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Abstract

Studying structural variants that can control complex traits is relevant for dairy cattle produc-

tion, especially for animals that are tolerant to breeding conditions in the tropics, such as the

Dairy Gir cattle. This study identified and characterized high confidence copy number varia-

tion regions (CNVR) in the Gir breed genome. A total of 38 animals were whole-genome

sequenced, and 566 individuals were genotyped with a high-density SNP panel, among

which 36 animals had both sequencing and SNP genotyping data available. Two sets of

high confidence CNVR were established: one based on common CNV identified in the stud-

ied population (CNVR_POP), and another with CNV identified in sires with both sequence

and SNP genotyping data available (CNVR_ANI). We found 10 CNVR_POP and 45

CNVR_ANI, which covered 1.05 Mb and 4.4 Mb of the bovine genome, respectively. Merg-

ing these CNV sets for functional analysis resulted in 48 unique high confidence CNVR. The

overlapping genes were previously related to embryonic mortality, environmental adapta-

tion, evolutionary process, immune response, longevity, mammary gland, resistance to gas-

trointestinal parasites, and stimuli recognition, among others. Our results contribute to a

better understanding of the Gir breed genome. Moreover, the CNV identified in this study

can potentially affect genes related to complex traits, such as production, health, and

reproduction.

Introduction

Dairy Gir animals are tolerant to heat stress, diseases, and tropical parasites [1], making them

a relevant genetic resource for milk production in the tropics. Due to climate change, the Gir

breed could become important in temperate regions, mainly in crosses with taurine animals

[2]. The National Dairy Gir Breeding Program (PNMGL) uses DNA information to identify

genetic variants of beta-casein and perform a genomic selection of bulls and cows. Therefore,

identifying structural DNA variants influencing quantitative traits, such as copy number
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variations (CNV), is essential for Dairy Gir cattle genetic improvement. CNV involves the

presence of deletions and duplications greater than 50 base pairs (bp) between two individuals

of a species [3]. CNV can functionally contribute to the processes of domestication, breed for-

mation [4, 5], differentiation between indicine and taurine cattle [6, 7], and environmental

adaptation [7, 8], and it may also provide adaptive advantages to individuals [6, 9]. In previous

studies with cattle, CNV regions (CNVR) were related to milk production [10], hoof health

traits [11] and residual feed intake [12] in Holstein cattle, stature in Chinese cattle breeds [13],

navel length in Zebu cattle [6], and calf mortality in Wagyu cattle [14].

The CNV identified from whole-genome sequencing (WGS) and single nucleotide poly-

morphism (SNP) genotyping panels can vary in number, length, and distribution in the

genome [15, 16]. CNV detection using SNP panels is essentially based on two measurements:

Log R Ratio (LRR) and B allele frequency (BAF) from the genotyping process [17]. In WGS

data, structural variants (SV) are predicted from abnormal alignment patterns that suggest

genomic rearrangement breakpoints. There are four main approaches: read-pair (RP), split-

read (SR), read-depth (RD), and assembly-based (AS). Although WGS data approaches are

generally considered more precise and accurate, they may also call false positive variants [18–

20]. An alternative strategy to improve the probability of reliable CNV detection is incorporat-

ing different detection approaches and molecular techniques, such as WGS and SNP panels.

Despite CNVR ranging from two up to 7% of the bovine genome [21], genomic selection in

this species has been only directed toward using SNP markers. Genomic prediction integrating

SNP and CNV can offer new insights to elucidate complex traits and understand the propor-

tion of genetic variation not explained by SNP (missing heritability) [22]. The same study

reported that the genomic prediction integrating SNP and common deletions—present in at

least 5% of the population—resulted in increased accuracy for some traits in Nelore cattle.

The first step toward including SV, such as CNV, in genomic predictions and genome-wide

association studies (GWAS) is detecting and mapping this type of genomic variant. Thus, the

objectives of this study were to: (1) detect CNV in Dairy Gir cattle, (2) define high confidence

CNVR using two in silico methods, and (3) determine the genomic regions where high confi-

dence CNVR occurs that coincide with genes and quantitative trait loci (QTL) previously

related to production traits.

Material and methods

Samples, alignment, and preparation of sequencing data

Sires from PNMGL, conducted in partnership with the Brazilian Association of Dairy Gir

Breeders (ABCGIL) and Embrapa Dairy Cattle, were ranked based on a study of their perfor-

mance and progeny number in the PNMGL. The sires that had the most progeny in PNMGL

and were representative of all lineages in the population were selected for WGS. Genomic

DNA was extracted from semen straws obtained from commercial artificial insemination cen-

ters in Brazil. The institutional research ethics board of the São Paulo State University and

EMBRAPA did not require ethics approval for this study.

The DNA extraction and WGS were divided into two sets. For samples one to 13, DNA

extraction was performed using the DNeasy Blood & Tissue Kit (Qiagen, Valencia, CA, USA),

according to the manufacturer’s recommendations. The extracted DNA was quantified and

evaluated by the NanoDrop 1000 spectrophotometer (Thermo Scientific, Wilmington, DE,

USA). The samples were sequenced using the Illumina HiSeq2000 (Illumina Inc., San Diego,

CA, USA). The paired-end sequencing produced 2 x 100 bp and 2 x 200 bp reads, with an aver-

age sequencing coverage of 13.9X.
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For samples 14 to 38, DNA was extracted using a saline buffer and phenol/chloroform puri-

fication protocol, briefly described by Machado et al. [23]. The concentration and quality of

the isolated DNA were quantified using the Qubit fluorometer 2.0 (Life Technologies, Grand

Island, NY). The Illumina TruSeq Nano kit (Illumina Inc., San Diego, CA, USA) was used for

library preparation according to the protocols recommended by the manufacturer. The sam-

ples were sequenced using the Illumina NovaSeq 6000 (Illumina Inc., San Diego, CA, USA).

Reads measuring 2 x 150 bp were produced, with average sequencing coverage of 16.7X per

sample.

The quality of the reads was evaluated using the FastQC tool (v. 0.11.8) (http://www.

bioinformatics.babraham.ac.uk/projects/fastqc/), and the quality control followed the parame-

ters recommended by the 1000 Bull Genomes Project protocol (http://www.1000bullgenomes.

com, last accessed on 11/20/2020). The SeqyClean software [24] was used to remove: (1) reads

with three or more unidentified bases (N) in the sequences, (2) reads with an average quality

score less than or equal to 20 for Phred score (meaning a maximum probability that the

bases are incorrect of 0.01), and (3) reads less than 50 bases in length. Additionally, adapter

sequences and possible contaminants were also removed.

The reads from both sets were aligned to the bovine reference genome ARS-UCD 1.2 using

the mem option of the BWA algorithm [25] (v. 0.7.15-r1144-dirty). Conversion to binary for-

mat, sorting, and indexing were completed by Samtools [26] (v. 1.8), using the options view,

sort, and index, respectively. Optical and PCR duplicates were removed by the MarkDuplicates

option of Picard Tools [27] (v. 2.18.2-SNAPSHOT). Base quality score recalibration (BQSR)

was done using BaseRecalibrator and PrintReads of the Genome Analysis Toolkit [28] (GATK,

v. 3.8-1-0-gf15c1c3ef). BQSR is a data processing step that identifies systematic errors gener-

ated by the sequencing machine. All these steps followed the parameter recommendations by

the 1000 Bull Genomes Project guidelines. The set of known variants provided by the 1000

Bull Genomes project consortium was applied for BQSR. The flagstat option of Samtools was

used to calculate alignment statistics.

Genotyping samples

Sampling was conducted by herders during routine husbandry practices in their commercial

herds without research purposes. The institutional research ethics board of the São Paulo State

University and EMBRAPA did not require ethics approval for this study. Samples from 566

Dairy Gir animals were genotyped using the Illumina BovineHD BeadChip panel (Illumina

Inc., San Diego, CA, USA), which consists of 777,962 SNP distributed along the genome, with

a mean distance between markers equal to 3.43 kilobases (Kb) and median equal to 2.68 Kb.

SNP with a GenCall score below 0.15 were removed for quality control [29].

Out of the 566 genotyped animals, 36 individuals were also whole-genome sequenced. Prin-

cipal component analysis (PCA) was conducted using the genotype matrix to verify if there

was any population structure among the animals and evaluate the representativeness of the

sequenced individuals. The SNP map used was based on the reference genome ARS-UCD1.2,

and only autosomes SNP with known positions in the ARS-UCD1.2 assembly (720,731 mark-

ers) were used in the analysis. For PCA, SNP with minor allele frequency (—maf) less than 5%

and call rate less than 90%(—geno), and samples with a call rate less than 90% were removed

(—mind) using the PLINK software [30] (v.1.9).

CNV detection from sequencing data

CNVnator [31] (v. 0.4.1) was used for CNV detection. This software uses the RD approach

and performs a correction for the genome’s guanine-cytosine (GC) content. While RD is one
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of the most common approaches for CNV detection, it is less robust for the accuracy of the

CNV breakpoints resolution [19].

CNV detection was carried out only in autosomal chromosomes with a bin size of 250 bp

and a mean RD signal of 4.12, which aligns with Abyzov et al. recommendations [31]. Only

CNV larger than 1 Kb and smaller than 5 Mb [22], significant (p<0.05) for the t-statistic test,

in which the null hypothesis is if the mean signal of reads depth in the CNV region is the same

as the average signal depth in the sample, and with a fraction of low-quality mapped reads (q0)

less than 0.5 were considered for analysis.

DELLY [32] (v. 0.7.6) was also used for CNV detection to increase reliability. This software

applies the RP and SR approaches to detect CNV. The RP algorithm analyzes read libraries for

discordantly mapped read pairs. Then, the SR approach is used to refine the definition of the

SV breakpoints predicted by the RP approach.

DELLY enables the detection of duplication and deletion events in all individuals simulta-

neously since CNV identified in one individual (singletons CNV) tends to be false positives

compared to CNV identified in several individuals [33]. CNV detection was performed only in

autosomal chromosomes. The minimum mapping quality option (-q), which is the probability

that a read is aligned in the wrong place, was set to a value of 20, following the criteria of Khan

et al. [32]. Only CNV larger than 1 Kb and smaller than 5 Mb [22] and CNV with support

from more than four read pairs (paired-end support) were considered [34].

CNV identified from SNP genotyping

CNV detection using SNP panels was performed by PennCNV [17] (v. 1.0.5). This software

applies Bayesian methodologies of the hidden Markov model utilizing the Log R Ratio (LRR)

to measure the total signal intensity and the B Allele Frequency (BAF) to measure the propor-

tion of the B allele in the sample. The population frequency of B allele information was calcu-

lated using the BAF value of each SNP in all samples.

To reduce false-positive results, the LRR values of each SNP were adjusted for the genomic

waves along the genomic regions, taking into account the expected GC content in the bovine

genome in a region of 500 Kb around each SNP. Genomic waves refer to a signal noise related

to the GC content in the genome, which interferes with accurate CNV detection. Genomic

waves are defined as a genome-wide spatial autocorrelation or ‘wave’ pattern in signal intensity

data across all chromosomes [35]. Pedigree information was not used in the CNV detection.

CNV with more than 10 SNP, an LRR standard deviation no more than 0.30, BAF drift no

more than 0.01, a waviness factor no more than 0.05 [16], and CNV ranging from 1 Kb to 5

Mb in length were maintained [22].

High confidence CNVR

The CNVR identified from the results of different molecular techniques can be considered

as having high confidence [15]. Two sets of high confidence CNVR (CNVR_POP and

CNVR_ANI) were established to increase results reliability [16]. The CNVR_POP contained

common CNVR identified in all the studied population, and the CNVR_ANI included CNV

identified in the representative animals with both WGS and SNP genotyping data available.

To define the CNVR_POP set, CNVR detected from WGS data (CNVR_SEQ) and SNP

genotyping (CNVR_GEN) were used. The CNVR were determined by grouping CNV that

overlapped by at least 1 bp within each algorithm, using the merge option of the Bedtools pro-

gram [36] (v. 2.26). In CNVR_SEQ, a minimum reciprocal overlap criterion of 50% was con-

sidered between the CNVR detected by DELLY and CNVnator software, using the Intersect

option of Bedtools. After that, overlapping CNVR between CNVR_GEN and CNVR_SEQ sets
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were selected, with the same minimum reciprocal overlap criterion. From this, only the CNVR

present in at least 5% of the population were selected for the CNVR_POP set (S1 Fig).

To establish the CNVR_ANI set, only the 36 individuals that were both whole-genome

sequenced and genotyped were considered. For each of these individuals, common CNV

identified from the SNP panel and WGS data that reciprocally overlapped at least 50% were

retained. CNVR were determined by grouping CNV overlapping at least 1 bp. Only the results

of the PennCNV and CNVnator software were used in CNVR_ANI, as the detection of CNV

was performed by sample (S1 Fig).

The CNVR_POP and CNVR_ANI sets were merged for further analysis. Samplot software

[37] was used to visualize the unique high confidence CNVR identified in the WGS data.

Functional analysis

Genes and QTL were retrieved from the Ensembl Genes database (Ensembl Release 104)

(https://www.ensembl.org/, last accessed 05/11/2021) and the Animal Genome database

(https://www.animalgenome.org/cgi-bin/QTLdb/BT/index, last accessed 05/11/2021), respec-

tively. The GALLO package [38] from R software [39] was used to identify genes and QTL

overlapping unique high confidence CNVR. Terms from the Gene Ontology (GO) database

and biological pathways predicted by the Kyoto Encyclopedia of Genes and Genomes (KEGG)

database (https://www.genome.jp/kegg/, last accessed on 06/10/2021) were enriched (FDR<

0.05) using WebGestaltR package [40] in R software [39]. The enrichment analysis was per-

formed using the hypergeometric Over-Representation Analysis test. Biological terms in the

Gene Ontology are divided into three groups: Cellular Components, Biological Processes, and

Molecular Functions.

Terms from the Medical Subject Headings (MeSH) (https://www.ncbi.nlm.nih.gov/mesh)

were used for gene enrichment analysis (p-adjusted<0.05) through the meshes package [41] in

R software [39], using the gene2pubmed database option. The MeSH terms = were Anatomy

(A), Disease (C), Drugs and Chemicals (D), and Biological Sciences (G). The information

about the overlapping genes was obtained from RefSeq Genes (https://www.ncbi.nlm.nih.gov/

refseq/rsg/, last accessed on 06/10/2021) and GeneCards (https://www.genecards.org/, last

accessed on 06/10/2021).

Comparison of CNVR with previous studies

To compare CNVR from previous studies, autosomal CNV from eight studies available on the

Genomic Variant archive database (DGVa) of EMBL-EBI (https://www.ebi.ac.uk/dgva, last

accessed on 10/15/2021) were compared to the unique high confidence CNVR identified in

this study. Only two studies included samples of Gir animals [4, 42], and three included other

Zebu breeds [4, 42, 43]. One study detected CNV using array comparative genomic hybridiza-

tion (array CGH) [4], three studies used SNP panel data [42–44], and four studies used WGS

data [9, 45–47]. The number of breeds in the studies varied from one to 21, and the sample

size ranged from six to 539. To form the DGVa CNVR set, chromosome, start position, end

position, type, and study information were retrieved.

Copy number variants in those articles were detected using both bovine reference genomes

UMD3.1 [48] and BTAU_4.0 [49]. The variant’s coordinates were translated to ARS-UCD1.2

using the UCSC Genome Browser LiftOver tool [50]. The minimum ratio of bases that had to

be remapped was set to 0.4 [16], and default values were used for all other LiftOver parameters.

After translation to ARS-UCD1.2 positions, CNV overlapping at least 1 bp were merged. The

DGVa CNVR set resulted in 8,797 CNVR. The unique high confidence CNVR and the DGVa

CNVR were considered equal if the reciprocal overlap between them was at least 50%.
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Results

Alignment and pre-processing of sequencing data

After removing duplicates, paired-end sequencing produced 13,530,707,923 reads, where the

average total number of reads was 356,071,261 (min: 245,377,907, max: 486,209,902, median:

363,454,380, standard deviation–SD: 50,991,373). On average, 99.58% were mapped (min:

96.59%, max: 99.88%, median: 99.79%, SD: 0.69%). The average number of properly paired

reads was 94.88% (min: 84.38%, max: 97.98, median: 96.06%, SD: 3.63%). The mean coverage

was 16.36X (min: 10.20X, max: 25.00X, median: 15.95X, SD: 2.99X) (S1 Table).

CNV identified from sequencing data

For the CNVnator software, an average of 2,143 CNV per animal were detected (min: 1,554,

max: 3,844, median: 1,940, SD: 564.93). The total number of CNV was 81,447, with 53,876

deletions and 27,571 duplications. The mean size of the CNV was 17,239 bp (min: 1,249 bp,

max: 1,791,499 bp, median: 7,999 bp, SD: 42,662.99 bp). Pearson’s simple linear correlation

between CNV number and coverage was positive and significant (0.34, p = 0.04); this result

was expected due to the RD approach.

For the DELLY software, CNV detected in more than one individual were considered pop-

ulational CNV, and those detected in only one animal were singletons CNV. Multiple detec-

tions of 38 individuals generated 20,888 variants (20,351 populational CNV and 537 singletons

CNV). A total of 14,571 deletions (14,186 populational CNV and 385 singletons) and 6,317

duplications (6,165 populational and 152 singletons) were detected. The mean size of the CNV

was 179,007 bp (min: 1,000 bp, max: 4,983,990 bp, median: 11,518 bp, SD: 551,161.4 bp).

Genotyping samples

The mean SNP value per animal for the genotyped animals was 770,125 (min: 666,135, max:

774,163, median: 772,024, SD: 10,090.94). After quality control, 433,015 SNP remained, and

five animals were removed. No stratification was observed in the population. The genotyped

and sequenced animals were randomly distributed on the two-dimensional plot, representing

the diversity of genetic distances within the genotyped population (Fig 1).

CNV detected from SNP genotyping

The SNP map was based on the reference genome ARS-UCD1.2, consisting only of autosomal

SNP with known positions in the ARS-UCD1.2 assembly (720,731 SNP). In the SNP map,

7.35% of SNP were removed because they were not positioned on autosomal chromosomes or

had no known position in the ARS-UCD1.2 reference genome, and 9.46% of SNP were not

used due to their low GenCall score in the population.

After quality control, 547 animals and 652,560 SNP were used for PennCNV detection. A

total of 4,162 CNV were identified, with 2,510 deletions and 1,650 duplications. The mean

number of CNV per animal was 7.6 (min: 1, max: 90, median: 7, SD: 7). The mean number

of markers in each CNV was 25.16 (min: 10, max: 293, median: 17, SD: 19.26). The mean

size of the CNV was 122,807 bp (min: 10,180 bp, max: 1,371,933 bp, median: 58,988 bp, SD:

120,392.8 bp).

High confidence CNVR

In the CNVR_GEN, 489 CNVR were detected, with a mean size of 95,170 bp (min: 10,714 bp,

max: 1,410,517 bp, median: 50,517 bp, SD: 127,725.6 bp), covering a total of 46,538,246 bp of
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the genome. Among them, 428 were deletions, 55 were duplications, and six were considered

complex, where both duplications and deletions occurred.

Using WGS data, CNVnator detected 13,725 CNVR, out of which 7,204 were deletions,

4,961 duplications, and 1,560 complexes. The mean size was 34,080 bp (min:1,249 bp, max:

2,772,749 bp, median: 10,999 bp, SD: 90,257.1 bp). On the other hand, DELLY software identi-

fied 5,714 CNVR, of which 4,003 were deletions, 443 were duplications, and 1,268 were com-

plexes, with a mean size of 194,892 bp (min: 1,001 bp, max: 12,426,687 bp, median: 10,999 bp,

SD: 821,053.5 bp). Fig 2 presents the number of CNVR identified by each software. In the

CNVR_SEQ set, 960 CNVR were identified, with an average size of 22,786 bp (min: 1,111 bp,

max: 2,006,399 bp, median: 3,346 bp, SD: 104,755.6 bp), covering 21,874,126 bp, of these 728

were deletions, 63 were duplications, and 169 were complex CNVR.

Regarding the CNVR_POP set, ten CNVR were found in eight chromosomes, with an aver-

age size of 104,943 bp (min: 14,879 bp, max: 521,437 bp, median: 52,933 bp, SD: 151,104.4 bp),

covering 1,049,430 bp. Among these, four were deletions, two were duplications, and four

were complex CNVR (S2 Table). Four CNVR were present in more than 10% of the

Fig 1. Principal component analysis of individuals genotyped with a high-density SNP panel. This figure shows the

animals that were only genotyped (GEN) and those that were also sequenced (SEQ).

https://doi.org/10.1371/journal.pone.0284085.g001
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population, and one was present in more than 30%. The CNVR from CNVR_POP were

detected in 25 sequenced animals.

For the CNVR_ANI set, 240 CNV were detected using SNP panel data, and 77,582 were

detected using WGS data. After overlapping the CNV from both data sets, 45 CNVR were

identified in 21 chromosomes, with a mean size of 97,931 bp (min: 12,003 bp, max: 355,151

bp, median: 53,140 bp, SD: 96,949, 66 bp), covering 4,406,887 bp. Among them, 23 were dele-

tions, and 22 were duplications (S3 Table).

Finally, after overlapping CNV from CNVR_POP and CNVR_ANI sets, 48 unique high

confidence CNVR were retained for functional analysis (Fig 3) (S4 Table). Out of these, seven

CNVR (70% of the CNVR_POP set) were shared between CNVR_POP and CNVR_ANI.

Functional analysis

According to RefSeq Genes and Gene Cards, 69 genes and two pseudogenes were annotated in

31 unique high confidence CNVR (64.58%) (S5 Table). Among these, 21 genes and two pseudo-

genes from the olfactory receptor family (ex: OR2L13, OR2L2, OR1P1) overlapped with CNVR14

(BTA7: 9455783–9693750), CNVR16 (BTA7:10055082–10135500), CNVR17 (BTA7:41582849–

41938000), CNVR34 (BTA15:44870278–44942116), CNVR40 (BTA19:23956716–23987626),

CNVR46 (BTA28:123251–413750) (S2–S7 Figs). Three guanylate binding proteins (GBP) genes

(GBP2, GBP4, GBP6) were found in CNVR8 (BTA3:54329751–54851188) (S8 and S9 Figs).

GBP participates in innate immunity against several intracellular pathogens [51]. Another six

immunity-related genes (HERC2, CLEC5A, SIRPB1, BANP, BoLA-DQB, BoLA-DQA1) over-

lapped with CNVR3 (BTA2:719378–745361), CNVR10 (BTA4:105218001–105292500),

CNVR32 (BTA13:534618–53511604), CNVR37 (BTA18:13328574–13397500), and CNVR44

Fig 2. Copy number variation regions identified from whole-genome sequencing data using CNVnator and

DELLY software and from SNP panel data using PennCNV software.

https://doi.org/10.1371/journal.pone.0284085.g002

PLOS ONE Copy number variants in Dairy Gir cattle

PLOS ONE | https://doi.org/10.1371/journal.pone.0284085 April 10, 2023 8 / 19

https://doi.org/10.1371/journal.pone.0284085.g002
https://doi.org/10.1371/journal.pone.0284085


(BTA23:25679501–25705975) (S10–S14 Figs). The CNVR overlapped with exonic regions in all

genes and pseudogenes.

In 14 unique high confidence CNVR (29.17%), 156 QTL were found, of which 44 QTL

were significantly associated (p<0.05) with production traits (29.54%), reproduction (22.73%),

conformation (18.18%), health (13.64%), milk (13.63%), and meat and carcass (2.27%) (S5

Table). Most QTL (52.27%) overlapped regions where only duplication events occurred,

43.18% QTL overlapped regions where deletion events occurred, and 4.54% overlapped com-

plex regions.

In the enrichment analysis of significant GO terms (FDR<0.05), the term ‘stimulus detec-

tion’ (GO:0051606) was observed in the Biological Processes category, and the term ‘olfactory

receptor activity’ (GO:0004984) was observed in the Molecular Functions category. These two

terms were related to five genes (OR1P1, OR5D18K, OR2L13, OR2T22, OR2M16). No signifi-

cantly enriched terms (FDR>0.05) were found for the Cell Components category. No signifi-

cant enriched biological pathway predicted by the KEGG database (FDR>0.05) was observed.

In the enrichment analysis of significant MeSH terms (p-adjusted<0.05), the term ‘CD4+ T

lymphocytes’ was found in the Anatomy category, three terms (‘Antigen Presentation’, ‘Genes,

Duplicate’, ‘DNA Copy Number Variations’) in the Biological Sciences category, and 13 in the

Chemicals and Drugs category. These terms were related to at least one of the BoLA-DQB (also

known as DQB1), BoLA-DQA1 (also known as LOC100848815), and GBP4 genes (S6 Table).

No significantly enriched terms (p-adjusted>0.05) were found in the Disease category.

Fig 3. Distribution of unique high confidence copy number variation regions (CNVR) in the bovine genome. The CNVR_ANI (ANI), CNVR_POP

(POP), and CNVR sets present in both sets (BOTH) are represented. Only autosomal chromosomes with CNVR are represented.

https://doi.org/10.1371/journal.pone.0284085.g003
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Comparison of CNVR with previous studies

Comparing the unique high confidence CNVR identified in this study with DGVa CNVR set

showed only a few overlapping CNVR. The eight overlapping CNVR are listed in S7 Table.

Each DGVa study was represented by at least two overlapping regions. Our study identified

seven unique high confidence CNVR that overlapped with the CNV detected by Mesbah-

Uddin et al. [47].

Discussion

A total of 547 animals were used in this study, of which 36 had both WGS and SNP genotyping

data available. CNV were called using both data sources and different detection approaches.

Two in silico molecular techniques were used to identify high confidence CNVR related to the

individuals and population studied, resulting in 45 and ten high confidence CNVR, covering

4.4 Mb and 1.05 Mb, respectively. The functional analysis of the regions covered by CNVR

revealed genes related to complex traits.

Although the CNV were identified from the same animals, WGS data resulted in 325 times

more CNV than SNP panels. Similarly, Butty et al. [16] and Zhan et al. [15] also found differ-

ences in the number of CNV detected between the SNP panel and WGS data in cattle. These

molecular techniques differ in their coverage range and capabilities for detecting and solving

CNV breakpoints [15]. Certain CNV detected only from WGS data may represent true vari-

ants. However, they are unlikely or impossible to be detected by high-density SNP panels [52]

due to quantity, distribution [17], and the pre-established position of markers [53]. Further-

more, multiple and adjacent CNV could result in overestimating the CNV size in SNP panel-

based algorithms [42].

The CNVR_ANI set was defined to detect high confidence CNVR present in representative

bulls. CNVR_ANI set was obtained by verifying the CNV found using SNP panels data and

RD approach in the WGS data. Both algorithms rely on similar information where the amount

of DNA present in a given region is indirectly used to identify CNV in each sample [16]. In the

RD approach, this is indirectly measured by the coverage of each segment [31]. In SNP panels,

the fluorescence signal intensity for each probe at the time of genotyping also reflects the

amount of DNA in a given position [17].

The CNVR_POP set can be considered as copy number polymorphisms, as they are present

in more than 1% of the studied population. Additionally, the methodology used to identify

CNVR_POP can be used as a criterion for selecting CNV to be validated by qPCR (real-time

PCR) in future studies of the Dairy Gir population. FISH (Fluorescent in Situ Hybridization)

and qPCR are widely accepted methods for validating CNV, as they provide high accuracy

and specificity [9]. However, these analyses are known to be time-consuming, expensive, and

require a significant amount of biological material. In light of these limitations, this study

chose to focus on an in-silico approach as a way to identify high confidence CNVR while mini-

mizing the need for extensive laboratory resources [9].

The strategy to establish high confidence CNVR sets (CNVR_POP and CNVR_ANI) may

have reduced the number of CNVR. However, the focus of this study was quality in detection,

as CNV can be partially validated when the same region containing copy number variants is

detected using WGS and SNP panel data [16]. Due to the false-positive calls inherent in CNV

detection approaches and the limitations of experimental validation in a large number of ani-

mals, the combination of different molecular techniques can provide SV identification with

high confidence [15]. Additionally, up to 48% of PennCNV calls are likely false positives [54].

Thus, partial validation using WGS data is an alternative to improve CNV detection reliability.
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Using information from SNP panels and analyzing WGS data with more than one approach

may increase the accuracy of CNV detection [15]. Integrating RD, SR, and PE approaches can

decrease the false positive rate during CNV detection compared to using a single algorithm [7,

18]. The main weakness of the RD approach is its limited ability to identify the breakpoints

accurately. However, this limitation can be addressed by incorporating RP and SR approaches

[19, 20]. Despite this, the choice of algorithm plays a crucial role in the overall reliability of the

combinatorial methodology. Regardless of the WGS approach used, overlapping SV call with

high precision and high recall to select pairs of algorithms will directly impact the accuracy of

the results, irrespective of the combinations of methods utilized by the algorithms [18].

The accuracy of CNV detection and the definition of their boundary can be highly

increased with long-read sequencing [55]. However, the high cost may limit its usage on a

large scale. This supports our decision to apply the three approaches for CNV detection in

WGS data.

Further analyses are needed to investigate the relationship between CNVR and economi-

cally relevant traits. Some genes found in the unique high confidence CNVR were previously

related to reproductive and health traits. The CNVR19 (S15 Fig) overlapped with SENP6

(SUMO Specific Peptidase 6) and FILIP1 (Filamin A Interacting Protein 1) genes. CNVR pres-

ent in these two genes were associated with sheep’s litter size [56]. SENP6 is a sumoylation

protease that is a critical regulator of aging and skeletal development [57]. The FILIP1 gene is

involved in skeletal muscle cell differentiation [58].

The genes FILIP1, SENP6, CA5A (Carbonic anhydrase 5A), and BANP (BTG3 Associated
Nuclear Protein) were related to the longevity trait in Chinese Holstein cattle [59]. The CA5A
was mapped in CNVR37 (S13 Fig) and was previously reported in selection signature regions,

which may be related to environmental adaptation in Iraqi cattle breeds [60]. CA5A gene was

related to high fertility in Holstein cattle in a co-expression meta-analysis [61]. CA5A protein

catalyzes the reversible conversion of CO2 to a proton and a bicarbonate ion. CA5A activity

was reported in the ovary and uterine epithelium [62, 63]. The BANP gene was also mapped in

CNVR 37. This gene encodes the BANP protein, which activates and regulates the transcrip-

tion of genes involved in metabolism, DNA damage response, chromatin opening, and chro-

mosomal segregation during mitosis [64, 65].

The CNVR3 (S10 Fig) overlapped with the HERC2 (HECT And RLD Domain Containing
E3 Ubiquitin Protein Ligase 2) gene, which was previously related to perinatal mortality in

taurine cattle [66] and initial sperm motility in Angus breed [67]. HERC2 encodes an E3 ubi-

quitin-protein ligase that targets proteins involved in cell cycle regulation, mitochondrial bio-

energetics, and DNA damage response [68]. The RHOU gene (ras homolog family member U)

was mapped in CNVR46 and encodes a protein of the RHO family of GTPases (guanine tri-

phosphatases), which regulates fundamental processes for mammary gland development [69].

In cattle, CNV are highly enriched with immunity and defense genes, indicating that CNV

contribute to their large variability [5, 8, 70]. The guanylate binding protein (GBP) genes GBP2,

GBP4, and GBP6 were found in CNVR8 (S8 and S9 Figs). GBP are relevant in eliminating

intracellular parasites, and this process is mediated by IFN-γ (interferon-γ) during the innate

immune response [71]. The GBP6 gene plays a relevant role in the intracellular killing of Myco-
bacterium avium subspecies paratuberculosis in cattle, contributing to the immune response

against this pathogen [72]. CNV in the genes of the GBP family (GBP2, GBP4, GBP5, and

GBP7) were previously associated with residual feed intake in Holstein cows [12]. A complex

copy number polymorphism region in the GBP4 gene was found to be negatively associated

with stature in Chinese cattle [13]. Additionally, selection signatures overlapping the genes

GBP2, GBP4, and GBP6 were found in Swiss cattle breeds adapted to cold climates and high

altitudes [73].
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Two genes belonging to the major bovine histocompatibility complex (MHC) class II

region, BoLA-DQB and BoLA-DQA1, were found in CNVR44. MeSH terms related to the

immune system and gene duplication were enriched in these two genes. These genes over-

lapped with selection signatures in Nelore cattle, another Zebu breed [74]. Class II molecules

are expressed on cells that present antigen epitopes (e.g., dendritic cells) to CD4+ T lympho-

cytes that, once stimulated, can activate macrophages and B lymphocytes, provoking an

inflammatory response and antibody production [75]. BoLA-DQA1 was associated with the

proviral load of the bovine leukemia virus, which causes enzootic bovine leukosis (EBL). The

load can be considered a diagnostic index for determining EBL’s progression and transmission

risk [76].

Among the overlapped genes, 30.43% belong to the olfactory receptor (OR) family. These

genes were found in CNVR14, 17, 18, 34, 40, and 41 (S2, S4–6, S16 and S17 Figs), where dele-

tion or complex events occurred. Also, GO terms ‘stimuli detection’ and ‘olfactory receptor

activity’ were enriched. The expression and regulation of OR genes are critical for cattle

regarding the reception of information about the environment and communication between

animals through pheromone recognition [77]. Olfaction is crucial in various tasks, including

avoiding dangers, identifying mates and offspring, and marking territory. The OR gene family

is known for its high variability across different vertebrate species, including cattle [78]. This

high variability is characterized by frequent CNV events [8, 11, 16, 70], suggesting that evolu-

tionary forces may be at play and that the OR genes are under selective pressure [70, 79].

Genomic variations in olfactory genes, such as SNP and CNV, are associated with stress in

humans [80], hoof disorders in Holstein cattle [11], and saturated fatty acid profile in Nelore

cattle [81].

Approximately 83% of the unique high confidence CNVR did not overlap with the DGVa

CNVR set. The CNV and CNVR found in this study establish a basis for future research on SV

in Zebu. Further research should be undertaken to investigate the effect of including CNV

information in genomic selection in Dairy Gir cattle. Additionally, CNV-based GWAS studies

for critical traits in Dairy Gir cattle are strongly encouraged.

Conclusions

Our findings detected and characterized 48 high confidence CNVR in the Dairy Gir cattle

genome, contributing to a better understanding of the Gir breed genome. These results offer

an alternative for selecting CNV to be validated in the population. Furthermore, the identified

CNVR have the potential to affect genes involved in the evolutionary process and the pheno-

typic variation of essential dairy industry traits, such as lactation, fertility, stimuli recognition,

and health.
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