 7a shows the quantile residuals; it is noteworthy that these residues do not
exhibit a trend, proving the adequacy of the model. Figure 7b shows another goodness-of-fit
plot, the worm plot of the quantile residuals [39], which validates the model and proves the
plausibility of the fitted regression model for explaining the data.
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Figure 6. Flowchart indicating the main steps carried out during the model development.
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Figure 7. (a) Plot quantile residuals versus adjusted values; (b) Worm plot of quantile residuals.

Table 4 presents the results of the adjusted model for use in comparing the levels of the
covariate xi3. Note that there are differences among the varieties in terms of the productivity t/ha,
with statistically significant differences (at the 5% level) between CV0618 and CV7870 compared
to CTC1007 (anchored as intercept). The same result was observed for the production of varieties
CV0618 and CV7870 compared with the production of the variety RB966928. These results,
obtained by using the IG semiparametric regression model, were determined to be accurate
because they agree with the descriptive analysis presented in Table 3. Thus, it can be concluded
that the highest sugarcane yields were obtained for the CTC1007 and RB966928 varieties.

Table 3. Results of multiple comparisons of the IG semiparametric regression model.

Hypotheses H0 Estimate SE p-Value

CV0618–CTC1007 −0.077 0.025 0.002
CV7870–CTC1007 −0.101 0.025 <0.001

RB966928–CTC1007 −0.029 0.025 0.251

CV7870–CV0618 −0.024 0.024 0.313
RB966928–CV0618 0.048 0.024 0.045

RB966928–CV7870 0.072 0.024 0.003
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Table 4. Results from the fitted IG semiparametric regression model.

Effects Parameter Estimate SE p-Value

Intercept β0 4.653 0.685 <0.001
Location B β1 −0.036 0.050 0.491
Location C β2 −0.562 0.042 <0.001
Location D β3 −0.386 0.048 <0.001
Location E β4 −0.284 0.047 <0.001
Location F β5 −0.535 0.153 0.005

log(σ) −5.034 0.129 <0.001

3.3. Use of Spectral Indices as Predictors

The NDVI is one of the most well-known and widely used indices because of the ability
to reduce soil interference in the vegetation spectral response, atmospheric interference,
and the influence of the angle of solar light in multispectral images. The NDVI is not a
biophysical measurement but an indirect indication of plant health. However, the NDVI
can be influenced by external factors, including weather conditions, agronomic practices,
the occurrence of diseases, and nutritional deficits, among several other factors that affect
plant performance in the field. The technological evolution of multispectral sensors over
the last decade, mainly with regard to radiometric calibrations, has made the use of the
NDVI more reliable for agronomic applications [40].

The NDVI vegetation index is calculated using near-infrared to red wavelengths.
This index allows the detection of plant canopies in remote sensing data obtained using
multispectral cameras. For this reason, the use of NDVI enables easy monitoring of seasonal
changes in the development of crops cultivated in the field. The NDVI ranges from −1.0
to +1.0, where negative values typically indicate the presence of water bodies, low values
indicate areas with little vegetation, and high values indicate areas with high vegetation
vigor. NDVI values for sugarcane can reach saturation peaks of 0.8 approximately during
the final stages of growth and maturation because of the NDVI sensitivity to changes in the
plant canopy [4].

The VARI, similarly to the NDVI, can be used to enhance the presence of vegetation,
mitigate differences in light incidence, and perform corrections of atmospheric effects by
using length reflectance values only from the visible spectrum: thus, the VARI can be used
to indirectly estimate vegetation fractions with high precision over a wide range of optical
wavelengths [41].

In some cases, negative VARI values can be obtained even in the presence of vegetation.
The VARI is used to indicate the green level of a specific area in an image and can also be
used to detect stress in areas cultivated with sugarcane. The VARI is widely applied to
the analysis of RPAS images because the VARI can be easily determined using accessible
onboard RGB cameras with sensors that detect only reflectance in the visible spectrum [42].

Although both VARI and NDVI vary between −1.0 and +1.0, the VARI values are
typically lower than NDVI values for the same location at the same instant. In general,
both the NDVI and VARI are considered indirect indices of detectable variations in the
green biomass and leaf area of agricultural crops. In the case of sugarcane, which is
based on the production of biomass (leaves and stalks), these vegetation indices could
be used as indicators to help estimate the agricultural yield. The development and fine-
tuning of mathematical models are required to improve the precision of the estimated
yield. The results obtained using these indices could be mathematically interpreted as the
relationship function between the response variables associated with the agronomic growth
and development of sugarcane varieties influenced by environmental effects [43].

The behavior of predictor variables with nonlinear effects can be observed from the
estimated smoothed curves obtained using the IG semiparametric regression model shown
in Figure 8. The shaded region represents the 95% confidence bands for the smoothed
curve. A practical interpretation of these curves is given below.
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1. Figure 8a shows the average NDVI values: the average sugarcane yield increased
between NDVIs of approximately 0.70 and 0.85, but then remained constant for an
average NDVI close to 0.85.

2. Figure 8b shows the average VARI values: the average sugarcane yield increased
between VARIs of approximately 0.25 and 0.60.
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Figure 8. The plot of smooth functions fitted to predictor variables. (a) Average NDVI (ti4); and
(b) Average VARI (ti5). The data for predicted productivity values were obtained from VIs calculated
from RPAS images.

Figure 9 shows the predictions of the semiparametric regression model and the ob-
served values. These values refer to the sugarcane yield, and the predicted and observed
values are very close, proving that the statistical model is adequate. Thus, this model could
be used as an alternative prediction model for future experiments on sugarcane yield.
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Figure 9. Sugarcane productivity plot of predicted values (blue dots) calculated by the model
versus observed values (red dots) measured in experimental fields A and B. The data for predicted
productivity values were obtained from VIs calculated from RPAS (drone) images.
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3.4. Climate

Climate, as characterized by short-term weather, is one of the most important variables
influencing the success or failure of agricultural activity. Although the climate is a set
of complex natural phenomena, two parameters associated with climate are crucial to
achieving high productivity. These parameters are soil moisture, which is supplied during
the wet season, and temperature, for which the adequate range must be sufficient during
crop development. Sugarcane cultivated in Brazil is not typically irrigated. Thus, this crop
is highly dependent on rain during the wet season. Heat also plays an important role in the
development of sugarcane because sugarcane has a C4-type photosynthetic metabolism
that responds to high temperatures. However, both excess and lack of these parameters
will impair plant growth and consequently reduce yield.

During the 2020/2021 season, a few months of drought associated with high tem-
peratures occurred in the fields in which the experiments were conducted (Figure 10).
The plants developed slowly, very likely because growth was affected by the drought. With
subsequent regularization of the environmental conditions, both fields promptly recovered
fully, indicating the high resilience of sugarcane. Figure 10 shows that the temperatures
reached 40 ◦C for both Fields A and B during October 2020 and the rainfall rate was
less than 20 mm throughout July 2020. These environmental conditions are completely
unfavorable for agricultural practice.

Although the climate dataset for the field experiments was obtained from the database
of [25] during the whole period that the sugarcane was cultivated, this dataset was not di-
rectly involved in the model development. The reason for this decision was that the climate
data did not qualify as a quantitative variable for the modeling proposal. The most relevant
parameters from the climate data were the averages of maximum/minimum temperatures
and the data of monthly accumulated precipitation. The data of these climate parameters
from the experimental fields A and B are shown in Figure 10. However, considering each
experimental field individually, the climate data were just a constant parameter if compared
to the group of explanatory variables in each experimental field. Unlike the climate data
that were uniform, the dataset used for the modeling was obtained considering a transverse
study. Consequently, in this specific modeling scenario, due to the absence of variability in
each experimental field, the climate data did not fit the necessary requirements to be used
as an explanatory variable.
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Figure 10. Climatology information during the season of 2020/2021. (a) Average of maximum and
minimum temperature in Field A. (b) Monthly accumulated precipitation in Field A. (c) Average of
maximum and minimum temperature in Field B. (d) Monthly accumulated precipitation in Field B.
Source (a–d) Prepared with data from [25].
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4. Validating the Model with Data from Commercial Production Fields
4.1. Descriptive Analysis of the Validation Data

Note that Figure 11 shows that the highest average productivity occurred in Locations
A and B and the lowest average productivity occurred in Location C.
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Figure 11. Average sugarcane productivity graph (t/ha) for the six locations.

The following variables are defined below:

• yi: average sugarcane productivity (t/ha);
• xi1: location (A, B, C, D, E, and F), with five dummy variables, namely (wi1, wi2, . . .,

wi5);
• ti2: area (ha);
• ti3: average NDVI; and
• ti4: average VARI, for i = 1, . . . , 30.

The Location variable (xi1) is a categorical explanatory variable, and the area (ti2),
average NDVI (ti3), and average VARI (ti4) are continuous predictor variables. Figure 12
presents an exploratory analysis of the behavior between the productivity response variable
(yi) and each continuous explanatory variable. Note there is a clear nonlinear relationship
between the productivity response variable (yi) and the continuous explanatory variables,
showing that the IG semiparametric regression model needs to be used, as for the data
used during the model development.
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Figure 12. Scatter diagrams for sugarcane productivity data (t/ha) from locations A to F used during
model validation. (a) Productivity-t/ha (yi) versus Area-ha (ti2); (b) Productivity-t/ha (yi) versus
NDVI average (ti3); (c) Productivity-t/ha (yi) versus VARI average (ti4).
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4.2. Results of the IG Semiparametric Regression Model

Once more, before applying the IG semiparametric regression model to the data, a
linear regression model based on a normal distribution was fitted to the data, and the
Shapiro–Wilk normality test [33] showed once more that the residual distribution was not
normal; therefore, the IG distribution was considered and an IG semiparametric regression
model was used. The systematic component of the model is given below.

µi = exp

(
β0 + β1wi1 + β2wi2 + β3wi3 + β4wi4 + β5wi5 +

3

∑
ξ=2

fξ(tiξ)

)
.

Table 5 presents the estimated values with their respective standard errors (SEs) and
p values for the fitted model. Note that the covariate xi is statistically significant at the
5% level, showing that the average sugarcane productivity at Locations C, D, E, and F
are different from that of Location Am which was fixed as intercept for this analysis.
Later, the reference level of the variable xi1 (location) was changed to verify whether the
productivities at other locations differ statistically from each other.

For the model validation, the fitted semiparametric model was even more accurate
than the data from the model development, since it explained 92.1% (R2 = 0.9211) of the
data collected. Figure 13a shows that the quantile residuals are well dispersed and show no
trend, proving the fitness of this model. Note that the excellent results for the residuals in
Figure 13b, namely the worm plot of the quantile residuals [39], both validated the models
and proved the regression model was well-adjusted to the data, as shown by the analysis
of the residuals in Figure 7 in Section 3.2.
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Figure 13. (a) Residual analysis of the IG semiparametric regression fitted; (b) Worm plot of quantile residuals.

Table 6 refers to the other levels as a reference in the intercept (in addition to level
A which is already in Table 5). To reach results in Table 6, the level B was fixed and
compared with the other levels (excluding the level A which was already shown in Table 5).
This procedure of taking the variable as an intercept was also applied to the levels C, . . . , F.
Therefore, Table 6 presents the results of the adjusted model for use in comparing the levels
of the explanatory variable location (xi1).

It is worth highlighting that levels B,. . ., F of xi1 refer to the dummy variables
(wi1, . . . , wi5) described in the Section 4.1. Note that the average productivity of Loca-
tions C, D, E, and F differs from Location B, and the average productivity of Locations D
and E differs from Location C while the difference observed in the productivity for other
Locations are not statistically significant.
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Table 5. Test of hypotheses for local levels of average sugarcane productivity.

Hypotheses H0 Estimate SE p-Value

C–B −0.526 0.047 <0.001
D–B −0.350 0.046 <0.001
E–B −0.248 0.044 <0.001
F–B −0.499 0.139 0.004

D–C 0.176 0.039 0.001
E–C 0.278 0.045 <0.001
F–C 0.027 0.144 0.853

E–D 0.102 0.046 0.051
F–D −0.148 0.132 0.285

F–E −0.250 0.149 0.123

Figure 14 shows the estimated smoothed curves obtained using the IG semipara-
metric regression model for the predictor variables with nonlinear effect. The following
conclusions are drawn from this figure.

1. Figure 14a shows the area values in hectares (ha). Note that the average sugarcane
productivity was highest for areas between approximately 1 and 6 ha but then declined
for areas above 6 ha.

2. Figure 14b shows that the average sugarcane productivity increased between average
values of NDVI of approximately 0.75 and 0.80 but remained constant for average
NDVI values above 0.80.

3. Finally, Figure 14c shows that the average sugarcane productivity increased between
average VARI values of approximately 0.10 and 0.33, decreased between average
VARI values of approximately 0.33 and 0.45, and increased for average VARI values
of approximately 0.45 and higher.
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Figure 14. Plot of smooth functions fitted to predictor variables. (a) Area (ti2); (b) Average NDVI
(ti3); and (c) Average VARI (ti4). The data for predicted productivity values was obtained from VIs
calculated from satellite (Sentinel-2) images.

Figure 15 shows the predicted values of the IG semiparametric regression model and
the observed values. The predicted values are very close to the observed values, proving
the plausibility of the statistical model for explaining these data on sugarcane productivity
by using vegetation indices applied to different locations.
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Figure 15. Sugarcane productivity plot of predicted values (blue dots) calculated by the model versus
observed values (red dots) measured in commercial fields. The data for predicted productivity values
was obtained from VIs calculated from satellite (Sentinel-2) images.

4.3. Model Comparison

The IG semiparametric regression model was also compared to a multiple linear regres-
sion model (standard type of modeling using Inverse Gaussian distribution) which does not
consider the smoothing function. Table 2 presents a comparative summary between the two
models, and it is possible to notice that the predominance of the IG semiparametric regression
model was not only in the values of R2 but also due to the superiority related to the Root Mean
Squared Error (RMSE). The RMSE is a measurement that determines the average distance
between the model’s predicted values and the observed values from a dataset. Actually, the
smaller the magnitude of RSME, the better are the fit and predictive ability of the model. In
this way, the proposed semiparametric regression model might be suggested as an alternative
method rather than a multiple regression model for the sugarcane yield prediction.

Table 6. Evaluation metrics of semiparametric regression model IG and multiple regression model
for data obtained from field experiments and commercial production.

Statistical Measures IG Semiparametric Regression Model Multiple Regression Model

Field experiment data
R2 0.737 0.651

RMSE 16.109 16.776

Commercial production field data
R2 0.921 0.826

RMSE 5.998 8.657
RMSE: Root Mean Squared Error.

Although there is no previous report about the performance using a semiparametric re-
gression model, as with the model developed in this study, against other model approaches
using sugarcane yield data, it is worth remarking that [43], using regression random forest
models based on satellite, agronomic, and meteorological data, compared five methods for
sugarcane yield forecasting. These authors observed that the calibration of these models is
specific to a region and the application in localities with different conditions must require
the inclusion of more data in the training steps. They also observed that the model based
on the combined data of satellite and field could predict the sugarcane yield with the best
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accuracy when compared with the other models. Meanwhile, Refs. [44–48] comparing a
regression model with a principal component model, observed that the last one generated
better R2 values than the regression model for the forecast of sugarcane yield. Therefore, we
should take into consideration that the response of a specific model might be intrinsically
associated with the condition in which the model is applied and consequently, caution
must be taken to prevent spurious comparisons.

Additionally, Figure S6 in the Supplementary Materials shows that the model prediction
output was highly related to the measured production for all locations evaluated during the
model validation, indicating the assertiveness of this model to predict sugarcane yield.

5. Conclusions

The IG semiparametric regression model proved to be suitable for application to experi-
mental data (Section 3) by explaining 73.8% of the observed data based on the generalized
R-squared and explaining 92.1% of validation data obtained from commercial fields (Section 4).
For the model development, the predictor variables were “fields”, “varieties”, “NDVI”, and
“VARI”, and the CTC1007 and RB966928 varieties exhibited higher productivity in Field A than
in Field B. However, the same effect was not observed for the CV7870 and CV0618 varieties,
indicating the effectiveness of this type of approach in correlating data obtained from different
sources and in explaining the same phenomenon, in this case, sugarcane productivity. Mean-
while, for the model validation, the predictor variables were “Location”, “Area”, “NDVI”, and
“VARI”, and the productivity was found to be higher at Locations A and B than at other loca-
tions. Finally, in both scenarios (development and validation) described in Sections 3 and 4,
the results obtained from the IG semiparametric regression model were adjusted and agreed
with the respective descriptive data analysis. The model was also versatile for elucidating
the effect of continuous predictive variables (“Locations" or "Experimental Fields”, “NDVI”,
and “VARI”) on the response variable of the production (TCH) and was considerably easier to
apply than multiple linear regression models that only enable the identification of a positive
or negative direction associated with parameter estimation.

A residual analysis proved that the IG semiparametric regression model was well
adjusted to the data. That is, the proposed approach was able to satisfactorily model
datasets containing continuous predictor variables, including vegetation indices such as
the NDVI and VARI.

Additionally, to verify the statistical performance of the IG semiparametric regression
model, its versatility was compared to the standard multiple linear regression model
(modeling approach usually applied to inverse Gaussian distribution) and which does not
consider the smoothing function. The results indicated that the proposed semiparametric
model showed a better performance than the standard model.

Assessing field productivity parameters by using conventional methods of direct field
sampling can be inaccurate, tiresome, and time-consuming. Thus, this study demonstrated
that spectral indices, such as NDVI and VARI that are easily extracted from aerial images
collected with drones or satellites, provide a feasible alternative to support or even replace
non-automatic parameters. Additionally, results of model validation with on-farm data
indicate that the development of such tools can be worthy for daily-basis operations carried
out by farmers, improving the agronomic efficiency of their crops.

Thus, this research shows that the use of VIs from images captured by RPAS or
satellites can be used to predict sugarcane yield in a reliable way.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agriengineering5020044/s1.

Author Contributions: Supervision, G.M.d.A.C.; The experiments were designed and carried out
in the field by G.M.d.A.C., D.C. and F.J.S.; The data were analyzed by J.C.S.V., E.A.S., J.F.G.A. and
L.A.F.B. The article was written and reviewed by J.C.S.V., E.A.S., J.F.G.A., L.A.F.B. and G.M.d.A.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the project Embrapa-Coplacana-Faped, SEG 30.19.90.005.00.00.

https://www.mdpi.com/article/10.3390/agriengineering5020044/s1
https://www.mdpi.com/article/10.3390/agriengineering5020044/s1


AgriEngineering 2023, 5 718

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: To verify the possibility of using the data available in the supplemen-
tary material or the images collected in the field, please contact the corresponding author.

Acknowledgments: The authors would like to thank Gabriel Bellomi Schiavon from the Schiavon
Group for providing the dataset for commercial sugarcane fields and Denize P. dos Santos for
assistance with the data analysis.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Vandenberghe, L.P.S.; Valladares-Diestra, K.K.; Bittencourt, G.A.; Zevallos Torres, L.A.; Karp, S.G.; Sydney, E.B.; de Carvalho, J.C.;

Thomaz, S.; Soccol, C.R. Beyond sugar and ethanol: The future of sugarcane biorefineries in Brazil. Renew. Sustain. Energy Rev.
2022, 167, 1–18. . [CrossRef]

2. Cursi, D.E.; Hoffmann, H.P.; Barbosa, G.V.S.; Bressiani, J.A.; Gazaffi, R.; Chapola, R.G.; Fernandes, A.R., Jr.; Balsalobre, T.W.A.;
Diniz, C.A.; Santos, J.M.; et al. History and current status of sugarcane breeding, germplasm development and molecular genetics
in Brazil. Sugar Tech 2022, 24, 112–133. [CrossRef]

3. Hoffman, M.T.; Todd, S.W. Impact of environmental change on ecosystem services and human well-being in Africa. Clim.
Vulnerability 2013, 1, 49–67. [CrossRef]

4. Simøes, M.D.S.; Rocha, J.V.; Lamparelli, R.A.C. Spectral variables, growth analysis and yield of sugarcane. Sci. Agric. 2005, 62,
199–207. [CrossRef]

5. Gupta, R.K.; Vijayan, D.; Prasad, T.S. Comparative analysis of red-edge hyperspectral indices. Adv. Space Res. 2003, 32, 2217–2222.
[CrossRef]

6. Shukla, G.; Tiwari, P.; Dugesar, S.; Srivastava, P.K. Estimation of evapotranspiration using surface energy balance system and
satellite datasets. In Agricultural Water Management; Academic Press: Hoboken, NJ, USA, 2021; pp. 157–183. [CrossRef]

7. Rojo-Baio, F.H.; Neves, D.C.; Teodoro, P.E. Soil chemical attributes, soil type, and rainfall effects on normalized difference
vegetation index and cotton fiber yield variability. Agron. J. 2019, 111, 2910–2919. [CrossRef]

8. Gonzáles, H.H.S.; Penuelas-Rubio, O.; Argentel-Martinez, L.; Ponce, A.L.; Andrade, M.H.H.; Aguilera, J.G.; Hasanuzzaman,
M.; Teodoro, P.E. Salinity effects on water potential and the normalized difference vegetation index in four species of a saline
semi-arid ecosystem. PeerJ 2021, 9, e12297. [CrossRef]

9. Sumesh, K.C.; Sarawut, N.; Jaturong, S. Integration of RGB-based vegetation index, crop surface model and object-based image
analysis approach for sugarcane yield estimation using unmanned aerial vehicle. Comput. Electron. Agric. 2021, 180, 105903.
[CrossRef]

10. Akbarian, S.; Xu, C.; Wang, W.; Ginns, S.; Lim, S. Sugarcane yields prediction at the row level using a novel cross-validation
approach to multi-year multispectral images. Comput. Electron. Agric. 2022, 198, 107024. [CrossRef]

11. Cho, Y.; Khosravikia, F.; Rathje, E.M. A comparison of artificial neural network and classical regression models for earthquake-
induced slope displacements. Soil Dyn. Earthq. Eng. 2022, 152, 107024. [CrossRef]

12. Xi, L.; Afshin, D.; Petersen, A. Truncated estimation in functional generalized linear regression models. Comput. Stat. Data Anal.
2022, 169, 107421.

13. Chahboun, S.; Maaroufi, M. Performance comparison of k-nearest neighbor, random forest, and multiple linear regression
to predict photovoltaic panels’ power output. In Advances on Smart and Soft Computing: Proceedings of ICACIn 2021; Springer:
Berlin/Heidelberg, Germany, 2021; pp. 301–311.

14. Green, P.; Yandell, B. Semi-Parametric Generalized Linear Models; Springer: New York, NY, USA, 1985.
15. Hastie, T.J.; Tibshirani, R.J. Generalized Additive Models; CRC Press: Boca Raton, FL, USA, 1990; Volume 43.
16. Ruppert, D.; Wand, M.P.; Carroll, R.J. Semiparametric Regression; Cambridge University Press: Cambridge, MA, USA, 2003.
17. Rigby, R.A.; Stasinopoulos, D.M. Generalized additive models for location, scale and shape. J. R. Stat. Soc. Ser. C (Appl. Stat.)

2005, 54, 507–554. [CrossRef]
18. Hudson, I.L.; Kim, S.W.; Keatley, M.R. Climatic influences on the flowering phenology of four Eucalypts: A GAMLSS approach.

In Phenological Research; Springer: Dordrecht, The Netherlands, 2010; pp. 209–228.
19. Ibacache-Pulgar, G.; Paula, G.A.; Cysneiros, F.J.A. Semiparametric additive models under symmetric distributions. Test 2013, 22, 103–121.

[CrossRef]
20. Etienne, X.L.; Ferrara, G.; Mugabe, D. How efficient is maize production among smallholder farmers in Zimbabwe? A comparison

of semiparametric and parametric frontier efficiency analyses. Appl. Econ. 2019, 51, 2855–2871. [CrossRef]
21. Jackson, R.D.; Huete, A.R. Interpreting vegetation indices. Prev. Vet. Med. 1991, 11, 185–200. [CrossRef]
22. Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec.

Publ. 1973, 351, 309.
23. Gitelson, A.A.; Stark, R.; Grits, U.; Rundquist, D.; Kaufman, Y.; Derry, D. Vegetation and soil lines in visible spectral space: A

concept and technique for remote estimation of vegetation fraction. Int. J. Remote. Sens. 2002, 23, 2537–2562. [CrossRef]

http://doi.org/10.1016/j.rser.2022.112721
http://dx.doi.org/10.1007/s12355-021-00951-1
http://dx.doi.org/10.1016/B978-0-12-384703-4.00106-4
http://dx.doi.org/10.1590/S0103-90162005000300001
http://dx.doi.org/10.1016/S0273-1177(03)90545-X
http://dx.doi.org/10.1016/B978-0-12-812362-1.00009-6
http://dx.doi.org/10.2134/agronj2019.05.0375
http://dx.doi.org/10.7717/peerj.12297
http://dx.doi.org/10.1016/j.compag.2020.105903
http://dx.doi.org/10.1016/j.compag.2022.107024
http://dx.doi.org/10.1016/j.soildyn.2021.107024
http://dx.doi.org/10.1111/j.1467-9876.2005.00510.x
http://dx.doi.org/10.1007/s11749-012-0309-z
http://dx.doi.org/10.1080/00036846.2018.1558363
http://dx.doi.org/10.1016/S0167-5877(05)80004-2
http://dx.doi.org/10.1080/01431160110107806


AgriEngineering 2023, 5 719

24. Monteiro, L.A.; Sentelhas, P.C.; Pedra, G.U. Assessment of NASA/POWER satellite-based weather system for Brazilian conditions
and its impact on sugarcane yield simulation. Int. J. Climatol. 2018, 38, 1571–1581. [CrossRef]

25. The Power Data Access Viewer. Available online: https://power.larc.nasa.gov/data-access-viewer/ (accessed on 15 June 2021).
26. Nelson, R. W. What Agronomists, Crop Consultants, Producers, and Growers Need to Know before Choosing a Crop Scouting Sensor;

Sentera, LLC: Saint Paul, MN, USA, 2017.
27. Johnson, N.L.; Kotz, S.; Balakrishnan, N. Continuous Univariate Distributions, 2nd ed.; Wiley: New York, NY, USA, 1994; Volume 1.
28. Stasinopoulos, D.M.; Rigby, R.A. Generalized additive models for location scale and shape (GAMLSS) in R. J. Stat. Softw. 2007, 23, 1–46.

[CrossRef]
29. R Core Team. R: A Language and Environment for Statistical Computing. Version 3.6.3. R Foundation for Statistical Computing,

Vienna, Austria. 2020. Available online: https://www.R-project.org/ (accessed on 10 January 2023).
30. Stasinopoulos, M.D.; Rigby, R.A.; Heller, G.Z.; Voudouris, V.; De Bastiani, F. Flexible Regression and Smoothing: Using Gamlss in R;

CRC Press: New York, NY, USA, 2017.
31. Green, P.J.; Silverman, B.W. Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach; Chapman and

Hall: London, UK, 1993.
32. Dunn, P.K.; Smyth, G.K. Randomized quantile residuals. J. Comput. Graph. Stat. 1996, 5, 236–244.
33. Royston, J.P. An extension of Shapiro and Wilk’s W test for normality to large samples. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1982, 31, 115–124.

[CrossRef]
34. Wang, X.; Xu, D. An inverse Gaussian process model for degradation data. Technometrics 2010, 52, 188–197. [CrossRef]
35. Shamany, R.; Alobaidi, N.N.; Algamal, Z.Y. A new two-parameter estimator for the inverse Gaussian regression model with

application in chemometrics. Electron. J. Appl. Stat. Anal. 2019, 12, 453–464.
36. Kinat, S.; Amin, M.; Mahmood, T. GLM-based control charts for the inverse Gaussian distributed response variable. Qual. Reliab.

Eng. Int. 2020, 36, 765–783. [CrossRef]
37. Allison, J.S.; Betsch, S.; Ebner, B.; Visagie, J. On testing the adequacy of the inverse Gaussian distribution. Mathematics 2022, 10, 350.

[CrossRef]
38. Nagelkerke, N.J. A note on a general definition of the coefficient of determination. Biometrika 1991, 78, 691–692. [CrossRef]
39. Buuren, S.V.; Fredriks, M. Worm plot: A simple diagnostic device for modeling growth reference curves. Stat. Med. 2001, 20, 1259–1277.

[CrossRef]
40. Acker, J.; Williams, R.; Chiu, L.; Ardanuy, P.; Miller, S.; Schueler, C.; Vachon, P.W.; Manore, M. Remote Sensing from Satellites. Ref.

Modul. Earth Syst. Environ. Sci. 2014. [CrossRef]
41. Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote.

Sens. Environ. 2002, 80, 76–87. [CrossRef]
42. Shendryk, Y.; Sofonia, J.; Garrard, R.; Rist, Y.; Skocaj, D.; Thorburn, P. Fine-scale prediction of biomass and leaf nitrogen content in

sugarcane using UAV LiDAR and multispectral imaging. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102177. [CrossRef]
43. Luciano, A.C.S.; Picoli, M.C.A.; Duft, D.G.; Rocha, J.V.; Leal, M.R.L.V.; Maire, G.L. Empirical model for forecasting sugarcane

yield on a local scale in Brazil using Landsat imagery and random forest algorithm. Comput. Electron. Agric. 2021, 184, 106063.
[CrossRef]

44. Priya, S.R.K.; Bajpai, P.K.; Suresh, K.K. Use of data reduction technique for sugarcane yield forecast. Indian J. Sugarcane Technol.
2014, 29, 77–80.

45. Wieg, G.L.; Richardson, A.J.; Escobar, D.E. Vegetation indices in crop assessment. Remote. Sens. Environ. 1991, 35, 105–119.
[CrossRef]

46. CONAB—Companhia Nacional de Abastecimento. Available online: https://www.conab.gov.br/info-agro/safras/cana/boletim-
da-safra-de-cana-de-acucar (accessed on 1 February 2023).

47. Esquerdo, J.C.D.M.; Antunes, J.F.G.; Coutinho, A.C.; Speranza, E.A.; Kondo, A.A.; dos Santos, J.L. SATVeg: A web-based tool for
visualization of MODIS vegetation indices in South America. Comput. Electron. Agric. 2020, 175, 105516. [CrossRef]

48. Jacon, A.D.; Galvão, L.S.; dos Santos, J.R.; Sano, E.E. Seasonal characterization and discrimination of savannah physiognomies in
Brazil using hyperspectral metrics from Hyperion/EO-1. Int. J. Remote. Sens. 2017, 38, 4494–4516. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1002/joc.5282
https://power.larc.nasa.gov/data-access-viewer/
http://dx.doi.org/10.18637/jss.v023.i07
https://www.R-project.org/
http://dx.doi.org/10.2307/2347973
http://dx.doi.org/10.1198/TECH.2009.08197
http://dx.doi.org/10.1002/qre.2603
http://dx.doi.org/10.3390/math10030350
http://dx.doi.org/10.1093/biomet/78.3.691
http://dx.doi.org/10.1002/sim.746
http://dx.doi.org/10.1016/B978-0-12-409548-9.09440-9
http://dx.doi.org/10.1016/S0034-4257(01)00289-9
http://dx.doi.org/10.1016/j.jag.2020.102177
http://dx.doi.org/10.1016/j.compag.2021.106063
http://dx.doi.org/10.1016/0034-4257(91)90004-P
https://www.conab.gov.br/info-agro/safras/cana/boletim-da-safra-de-cana-de-acucar
https://www.conab.gov.br/info-agro/safras/cana/boletim-da-safra-de-cana-de-acucar
http://dx.doi.org/10.1016/j.compag.2020.105516
http://dx.doi.org/10.1080/01431161.2017.1320443

	Introduction
	Material and Methods
	Field Experiments
	Vegetation Indices
	Data Acquisition, Preparation, and Processing
	Statistical Modeling
	Model Validation

	Results and Discussion
	Descriptive Analysis for the Model Development
	Results of the IG Semiparametric Regression Model
	Use of Spectral Indices as Predictors
	Climate

	Validating the Model with Data from Commercial Production Fields
	Descriptive Analysis of the Validation Data
	Results of the IG Semiparametric Regression Model
	Model Comparison

	Conclusions
	References

