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Abstract: The differentiation of cultivars is carried out by means of morphological descriptors, in
addition to molecular markers. In this work, near-infrared spectroscopy (NIR) and chemometric
techniques were used to develop classification models for two different commercial sesame cultivars
(Sesamum indicum) and 3 different strains. The diffuse reflectance spectra were recorded in the
region of 700 to 2500 nm. Based on the application of chemometric techniques: principal component
analysis—PCA, hierarchical cluster analysis—HCA, k-nearest neighbor—KNN and the flexible
independent modeling of class analogy—SIMCA, from the infrared spectra in the near region, it
was possible to perform the genotyping of two sesame cultivars (BRS Seda and BRS Anahí), and
to classify these cultivars with 3 different sesame strains, obtaining 100% accurate results. Due to
the good results obtained with the implemented models, the potential of the methods for a possible
realization of forensic, fast and non-destructive authentication, in intact sesame seeds was evident.

Keywords: Sesamum indicum; NIR; PCA; HCA; KNN; SIMCA

1. Introduction

The seed Sesamum indicum L. is known in Brazil as sesame, belonging to the Pedalium
family; it is an annual or perennial herbaceous plant. Depending on the cultivar, it is
one of the oldest oilseeds in use by man, and there are records of its cultivation more
than 4300 years before Christ. In Brazil, it was introduced by the Portuguese in the 16th
century [1,2].

Sesame is considered as the ninth most cultivated oilseed in the world and an oilseed
of great economic importance. It is grown in more than 70 countries, especially on the
Asian and African continents, with India, Myanmar and China accounting for 51.96% of
world production [3,4].

Sesame seeds are small and flattened, and can present varied colors, ranging from
white to black, passing through to brown and golden yellow [2]. Sesame can be used in
the food, chemical and pharmaceutical industries. Its seeds contain over 50% of excellent
quality oil, reaching up to 63% in some varieties [2,5].

Sesame grains are consumed both fresh and in various culinary preparations. Due
to the new ways of using sesame seeds and their by-products, their economic importance

Biosensors 2022, 12, 69. https://doi.org/10.3390/bios12020069 https://www.mdpi.com/journal/biosensors

https://doi.org/10.3390/bios12020069
https://doi.org/10.3390/bios12020069
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com
https://orcid.org/0000-0002-9215-1177
https://orcid.org/0000-0001-6692-1329
https://orcid.org/0000-0002-3034-183X
https://doi.org/10.3390/bios12020069
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com/article/10.3390/bios12020069?type=check_update&version=2


Biosensors 2022, 12, 69 2 of 13

has been gradually growing. The sesame market is growing, especially in the bakery and
biscuit sectors [6].

Sesame has been used in the food industry, mainly in baking, especially for cookies
and sweets, and due to this use in baking, its consumption has been leveraged; since then
it has grown at a rate of 10% per year. Its main crop still remains for oil production [3].

Seeds and grains are used as raw material for the food industry. Several researches
have been carried out in order to find or even develop seeds of a good quality and improve
cultivars capable of providing increased productivity. Some cultivars are improved to
record pests, greater productivity and/or greater nutritional value [7]. For this reason,
they have the right to intellectual property that can be of a high market value [8]. The
identification of cultivars is of fundamental importance in the quality control of seeds and
grains, due to the growing need to protect them [9].

Sesame seeds have several varieties and cultivars, which have characteristics for
specific needs, such as the resistance to pests and edaphoclimatic conditions [10]. A good
and new cultivar must have characteristics different from the others existing ones, and
those characteristics must remain for successive generations [11–13].

The differentiation of cultivars is performed by means of morphological descriptors,
in addition to molecular markers, which is performed by the study of DNA [10]. Among
these markers, the most used are: RFLP (restriction fragment length polymorphism), AFLP
(amplified fragment length polymorphism), RAPD (random amplification of polymorphic
DNA) and microsatellites (ISSR—inter simple sequence repeats; SSR—simple sequence
repeats) [12,14]. In general, the procedure for identifying some cultivars is carried out by
planting the seed and, at least, one month is expected to pass so that, through their growth
and development, their morphological identification occurs [15].

The molecular analysis method also has the disadvantages of being destructive and
requiring expensive reagents that generate waste. In addition, these techniques require
professionals with technical qualifications [10].

Infrared spectroscopy in the NIR region is considered a powerful tool for the quan-
titative and qualitative analysis of chemical and physical variables, and can be applied
to samples of various types, such as from the pharmaceutical, polymer, petrochemical,
food and agricultural industries [15,16]. However, in order to obtain results from the
interactions with the analyte (seeds and grains), the development of chemometric mod-
els is required [12,17]. These techniques refer to mathematical models and methods and,
among these, multivariate statistics, which consider the correlation between many variables
analyzed simultaneously, allowing the extraction of a much greater amount of information.

Therefore, the techniques for evaluating the quality of seeds and grains, quickly and
non-destructively, can be applied for their selection and classification, mainly because it
is a food matrix, whose composition presents a high variability, being influenced by the
variety or cultivar, climatic conditions, soil and industrial processing [10,13].

Recent studies have demonstrated the potential of near-infrared (NIR) for the discrim-
ination of seeds, namely non-destructive phenotyping using near-infrared spectroscopy
developed classification models for two different commercial castor cultivars using PCA
and SIMCA [15]; the separation of 4 soybean cultivars by near-infrared spectroscopy using
PCA and HCA [18]; Fourier transform near-infrared spectroscopy combined with dis-
criminant analyses was successfully utilized to classify two cultivars of sweetcorn seeds,
based on the full-range wavelengths (1000–2500 nm) [19]; near-infrared spectroscopy and
supervised pattern recognition techniques were used to classify five different macadamia
cultivars based on intact nuts [20]; a near infrared (NIR) spectroscope as well as ED-XRF
were used for the non-destructive discrimination of sesame seed origins (Korean, Chinese
and Indian) [21]; and a discriminatory predictive model was used to determine the geo-
graphic origin of sesame seeds from Korea, China and other countries (India, Nigeria and
Ethiopia) by NMR-based metabolomics focusing on polar metabolites [22].

The scientific literature shows the application of NIR to classify the geographic origin
of sesame seeds; however, the chemical composition of the soil varies, as well as the
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climatic conditions. Some scientists performed the classification of cultivars through NIR
in seeds cultivated in the same soil and the same climatic conditions, which some call
“NIR phenotyping”.

Therefore, this study aims to demonstrate the classification of sesame cultivars through
intact seeds from the same soil and climatic conditions, using the unsupervised pattern
recognition techniques, PCA and HCA. Additionally, the development of sesame seed
cultivar and strain classification models were analyzed using the machine learning tech-
niques KNN and SIMCA, in spectra in the near-infrared regions, in what we could call
“NIR genotyping”.

2. Materials and Methods
2.1. Samples

For this study, samples of 2 cultivars and 3 different sesame strains were used, pro-
vided by the Brazilian Agricultural Research Corporation (Embrapa) in the city of Boa
Vista, State of Roraima. All sesame varieties were cultivated by Embrapa, at the Água Boa
Experimental Field, under the same conditions and soil type, harvested in the mature stage,
stored at 25 ± 3 ◦C at approximately 75% relative humidity. The cultivars were BRS Seda
and BRS Anahí, and the strains were 5, 16 and 17.

2.2. Near Infrared Spectroscopy

A total of 45 glass bottles containing seed samples of each cultivar and strain (without
treatment) were used; only pieces of the plants, leaves and other interferences were removed
before the acquisition of the spectra. The diffuse reflectance spectra obtained from the
infrared in the near-NIR region of the samples of sesame seeds were obtained at the
Nanobiotechnology Laboratory of the Bionorte Complex—UFAC, using the “Spectrum
Two FT-IR” spectrophotometer from PerkinElmer, with the diffuse reflectance accessory in
the NIR, in the spectral range of 14000 to 4000 cm−1 (700 to 2500 nm). The spectra were
acquired with a resolution of 8 cm−1 and an average spectrum of 50 scans in 30 s.

For the acquisition of spectra, the sesame seed samples, (a) BRS Anahí, (b) BRS Seda,
(c) strain 16, (d) strain 17 and (e) strain 5, were placed, whole, in 20 mL glass bottles with
uniform, transparent walls and backgrounds; samples from the 45 glass bottles containing
each cultivar and strain are shown in Figure 1.
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LinGe17 and (e) LinGe 5 in intact seeds, in a 20 mL glass bottle, for spectra acquisition. 
Figure 1. Sesame samples—cultivars: (a) BRS Anahí and (b) BRS Seda; strains: (c) LinGe16,
(d) LinGe17 and (e) LinGe 5 in intact seeds, in a 20 mL glass bottle, for spectra acquisition.

2.3. Data Processing and Statistical Analysis

The hierarchical cluster analysis—HCA and the principal component analysis—PCA
are used to create graphs that represent the largest possible amount of information con-
tained in a set of analytical data.
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PCA is considered one of the unsupervised pattern recognition (PR) methods that
are used to examine the similarities or differences between the samples [23]. It is used
to maximize the information that can be extracted from a set of spectroscopic data, as
it correlatively transforms an original set of variables into a smaller set of variables that
contain most of the information from the original set. In this way, it reduces the size of the
data in order to generate new variables that are not correlated.

HCA is a method of clustering analysis that is unsupervised, hierarchical and ag-
glomerative, which aims to build a division of groups, in which samples or variables are
grouped together in a hierarchical way from the closest (similar) to the most distant, being
then expressed in a tree structure (dendrogram) [24].

The matrix used in the PCA and HCA was composed of the spectral mean of the
45 glass bottles, totaling 225 lines (samples) and 4859 columns (wavelength).

Supervised pattern recognition techniques, also called classification methods, are
techniques used in machine learning, which is a subfield of artificial intelligence. The
classification methods, mostly used in the file of Chemistry, are the algorithms of the
nearest neighbor (k-nearest neighbor—KNN) and the flexible independent modeling of
class analogy (SIMCA) [25].

KNN is a supervised, non-parametric, discriminating and deterministic pattern recog-
nition algorithm. During the model construction process, each sample from the calibration
set (training) was excluded, and later classified using the remaining samples in the training
set, with this sample being excluded only once. Thus, cross-validation is already performed
simultaneously during the construction of the classification model [26].

One of the most used tools to check the accuracy of a classification is the error matrix,
also known as a consistency matrix or a consistency confusion matrix. It is a square matrix,
(n × n), where n is the number of classes in which the columns express the prediction errors
and successes, and the lines are the classifiers. The main diagonal lists the samples correctly
classified [24].

SIMCA is a supervised, parametric, probabilistic and modeling pattern recognition
algorithm, and a PCA-based technique, which models the multidimensional space formed
by the samples for class definition [27]. As each category in SIMCA is modeled indepen-
dently using the PCA; the number of main components for each class is calculated through
cross-validation in the calibration set.

SIMCA allows independent modeling, where each class is modeled separately and
is thus not influenced by samples from other classes; this is very useful for updating data
and models, as this method allows for the insertion of new classes into the model without
changing the classes that have already been modeled [28].

The matrix used in SIMCA and KNN was composed of the spectral average of the
45 glass bottles, for which 30 glass bottles of each cultivar and strain were used, generating
a calibration set with 150 samples. In the external validation set, 15 glass bottles of each
cultivar and strain were used, generating an external forecast set with 75 samples.

Spectra were obtained from the bottom of the flasks. Each spectrum was saved in
the “Spectrum” program, in JCAMPDX format, then imported into the computer software
The Unscrambler 9.2 for assembling the spectral matrices with 45 lines (samples) and
4859 columns (wavelength) in the case of sesame spectra. The spectral matrices were
assembled and transferred to the Pirouette 3.11 software, which was used for the application
of several chemometric methods, such as PCA, HCA, KNN and SIMCA.

To reduce the effect of noise, remove redundant information and enhance the sample-
to-sample differences, the rise in the baseline and the effect of light mirroring due to
diffuse reflectance, through some mathematical methods, such as the first and second
derivative, SNV (normal signal standardization), MSC (multiplicative signal correction),
EMSC (extended multiplicative scatter correction), moving average, Savitzky–Golay, among
other techniques and their combinations.
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3. Results and Discussion
Authentification of the Cultivars and Sesame Strain

The raw spectra (without pretreatment) in the near-infrared (NIR) region of the intact
sesame seeds, between 700 and 2500 nm, are represented in Figure 2. There is a band
(930 nm), related to the third overtones of the C–H stretching in various groups. There is
also a strong band (1200 nm) related to the C–H stretching of the second overtone (-CH2).
In approximately 1450 nm, we found an accentuated band, related to the O–H stretching of
the first overtone (water) and CO stretching of the third overtone (-CO). At 1500 nm, we
found, possibly, a C–H stretching of the first overtone. A strong peak can be observed at
1700 nm, possibly related to the C–O (oil) and C–H stretching of the first overtone (-CH2).
At 1765 nm, we found a stretching related to the C–H (oil) and C–H of the first overtone
(-CH2). A strong peak can be observed at 1940 nm, possibly related to the O–H bending
of the second overtone (water), and at 2300 nm, which is related to the C–H bending of
the second overtone (oil). Minor bands are observed at 2060, 2150, and 2180 nm, possibly
related to oil and hydrocarbons [29].
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Figure 2. NIR spectra without pretreatment of intact sesame seeds, in the region between 700 and
2500 nm.

It is possible to observe an elevation in the base line and a spreading of the NIR spectra;
this is caused by the inhomogeneity of the seeds, that is, by the differences in granulometry,
packaging and orientation of the seeds [18,30–32]. The different colored lines represent the
placed spectra of each sample. Note that due to the overlap it is not possible to perceive
the difference between the samples. Therefore, it is necessary to perform pre-processing of
the spectral signals in order to remove or soften the spectral noise, the rise in the baseline
and the effect of light mirroring due to diffuse reflectance, through some mathematical
methods, such as the first and second derivative, SNV (normal signal standardization),
MSC (multiplicative signal correction), EMSC (extended multiplicative scatter correction),
moving average, Savitzky–Golay, among other techniques and their combinations, for the
cultivar discrimination model generated is not biased or models noise [30–32].

After observing the good results obtained through the construction of the database
for phenotyping and the discrimination of intact seeds of sesame cultivars and strains
using infrared spectroscopy in the near region, signal pre-processing techniques and the
analysis multivariates PCA and HCA in different databases, we decided to expand the
model developed and verify the possibility of authenticating cultivars and strains in the
same NIR spectrum bank.

As previously noted, it is almost impossible to distinguish between samples using the
raw infrared spectra, and the inhomogeneity of the seeds and differences in particle size
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and orientation make this distinction even more difficult. Therefore, some mathematical
methods were applied before applying the unsupervised pattern recognition techniques,
HCA and PCA [33,34].

The dendrogram resulting from the application of the hierarchical cluster analysis—
HCA technique that showed the best result was obtained with data treatment centered on
the mean, Euclidean metric distance and incremental linkage algorithm, as a grouping rule.
It is necessary to first perform smoothing in the light scattering through the application of
the standard normal variation transformation—SNV in the spectra.

Figure 3 shows the dendrogram resulting from the application of hierarchical cluster-
ing analysis—HCA to NIR spectral data in intact seeds of sesame cultivars. The technique
was successful with the use of spectral treatment, with data centering on the mean, Eu-
clidean metric distance and incremental linkage algorithm, as a grouping rule associated
with the application of the standard normal variation transform—SNV associated with
baseline correction, considering the full spectrum (700 to 2500 nm). In this figure, it is
possible to observe the separation of two large, well-defined groups of the two sesame cul-
tivars, BRS Seda (in green) and BRS Anahi (in red). Researchers performed the geographic
discrimination of sesame through chemometric analysis, but this discrimination occurred
due to the different chemical compositions in the soil; however, it is possible to discriminate
two different sesame cultivars through HCA, grown in the same soil and under the same
climatic conditions.
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Figure 3. Phenotyping of sesame cultivars BRS Seda (in green) and BRS Anahí (in red), obtained
by the HCA technique with data centering on the mean, Euclidean metric distance and incremental
connection method associated with SNV + baseline correction, in the spectral region of NIR between
700 and 2500 nm.

The principal component analysis—PCA technique was also applied, with the use of
2 principal components, which were responsible for describing 50.57% of the total variance,
with 35.68% attributed to PC1 and 14.89% to PC2, according to the graph of scores presented
in Figure 4, in which the separation of two large groups can be observed, referring to the
phenotyping of the sesame cultivars (BRS Seda and BRS Anahí), in accordance with the
result obtained by the HCA.
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The results obtained corroborate with those in the literature, in which researchers are
able to discriminate the seed cultivars, such as soybean, castor beans and rice, through NIR
spectroscopy, or what some call NIR phenotyping, because the cultivars have different char-
acteristics from the other existing ones and these must remain for successive generations.

After these observations, we decided to expand the developed model and verify the
possibility of authenticating cultivars and strains in the same NIR spectra bank, considering
that the strains did not yet have distinct characteristics and therefore did not have the
cultivar status.

The unsupervised pattern recognition model is shown in Figure 5, which demonstrates
that when using the spectral data NIR (700 to 2500 nm) in the intact seeds of the sesame
cultivars and strains, it is possible to discriminate the samples. It can be observed, through
the hierarchical tree, that strain LinGe16 has a high similarity with BRS Seda and that the
LinGe5 sesame strain, according to the model, showed 70% similarity with the others (BRS
Anahí, BRS Seda and LinGe16).

However, it appears that the samples of the LinGe17 strain did not find similarity with
any of the samples of the other strains or cultivars, and, therefore, that the model would be
an excellent option, with great potential for identification, including forensics, of that strain
within the group of samples presented.

The principal component analysis—PCA technique was also used as an unsupervised
pattern recognition method in the spectra of sesame cultivars and strains; the data were
centered on the mean and then the SNV technique was applied.

Figure 6 presents the graph of scores from PC1vs. PC3, in which it is possible to
observe the discrimination of the 5 groups of seeds (the strains Ge5, Ge16 and Ge17 and
the cultivars BRS Anahí and BRS Seda), corroborating the result obtained by HCA. PC3
was responsible for describing 0.62% of the total data variance.
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Figure 6. Scores graph for PC1 vs. PC3, which shows the separation of sesame strains LinGe5 (red),
LinGe16 (yellow) and LinGe17 (black) l, and sesame cultivars: BRS Anahí (green) and BRS Seda
(blue), using NIR spectra in the region between 700 and 2500 nm, after centering on the mean and
applying SNV.

Through the application of HCA and PCA, it was possible to observe the discrimina-
tion between samples of different sesame cultivars and different sesame strains., As these
cultivars and strains were cultivated under the same climatic and soil conditions, we can
affirm that it is possible to carry out a “NIR genotyping”, as well as a possible construction
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of a database for the authentication of the sesame seeds and their respective cultivars and
strains, in view of the price variability between them.

After successfully conducting the exploratory analysis of the infrared spectra in the
NIR region using unsupervised pattern recognition techniques (principal component
analysis—PCA and hierarchical cluster analysis—HCA) for the discrimination of cultivars
and strains of the sesame seed, the sesame seed cultivar and strains classification models
were constructed using machine learning methods (supervised pattern recognition) using
the k-nearest neighbor techniques—KNN and flexible independent modeling by analogy
of classes—SIMCA in the studied NIR spectra.

In the calibration set, cross-validation was performed, in which a sample was taken
and the model was tested numerous times with the remaining samples. Therefore, it was a
parameter/test that proved the calibration adjustment of the model.

The classification models for sesame seed cultivars and strains were constructed
using the supervised pattern recognition techniques KNN and SIMCA in the NIR spectra
studied. For testing the models, 30 bottles containing sesame seeds were used in each
cultivar (BRS Seda (30 samples) and BRS Anahí (30 samples)) and in each strain (LinGe5
(30 samples), LinGe16 (30 samples) and LinGe17 (30 samples)), totaling 150 spectra for the
calibration set and 45 spectra for the external validation set (BRS Seda (15 samples), BRS
Anahí (15 samples), LinGe5 (15 samples), LinGe16 (15 samples) and LinGe 17 (15 samples)).

For the construction of the model, pre-processing centering on the mean was used and
the technique of multiplicative signal correction (MSC) treatment for the correction of the
effect of the scattering of light present in the obtained spectra, was caused mainly due to the
lack of optical homogeneity of the samples. The best model obtained is shown in Table 1,
in which the results of the prediction for the classification model created for sesame seeds
can be observed using KNN, as well as their respective predictions of the samples of the
calibration set and of the external validation for the strains (C1(LinGe5), C2(LinGe17) and
C3(LinGe13)) and cultivars (C4(BRS Seda) and C5(BRS Anahí)). The cells that are shaded in
gray, show the results obtained after the implementation of the model.

Table 1. Predictions of the samples used in the creation of the model and also of the samples from the
validation set for the NIR spectra using the KNN.

KNN
Calibration Set (150 Samples) Validation Set (75 Samples)

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

1 30 0 0 0 0 15 0 0 0 0

2 0 30 0 0 0 0 15 0 0 0

3 0 0 30 0 0 0 0 15 0 0

4 0 0 0 30 0 0 0 0 15 0

5 0 0 0 0 30 0 0 0 0 15

The developed KNN model proved to be efficient for the classification of seeds of
cultivar and sesame strains, as it correctly classified the 150 samples of the calibration set
and the 45 samples of the external validation set, that is, 100% accuracy. These results
demonstrate that the construction of a database using machine learning and NIR spec-
troscopy can make the seed authentication process much faster than traditional methods
and much less expensive for companies and research laboratories, as well as for inspection
bodies using portable NIRs, as well as being in line with the world policy of sustainable
development and green chemistry.

Figure 7 shows the three-dimensional plots of PC1 vs. PC2 vs. PC3 that were obtained
in the best calibration model of the flexible independent model by class analogy—SIMCA.
Strains: LinGe5 (Black), LinGe16 (red) and LinGe17 (green); cultivars: BRS Seda (blue) and
BRS Anahí (yellow).
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Figure 7. Three-dimensional graphs of PC1 vs. PC2 vs. PC3 of the SIMCA modeling applied to the
150 samples of the calibration set which are classified into 5 classes (strains (LinGe5, LinGe16 and
LinGe17) and sesame cultivars (BRS Anahí and BRS Seda)), using NIR spectra, in the region between
700 and 2500 nm, after centering on the average and applying MSC.

The SIMCA model built using 150 NIR spectrals from the sesame seeds (cultivars BRS
Seda (30 samples) and BRS Anahí (30 samples)) and strains (LinGe5 (30 samples), LinGe16
(30 samples) and LinGe17 (30 samples)).

Was used to predict the 75 sesame seed samples from the external validation set (culti-
vars BRS Seda (15 samples) and BRS Anahí (15 samples)) and strains (LinGe5 (15 samples),
LinGe16 (15 samples) and LinGe17 (15 samples)).

Figure 8 shows the three-dimensional plots of PC1 vs. PC2 vs. PC3, obtained in
the prediction of the external validation set for 75 sesame seed samples, through flexible
independent modeling by class analogy—SIMCA, after focusing on the mean and applying
MSC. Strains: LinGe5 (Black), LinGe16 (red) and LinGe17 (green); cultivars: BRS Seda
(blue) and BRS Anahí (yellow).

Table 2 presents the prediction for the classification model created for sesame seeds us-
ing the SIMCA technique, as well as their respective predictions of the samples from the cal-
ibration and external validation set for strains (C1(LinGe5), C2(LinGe17) and C3(LinGe13))
and cultivars (C4(BRS Seda), C5(BRS Anahí)). The cells that are shaded, in gray, show
the accuracy.

The constructed SIMCA model showed efficiency for the classification of the seeds
of sesame cultivars and strains, as it correctly classified the 149 of the 150 samples of the
calibration set.

Only one sample belonging to the class of LinGe17 was classified incorrectly in the
class of cultivar BRS Anahí, that is, 99.3% accuracy. In the external validation model, there
was only one error in which a sample belonging to the class of LinGe17 was incorrectly
classified as belonging to the class of LinGe16; therefore, 98.7% of accuracy was obtained.
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Figure 8. Three-dimensional graphs of PC1 vs. PC2 vs. PC3 of the SIMCA model for the prediction
of the classification of the 75 samples of the external validation set, which have the classification of
5 classes (strains (LinGe5, LinGe16 and LinGe17) and sesame cultivars (BRS Anahí and BRS Seda)),
using NIR spectra, in the region between 700 and 2500 nm, after centering on the average and
applying MSC.

Table 2. Prediction of the samples used in the creation of the model and also of the samples from the
validation set for the NIR spectra of sesame seeds using the SIMCA technique.

SIMCA
Calibration Set (150 Samples) Validation Set (75 Samples)

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

1 30 0 0 0 0 15 0 0 0 0

2 0 29 0 1 0 1 14 0 0 0

3 0 0 30 0 0 0 0 15 0 0

4 0 0 0 30 0 0 0 0 15 0

5 0 0 0 0 30 0 0 0 0 15

4. Conclusions

The technique of infrared spectroscopy in the near region by diffuse reflectance,
associated with the unsupervised pattern recognition techniques (principal component
analysis—PCA and hierarchical cluster analysis—HCA) and the machine learning tech-
niques (KNN—k-nearest neighbor and SIMCA—flexible independent modeling by class
analogy) were able to classify seeds of different sesame cultivars and distinct strains us-
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ing whole and intact seeds. This was performed in addition to discriminating cultivars
and strains of sesame seeds quickly, non-destructively and efficiently, without the use
of reagents and the generation of harmful residues, thus preserving the environment.
Based on our results, we can determine that our work has great potential to be applied in
agriculture and forensic investigations through “NIR genotyping”.
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