Nos estudos de correlação entre a produção relativa de matéria se ca dos dois cultivos, a extração e a absorção relativa de boro nas plan tas de girassol com as quantidades de boro obtidas pelos extratores(Ta bela 1), em todas as relações apresentaram coeficientes de correlação positivos e altamente significativas (1% de probabilidade). No entanto, o extrator agua quente foi o que apresentou os maiores coeficientes (r = 0,630, 0,815 e 0,722 para a produção relativa, extração e absorção relativa, respectivamente.), sugerindo que esse método tradicional é o que melhor avaliou a disponibilidade de boro nos solos estudados.

Quando relacionou-se a produção relativa de matéria seca do giras sol com o teor de boro encontrado nos solos, através do procedimento es tatístico interativo baseado na maximização da soma de quadrados, separando-se os solos em duas classes (baixos e altos em boro) foi obtidos um nível crítico de 0,33mg/kg. Os resultados também mostraram que 40% dos solos estudados apresentaram teores de boro abaixo do nível crítico encontrado.

TABELA 1 - Coeficiente de correlação entre o boro no solo extraido por três extratores, matéria orgânica do solo, produção relativa de matéria seca, extração e absorção relativa de boro pelas plantas.

Variavel	Variavel Independente							
Dependente	AQ	HC1	MA	MAT. SECA	MAT. ORG.			
Água quente, mg/kg	eger serd mo	0,867**	il a O)oro	d bas a	0,646**			
HCL 0,05M, mg/kg			0,823**		0,710**			
Manitol, mg/kg	0,838**				0,565**			
Produção Relativa,%	0,630**	0,538**	0,562**					
Extração de B, ug/vaso				0,815**				
Absorção relativa,%	0,722**	0,693**	0,638**					

^{**} nivel de significância = 1%

183 EXTRAÇÃO DE MINERAIS POR COLMOS DE ONZE VARIEDADES DE CANA-PLANTA EM DOIS SOLOS, NA REGIÃO DE SÃO CARLOS, SP

O.Primavesi, A.C.P.A.Primavesi, N.J.Novaes

EMBRAPA-CPPSE, Fazenda Canchim, Rodovia Washington Luiz, km 234, Caixa Postal 339, CEP: 13560-970 São Carlos, SP

Realizaram-se dois experimentos, tendo como um dos objetivos a determinação da extração de minerais por tonelada de colmos frescos despalhados de cana-planta de 17,5 meses, na Fazenda Canchim, região de São Carlos, SP, com clima tropical de altitude, altitude de 856 m, 22°01' latitude sul, 47°53' longitude oeste, em duas Vermelho-Escuro e condições edáficas: Latossolo Latossolo Vermelho-Amarelo. As características químicas pH-CaC12=5,2/4,9, destes são, respectivamente, MO%=4,8/3,1, P-res.=16/22, K=0,07/0,23 meq, Ca=4,9/2,2 meq, Mg=1,1/0,7meg, CTC=9,9/6,3V%=62/54, Ca+Mq/K=86/13.

Foram utilizadas as variedades: 1)RB72-454, 2)RB76-5418,3) SP70-1143, 4) SP71-1284, 5) SP71-1406, 6) SP71-6163, 7)SP79-1011, 8)CB41-76, 9) CB47-355, 10) Co 413, 11) NA56-79, plantadas em 03.04.91 e colhidas em 23.09.92. Parcelas com 2 linhas úteis de 2 m, espaçadas de 1,60 m no LVE e 1,10 m no LVA, em 3 blocos ao acaso. Os teores de minerais foram determinados em uma amostra composta e apresentados no Quadro 1.

Verifica-se que ocorreu restrição para a produção de cana no LVA, como efeito acumulativo, especialmente de P e

K nos colmos.

Uma análise conjunta, considerando cada solo um bloco experimental, detectou diferenças entre variedades para o N e o Mg no colmo, sendo a CB41-76 a maior exportadora e a Na56-79 e a Co413 as menores exportadoras de N e a RB 72-454 de Mg.

Considerando o tipo de solo, o LVA favoreceu a maior exportação de P, K, Zn, Cu e Mn, por tonelada de cana, e o

LVE com maior relação Ca + Mg/K a de Ca.

As variedades mais produtivas (RB), mostraram exportação média mais alta de P e Fe, média de N e K e mais baixa de S, Ca, Mg, Zn, Cu e Mn. As variedades consideradas forrageiras (CB47-355 e Co413) apresentaram exportação menor a média dos nutrientes.

Pode ser concluído que: 1) em média, a exportação segue a seguinte ordem decrescente: K, N, Mg, P, S, Ca, Fe, Mn, Zn e Cu; 2) em solos menos favoráveis à produção, pode haver acúmulo maior de P, K, Zn, Cu, Mn; 3) ocorre diferença varietal de exportação de N; 4) a relação Ca + Mg/k no solo apresenta relação inversa com a exportação de K pelos colmos.

Quadro 1 - Produção de colmos frescos despalhados por ha (TCH) e extração de macro e micronutrientes (g/t) por colmos de cana-planta, aos 17,5 meses de idade.

Vari	Solo	TCH	N	P	S	K	Ca	Mg	Zn	Cu	Mn	Fe
RB72-454	LE	147	401	198	132	627	132	198	1,3	1,0	4	16
	LVA	127	491	217	62	2046	124	124	3,1	0,6	3	4
RB76-5418	LE	101	486	93	93	465	124	248	2,8	0,9	5	11
	LVA	70	417	231	132	1419	33	231	3,0	2,0	7	6
SP70-1143	LE	94	609	96	128	1248	128	288	3,2	1,0	5	
	LVA	33	454	231	165	1419	66	297	4,0	2,3	11	9
SP71-1284	LE	64	415	32	192	1120	224	224	4,2	0,6	6	0
	LVA	35	435	224	128	2496	64	288	4,2	1,6	7	4
SP71-1406	LE	88	512	96	160	1120	160	256	3,2	1,0	4	10
	LVA	47	445	224	160	1728	128	160	2,6	0,3	6	10
SP71-6163	LE	64	451	93	155	1085	124	279	2,8	0,9	7	
	LVA	45	417	341	155	1333	62	248	4,3	2,5	9	10
SP79+1011	LE	93	531	93	155	465	186	372	2,5	0,9	7	10
	LVA	23	394	180	150	1290	60	210	4,5	1,8	11	10
CB41-76	LE	112	691	96	96	608	256	384	3,5	1,3	8	9
	LVA	42	649	198	99	2046	99	363	3,6		9	
CB47-355	LE	88	374	60	120	1050	180	270		2,6	6	8
	LVA	38	491	248	124	1550	155	124	2,1	0,9	5	3
Co413	LE	69	358	56	84	644	168	196	2,8	2,2	5	1
	LVA	49	412	217	124	1333	62	186	2,2	0,6	4	
NA56-79	LE	69	357	31	186	589	186		2,5	1,9	0	. 6
	LVA	62	417	155	124	2046	155	341	2,8	1,9	7	12