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INTRODUCTION

The spectral response of vegetation expressed 
by its reflectance has been known to be a way to 
characterize different vegetal species, with applications 
in surveys and monitoring of forests, crops and other 
land uses (ZHANG et al., 2014; MIRZAEI et al., 2019). 

Several studies have applied techniques of remote 
sensing for data acquisition, including satellite or aerial 
imagery and/or field or laboratory spectroradiometer. 
In the first cases, the spectral resolution, in general, 
tends to be moderate, and only the main spectral 
features are acquired; even with this limitation, 
classifications with significant accuracies have been 
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ABSTRACT: Reflectance measurements of plants of the same species can produce sets of data with differences between spectra, due to 
factors that can be external to the plant, like the environment where the plant grows, and to internal factors, for measurements of different 
varieties. This paper reports results of the analysis of radiometric measurements performed on leaves of vines of several grape varieties and on 
several sites.  The objective of the research was, after the application of techniques of dimensionality reduction for the definition of the most 
relevant wavelengths, to evaluate four machine learning models applied to the observational sample aiming to discriminate classes of region 
and variety in vineyards. The tested machine learning classification models were Canonical Discrimination Analysis (CDA), Light Gradient 
Boosting Machine (LGBM), Random Forest (RF), and Support Vector Machine (SVM). From the results, we reported that the LGBM model 
obtained better accuracy in spectral discrimination by region, with a value the 0.93, followed by the RF model. Regarding the discrimination 
between grape varieties, these two models also achieved better results, with accuracies of 0.88 and 0.89. The wavelengths more relevant for 
discrimination were at ultraviolet, followed by those at blue and green spectral regions. This research pointed toward the importance of defining 
the wavelengths more relevant to the characterization of the reflectance spectra of leaves of grape varieties and revealed the effective capability 
of discriminating vineyards by their region or grape variety, using machine learning models. 
Key words: vineyards, hyperspectral, spectroradiometer, machine learning.

RESUMO: Medições de refletância de plantas da mesma espécie podem produzir conjuntos de dados com diferenças entre os espectros, devido 
a fatores que podem ser externos à planta, como o ambiente onde a planta cresce, e fatores internos, para medições com variedades de plantas. 
Este artigo reporta resultados da análise de medições por espectrorradiometria efetuadas em folhas de vinhas de variedades e em diferentes 
localidades. O objetivo desta pesquisa foi, após a aplicação de técnicas de redução de dimensionalidade para a definição dos comprimentos 
de onda mais relevantes, avaliar quatro modelos de aprendizado de máquina aplicados à amostra observacional visando discriminar classes 
de região e variedade. Os modelos de classificação de aprendizado de máquina testados foram Canonical Discrimination Analysis (CDA), 
Light Gradient Boosting Machine (LGBM), Random Forest (RF) e Support Vector Machine (SVM). A partir dos resultados, relatamos que o 
modelo LGBM obteve melhor acurácia na discriminação espectral por região, com valor de 0,93, seguido pelo modelo RF. Relativamente à 
discriminação entre castas, estes dois modelos também obtiveram melhores resultados, com acurácias de 0,88 e 0,89. Os comprimentos de onda 
mais importantes para as discriminações procuradas estiveram na região do ultravioleta, seguidos do azul e do verde. Este trabalho aponta para 
a importância de detectar os comprimentos de onda mais relevantes para a caracterização dos espectros de reflectância das folhas de variedades 
de vinhas, e revela a capacidade efetiva de discriminar vinhedos por suas regiões ou variedades, usando modelos de aprendizado de máquina.
Palavras-chave: Vinhedos, hiperespectral, aprendizagem de máquina.

Biology

https://orcid.org/0000-0002-7151-7301
https://orcid.org/0000-0002-1636-6643
https://orcid.org/0000-0001-6365-7796
https://orcid.org/0000-0003-2057-8478
https://orcid.org/0000-0002-8872-0488
https://orcid.org/0000-0003-4680-3274
https://orcid.org/0000-0002-3392-3878


2

Ciência Rural, v.53, n.12, 2023.

Arruda et al.

accomplished in studies on vineyards (KARAKIZI 
et al., 2016; MOGHIMI et al., 2020; SILVA & 
DUCATI, 2009) using conventional classification 
algorithms. In the latter cases, using a spectroradiometer 
extremely high spectral resolution can be attained, 
showing minute details of a spectrum, and allowing 
to detect subtle spectral features of vine leaves; these 
features express degrees or states of pigmentation, cell 
structure, and water content which, besides depending 
on intrinsic biological descriptors, can be influenced by 
environmental and geographical factors (CEROVIC et 
al., 2012; SMIT et al., 2010; THUM et al., 2020).

From this perspective, spectral data is 
valuable in studies focused on vine development 
in geographical contexts, since the high density of 
information carried by a high-resolution spectrum allows 
searching for differentiation between cultivars and from 
external influences caused by climate, soil, management, 
or other effects. Results from such studies are helpful 
to the characterization of viticultural regions aiming to 
distinguish themselves from other regions, contributing 
to the formation of a set of descriptors necessary to 
the attribution of a label of typicity of which AOC 
(Appellation d’Origine Controlée), IGT (Indicazione 
Geografica Tipica) or AVA (American Viticultural 
Area) are examples. Such characterizations, when 
coming from data of plant spectroscopy, have been 
achieved mainly using conventional classification 
algorithms (SILVA & DUCATI, 2009; KARAKIZI 
et al., 2016), but few results have been reported 
of applications of Machine Learning models 
which, with present computational resources, can 
outperform already existent classification methods 
(ANGUITA et al., 2010).

This paper reports the results from 
spectroradiometric field measurements performed 
on vineyards located in southern Brazil, where we 
investigated their potential to discriminate vines 
by their locations or by variety. Here, the location 
factor is dominated by environmental constraints 
(soils, climate), while the variety factor tends to be 
dominated by biological (genetic characteristics) 
constraints. Both factors have significant impacts on 
plant metabolism and development (WHITE, 2009), 
influencing leaf structure and chemical composition and, 
therefore, its reflectance spectrum (THUM et al., 2020). 
Specifically, the objectives of this research were: a) 
To discriminate vineyards by region and variety 
from leaf reflectance data; b) To select a technique 
to reduce the number of wavelengths necessary for 
the first objective; c) To select, from a selected set of 
Machine Learning techniques, the ones with the best 
performances in the classification process.

MATERIALS   AND   METHODS

Study area
As study areas, eight vineyards were 

selected in Rio Grande do Sul, which is the 
southernmost state in Brazil. These vineyards are 
distributed over a territory of about 500 km wide, 
on terrains of different types of rocks, and belong to 
the following wineries: a) Almadén Estate (W1) in 
Santana do Livramento, in the Campanha Gaúcha 
wine region, with sandstone-based soils from the 
Guará Formation (WILDNER et al. 2008); b) 
Boscato Winery in Nova Pádua, with two vineyards 
(W2 and W3, two kilometers apart) on acidic 
volcanic rocks (rhyolite, rhyodacite and dacite) of 
the Palmas Formation (IBGE, 2018, ROSSETI et al. 
2017); c) Chandon Estate (W4) in Encruzilhada do 
Sul, on the gneiss of the Arroio dos Ratos Gneissic 
Complex (WILDNER et al. 2008); d) Luiz Argenta 
Estate (W5) in Flores da Cunha, over acidic volcanic 
rocks (rhyolite, rhyodacite and dacite) of the Palmas 
Formation (IBGE, 2018, ROSSETI et al. 2017); e) 
Miolo Winery in Bento Gonçalves (W6) in the Serra 
Gaúcha wine region, with soil on acidic volcanic 
rocks (rhyolite, rhyodacite and dacite) of the Palmas 
Formation (IBGE, 2018, ROSSETI et al. 2017); f) 
Miolo Seival Estate (W7) in Candiota, in the wine-
growing region of Campanha Gaúcha, whose soils are 
a transition between sandstone and claystone of the Rio 
Bonito and Palermo Formations (CAMOZZATO & 
LOPES, 2012); g) Terra Sul Winery (W8) in Pinheiro 
Machado, in the Serra do Sudeste wine region, 
with soils based on granitic rocks from the Pinheiro 
Machado Granitic-Gneissic Complex (WILDNER et 
al. 2008). From this description, it can be seen that 
the studied vineyards are over different soils, with 
varying amounts of sand, clay and organic matter. 
The balance of these soil components, meaning the 
variation in mineral content, play an important role 
in reflectance spectra, not only on the spectra of soils 
themselves (DEMATTÊ, 2002), but also on the spectra 
of vegetation growing on it (THUM et al. 2020), since 
many elements are important to plant metabolism; 
for example, CONRADIE (1981), SCHREINER 
et al (2006) and SCHREINER (2016) reported as 
elements like phosphorus potassium, calcium and 
magnesium move along vine tissues. It is known that 
different soils have different mineral availability to 
plant metabolism (WHITE, 2009), with an impact 
on leaf reflectance spectra (THUM et al. 2020). We 
note for the regions presently under study that iron 
availability (associated with clay content) changes 
greatly, possibly leading to significant changes on plant 
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reflectance spectra. As additional information, we briefly 
discuss the reason of dividing Boscato Estate in two 
parts (W2 and W3). From a previous investigation 
of this winery (THUM et al., 2020), it was reported 
that W2 (5.38 hectares) has elevations from 666 to 
688m, and W3 (7.93 hectares) has elevations from 
747 to 785m; in addition to the fact of W3 is at higher 
elevations, W3 displays steeper slopes. Furthermore, 
out of 21 measured agronomical parameters (data 
not presently shown), only 3 (P, Ca, Zn) had larger 
variability in W2; W2 is; therefore, much more 
homogeneous. Finally, measured soil profiles in W2 are 
deeper across that vineyard, what points for a possible 
reason of the larger variability of soil traits in W3, since 
shallower soils in a more rugged terrain would tend to 
put the surface in closer contact with deeper horizons 
and the bedrock, these two layers acting as mineral 
suppliers. This condition of soil diversity in terrains 
seating on the same bedrock provides an opportunity 
for assessing the limits of classification performances 
of the set of Machine Learning techniques to be 
presently tested. We also noted that estates W1 and 
W7 are located at areas covered by the “Campanha 
Gaúcha” viticultural region; W2, W3 and W5 are in 
the “Altos Montes” viticultural region; W4 and W8 
are at the “Serra do Sudeste” viticultural region; and 
W6 is at the “Vale dos Vinhedos” viticultural region. 

The distribution of these locations over the State’s 
territory is shown in figure 1.

As grape varieties or cultivars we selected 
twelve of those more commonly found in the chosen 
regions, which are: Cabernet Sauvignon (V1), 
Chardonnay (V2), Merlot (V3), Petit Verdot (V4), 
Pinot Grigio (V5), Pinot Noir (V6), Riesling Italic 
(V7) (also known as Welschriesling), Sauvignon 
Blanc (V8), Syrah (V9), Tannat (V10), Tempranillo 
(V11), and Viognier (V12). These twelve grape 
varieties are not present in all eight locations; for 
example, the Chandon Estate only has Pinot Noir, 
Chardonnay and Riesling Italic, and at Boscato only 
Cabernet Sauvignon and Merlot were measured. 
Detailed information on number of measurements 
is provided in table 1. The climate in all regions is 
subtropical with well-defined seasons; however, the 
Serra Gaúcha region tends to have summers with 
higher humidity. We visited in total seventy-eight 
vine parcels.

Leaf reflectance acquisition 
Field spectroscopic measurements were 

performed with a Malvern Panalytical Spectral 
Devices (ASD, Westborough, MA, USA) FieldSpec® 
3 spectroradiometer, which has spectral sensitivity 
between 350nm and 2500nm, using the Leaf Clip 

Figure 1 - Study area location map.
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sensor. Field trips were performed in December 2018 
and January 2019, since these dates correspond to a 
period in the phenological cycle where grape leaves 
are already well-developed, in the stage of growth and 
ripening of berries represented on the BBCH scale in 
the sub-stages 81 to 83 (LORENZ et.al., 1995).

In each estate, we selected vine parcels with 
areas of about five hectares. At each parcel we chose 
rows centrally localized, at each row we selected 
four plants, and at each plant we measured four fully 
developed leaves at their adaxial sides. Calibration 
of the sensor, through optimization and measurement 
of the white reference plate of the Leaf Clip probe, 
was conducted before making the spectroradiometric 
readings. Every spectrum was recorded at one-
nanometer intervals, resulting in 2151 reflectance 
values for the observed spectral domain (350 nm 
to 2500nm). The final sample had 3006 spectra 
corresponding to measurements of 1002 leaves (three 
spectra per leaf); however, the measurements used for 
the analyses were 2967 in total since 39 spectra were 
detected as being erroneous for several factors and 
were excluded.

Pre-processing of spectra
To mitigate the noise interference in the 

spectra, and to smooth the spectral breaks at the 
sensor’s interfaces, we used the Savitzky-Golay filter 
and slice correction. The library packages used were 
SciPy, signal Filter, and Coefficients (VIRTANEN et 
al., 2020). Since high-resolution spectra tend to carry 
redundant information over neighboring wavelengths, 
a feature that tends to increase processing time of 

classification tasks with no sizable gains, the next 
step was to decrease the number of wavelengths by 
means of two spectral reduction techniques applied to 
the database, which were: Spectrum Ratio (SR) and 
Kernel Principal Component Analysis (KPCA).

Spectrum Ratio (SR)
The SR technique was applied after a 

normalization procedure was performed on each 
original spectrum. Since in each acquisition the 
sensor can receive a particular influx of energy, 
recorded levels of reflectance can vary from one 
spectrum to another; that is, each spectrum comes 
from the acquisition of a certain amount of energy 
across the observed wavelength domain, implying 
in a specific area under the spectral curve. The SR 
technique consists in the direct comparison of two 
spectra at the same scale, and so, original spectra 
were transformed through a normalization procedure 
described elsewhere (PITHAN et al., 2021); we 
note that normalization is an operation that does not 
change the shape of any spectrum.

The Estates group had eight vineyards, 
so comparisons between them, by pairs, allowed 
twenty-eight combinations; for each estate, a mean 
spectrum was derived from all measurements, and 
this spectrum was divided by the mean spectrum of 
each other estate, an operation that, applied to all 
eight vineyards, resulted in twenty-eight “spectrum-
ratios.” The same procedure was followed for the 
Varieties group where, for twelve varieties, we 
obtained sixty-six possible “spectrum ratios”. A 
typical “spectrum-ratio” has values around unity for 

 

Table 1 - The number of measurements performed in the adaxial part of the leaves, in situ / in vivo, for each corresponding class. 

Variety/ Estate W1-
Almadén 

W2- 
Boscato 

One 

W3-
Boscato 

Two 

W4-
Chandon 

W5- 
Luiz 

Argenta 

W6- Miolo 
BG 

W7-Miolo 
Seival 

W8 - Terra 
Sul 

V1- Cabernet Sauvignon 0 237 143 0 223 159 0 105 
V2- Chardonnay 132 0 0 93 60 0 100 30 
V3-Merlot 144 96 338 0 60 0 97 80 
V4-Petit Verdot 0 0 0 0 0 0 0 30 
V5- Pinot Grigio 0 0 0 0 0 0 0 30 
V6- Pinot Noir 0 0 0 96 121 0 100 46 
V7-Riesling Italic 132 0 0 48 61 0 0 0 
V8 - Sauvignon Blanc 0 0 0 0 0 0 0 20 
V9 - Syrah 0 0 0 0 121 0 0 0 
V10 - Tannat 0 0 0 0 0 0 0 56 
V11 - Tempranillo 0 0 0 0 0 0 0 30 
V12 - Viognier 0 0 0 0 0 0 0 30 
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all wavelengths, except at those wavelengths were 
spectral differences between classes (in Estates or in 
Varieties) exist. In this sense, the technique reveals 
where differences between classes exist, knowledge 
to be used in classification tasks.

The spectra were subjected to non-
parametric correlations tests for the whole spectral 
domain. First, a correlational test, the Spearman rank 
correlation model, was used to evaluate collinearity 
between the 2151 wavelengths. The coefficient of 
determination (R²) was used to adjust the correlations 
for each wavelength. Wavelengths having statistical 
significance expressed by a p-value < 0.05 were 
selected. Additionally, and to address the level of 
statistical significance, the Kruskal-Wallis H test was 
used to assess the real differences between the sample 
groups. Levels of statistical significance, α (0.05), 
were determined to verify the difference in statistical 
distributions of the sub-groups internal to each main 
group (Estates and Varieties).

Kernel principal component analysis (KPCA)
KPCA, the second spectral dimension 

reduction technique, is a technique for transforming 
original data into components of uncorrelated 
variables, using Principal Component Analysis with 
extension Kernel in dimensionality reduction to 
create reliable compositions, since the determination 
of decision limits between classes is performed in a 
non-linear way (FAUVEL et al., 2009).

Hyperspectral classification
The classification of reflectance spectra 

was performed from both input techniques, KPCA 
and SR. Four Machine Learning (ML) algorithms 
were used in processes, developed in Python language 
using the Scikit-Learn package and using the libraries 
Pandas and NumPy for the preparation of matrix 
and tables. The four ML algorithms selected for the 
spectral classification process were: a) Canonical 
Discriminant Analysis (CDA), which is a multivariate 
analysis algorithm with a procedure for grouping 
individuals from a previously defined group into 
exclusive classes of a group of independent variables 
(LARK, 1995)estimated from an error matrix. A 
systematic classification of the questions that such a 
map is required to answer is proposed. In each case 
the utility of the map is best measured by a different 
subset of the components of accuracy. It follows that 
no one map will be optimal from the point of view 
of every user (given that the perfect map cannot be 
made; b) Random Forest (RF), a model tolerant of 
noisy data which evaluates correlations between 

variables using a random vector. The RF performance 
is high in setting spectral reflectance measurements, 
because of its low sensitivity to outliers (FLETCHER 
& REDDY, 2016; HONG et al., 2019)Progeny 5160, 
and Progeny 5460; c) Support Vector Machine (SVM), 
a classifier that discriminates using separation hyper 
planes with support vectors, limiting the division area 
between the classes (MA & GUO, 2014); and d) Light 
Gradient Boosting Machine (LGBM), a gradient 
structure that uses learning algorithms on trees that 
grow vertically (FAN et al., 2019)e.g. irrigation 
scheduling design, agricultural water management, 
crop growth modeling and drought assessment. 
Nevertheless, reliable estimation of ETo is difficult 
when lack of complete or long-term meteorological 
data at the target station. This study evaluated the 
efficiency of a new tree-based soft computing model, 
Light Gradient Boosting Machine (LightGBM. 

The training samples were selected at random 
from a data set with 70% (n = 2077) of reflectance 
spectra, with the remaining 30% (n = 890) being 
reserved for testing and validation of ML models. 
The quality of the validation procedure was evaluated 
by comparing some commonly used indicators of the 
performance of ML algorithms, such as Classification 
Accuracy, Area Under the ROC Curve (AUC), F1 
Score, and Kappa, besides other parameters for 
validation metrics as Precision, Recall and Support. 
Finally, the wavelengths more relevant for the 
classifications were revealed through calculation 
of the Average Impact Magnitude parameter, 
using values from the SHAP library which allow 
identification of the more important features to the 
model, thus explaining the output of the machine 
learning model being studied.

RESULTS   AND   DISCUSSION

Average spectra for each Estate and each 
Variety classes are provided in figure 2. As expected, 
all spectra display the usual features typical of healthy 
vegetation, with subtle differences between classes 
which will be further discussed in what follows. 

Results from the correlational Spearman 
test by coefficients are shown in figure 3, where in 
figures 3a and 3b R2 values are presented. Values 
of R2 as high as 0.6 were observed for the spectral 
ranges corresponding to the UV (350 to 399nm), NIR 
(780nm), and SWIR (1100 to 2300nm) for both groups. 
In the figures, areas next to the main diagonal have 
strong associations between their wavelengths, while 
coefficients with lower R2 values, the darkest colors, 
indicate the low collinearity between wavelengths. 
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Figures 3c and 3d showed the p-values, where the 
wavelengths located at the main diagonal or nearby 
present determination coefficients above 0.9 and 
p-values < 0.05, indicating statistical significance. 
After a correlational analysis has identified the 
spectral regions with low correlation (p-value < 0.05), 
fourteen wavelengths were selected as indicators of 
the most conspicuous spectral differences between 
the studied classes as revealed by the SR technique. 
These wavelengths were:  350nm; 358nm; 365nm; 
467nm; 574nm; 705nm; 1350nm; 1410nm; 1420nm; 
1723nm; 1850nm; 1894nm; 2306nm; and 2500nm. 

Results from the non-parametric Kruskal-
Wallis test for the fourteen wavelengths indicated 
significant differences (P < 0.05) at 365nm, 1350nm, 
1420nm, 1850nm and 2306 nm at all Estates. The 
feasibility of spectral separability between classes 
within the Estates group has been previously reported, 
leading to the discrimination between vineyards 
located in different regions, a perception linked to 
the terroir concept expressing the soil-plant-climate-
management relationship (CEMIN & DUCATI, 
2011; THUM et al., 2020). In the Varieties group, 
the wavelengths 350nm, 358nm, and 574nm are the 
more suited to variety separation, while at 2500nm 

little separation is achieved. These results; therefore, 
suggested that: a) variations either in region or in 
variety have a significant effect in the ultraviolet 
reflectance of vines (at 350nm, 358nm, and 365nm); 
b) concerning chlorophyll, these variations do not 
have a major effect on the 467nm band, and none 
at all at the 660nm band; c) a significant effect at 
near-infrared (NIR) bands was observed for region 
variation, and here it can be noted that in former 
studies a group of grape varieties was discriminated 
by hyperspectral sensors, pointing out the VIS and 
NIR spectral regions as crucial in the separability 
of vineyards (KARAKIZI et al., 2016; MIRZAEI 
et al., 2019)efficient and automated methods are 
required for the accurate detection of vegetation, 
crops and different crop varieties. To this end, we 
have designed, developed and evaluated an object-
based classification framework towards the detection 
of vineyards, the vine canopy extraction and the vine 
variety discrimination from very high resolution 
multispectral data. A novel set of spectral, spatial 
and textural features, as well as rules, segmentation 
scales and a set of parameters are proposed based 
on object-based image analysis. The validation 
of the developed methodology was carried out on 

Figure 2 - Reflectance spectra of field-measured vines. a) Estates; b) Varieties.



Proximal hyperspectral analysis in grape leaves for region and variety identification.

Ciência Rural, v.53, n.12, 2023.

7

multitemporal WorldView-2 satellite data at four 
different viticulture regions in Greece. Concurrent in 
situ canopy reflectance observations were acquired 
from a portable spectroradiometer during the field 
campaigns. The performed quantitative evaluation 
indicated that the developed approach managed in all 
cases to detect vineyards with high completeness and 
correctness detection rates, i.e., over 89%. The vine 
canopy extraction methodology was validated with 
overall accuracy (OA; and d) the water absorption 
bands usually observed in vegetation (at 1450nm, 
1950nm, and 2500nm) seem to have little importance 
on differentiation of vines induced by variation of 
region or variety.

The models’ performance is presented 
in table 2. The highest predictive accuracies for 
classification are those of the LGBM algorithm, 
with a maximum accuracy range of 0.99. For both 
the Estate and Variety groups, the best performances 
were attained by LGBM, followed by RF. For the 
dimensionality reduction, the best performance came 
from the SR technique, but the KPCA method also 
yielded satisfactory results. Comparing KPCA and 
SR performances, the set of wavelengths extracted 
by SR showed an increase in performance from 0.91 
to 0.93 (Estate) and 0.69 to 0.88 (Variety) using the 
LGBM algorithm and for RF accuracy raised from 
0.74 to 0.92 (Estate) and from 0.45 to 0.89 (Variety). 

The CDA and SVM algorithms did not perform well 
by KPCA but showed significant improvements in 
their metrics for discrimination by SR.

The spectral separation between classes 
internal to the groups (Estates or Varieties) is shown 
in figure 4, which displays the AUC values derived 
from the LGBM algorithm, the one with best 
performance, for both KPCA and SR. In this figure it 
is possible to assess the separability between classes 
by inspecting the relations between true or false 
positives; the more AUC values are near 1, the better 
the separation. Most AUC values were above 0.90, 
with the best fits to the discrimination being obtained 
by the SR method. For example, in figure 4, using as 
input data the set generated by the SR method, for the 
class W6 the AUC value was 0.95, while using KPCA 
we had AUC = 0.90; at the Varieties Group, for V8 
we had AUC = 0.99 from SR and AUC = 0.70 from 
KPCA. Therefore, significant separability for both 
groups was achieved using the LGBM model with 
both reduction methods, with some advantage to SR.

The classification metrics (Figures 5a and 
5b) presents the performance of each class through 
wavelengths extraction by SR. In figure 5a, the 
vineyards W4 and W6 obtained the smallest Recall 
(0.606 and 0.722) and F1-Score (0.684 and 0.765). 
With respect to separation between W2 and W3, which 
are 2km apart and on the same bedrock, inspection 

Figure 3 - Coefficient of determination R2 and p-value of the spectrum-ratios between the 
averages of each class. (a), (c), Estates; (b), (d), Varieties. The shaded scale 
shows values of the spectral regions with low collinearity.
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of figure 5a reveals that classes W2 and W3 display 
similarity between True Positive and False Positive 
values, having AUC values near 1; therefore, these 
two classes show similar classification accuracies, 

being nevertheless separable, what can be explained 
by the fact that, even if being on the same bedrock, 
they have different soil profiles, with a possible 
influence on plant development. It can be noted that 

Figure 4 - Area Under Curve (AUC) expressing the performance of the LGBM algorithm, using wavelengths selected by 
the KPCA method ((a) and (c)) and by the Spectrum Ratio method ((b) and (d)). Correspondences between Wn 
and Vn to their respective estates and varieties are given in table 1.

 

Table 2 - Results obtained for spectral discrimination between the Leaf reflectance measured. 
 

Class Reduction Model Accuracy AUC F1 Kappa 

Estate 

KPCA 

LGBM 0.91 0.99 0.91 0.89 
RF 0.74 0.97 0.71 0.69 

CDA 0.50 0.71 0.50 0.42 
SVM 0.48 0.00 0.39 0.38 

SR 

LGBM 0.93 0.99 0.93 0.92 
RF 0.92 0.99 0.92 0.90 

CDA 0.92 0.99 0.92 0.91 
SVM 0.61 0.00 0.55 0.54 

Variety 

KPCA 

LGBM 0.69 0.92 0.67 0.60 
RF 0.45 0.82 0.36 0.24 

CDA 0.17 0.53 0.16 0.07 
SVM 0.31 0.00 0.24 0.12 

SR 

LGBM 0.88 0.98 0.88 0.86 
RF 0.89 0.98 0.89 0.87 

CDA 0.67 0.91 0.66 0.59 
SVM 0.41 0.00 0.36 0.24 
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W2 and W3 belong to the same owner and have the 
same management, what excludes differentiation due 
to anthropogenic factors. Still focusing on figure 5a, 
it can be seen that estates W1 and W7, both located at 
the Campanha Gaúcha viticultural region, are fairly 
separated, indicating non-negligible spectral differences; 
this fact, added to the one that W7 is on a transition of 
sandstone to clay, reinforces current perceptions that the 
presently established limits of this viticultural region are 
too wide, pointing to the future need of its division in 
more uniform territorial units. In figure 5b, the result 
of classification between varieties indicates for V7 and 
V8 the smallest Recall (0.667 and 0.444) and F1-Score 
(0.800 and 0.615). The lowest precision was shown 
by V3, with a value of 0.647. Estates W5 and W8 and 
varieties V1, V2, V6, V10, V11, and V12 obtained the 
best performances, all of them with values of F1-Score 
above 0.9. Furthermore, both groups obtained good 
discrimination accuracy, indicating the feasibility of 
spectral separability at leaf level.

Finally, the average Impact Magnitude of 
the wavelengths on the LGBM model using feature 

extraction by the SR method is shown in figures 5c 
and 5d. The ultraviolet wavelengths (358nm, 574nm, 
and 365nm, in order of importance) presented a 
greater average impact magnitude for discrimination 
between Estates. The Variety classes displayed a 
similar average impact magnitude. The wavelengths 
in these spectral regions (green, blue, and ultraviolet) 
are important to detect changes in reflectance due 
to changes in pigment content (MERZLYAK et al., 
1999), carotenoids (GITELSON et al., 2002), and 
anthocyanins(PROSHKIN et al., 2021)B, and C 
ranges (as additives to the main light at leaf level.

Two additional perceptions must be 
noted. The spectral differences between classes, 
especially those revealed in the fourteen wavelengths 
described above, are subtle, as reported elsewhere 
(DELALIEUX et al., 2007; ETTABAA & SALEM, 
2017); in fact, taking as reference the usual range of 
reflectance values (from zero to unity), the conspicuous 
differences revealed by the spectrum-ratio technique 
are of the order of 10-4 or even smaller. Their detection 
is due to the extreme signal-to-noise ratio of the 

Figure 5 - Validation Metrics (a) and (b) and Average Impact Magnitude (c) and (d) to evaluate the performance of the LGBM 
algorithm, using wavelengths selected by the Spectrum Ratio method. Correspondences between Wn and Vn to their 
respective estates and varieties are given in table 1. 
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measurements taken with the equipment presently 
employed, leading to the significant detection of faint 
spectral features. A lengthy discussion of this point 
can be found at former research reported by our group 
(PITHAN et al, 2021). Finally, the results presented 
here do not suggest a capability, from our data and 
analysis, to separate between red and white grape 
varieties (classes V1, V3, V4, V6, V9, V10 and V11 
are red grapes); however, it was reported by SILVA 
& DUCATI (2009) that, using ASTER satellite data, 
these two greater classes can be discriminated. This 
is intriguing, since the spectral resolution of ASTER 
images is much coarser. A possible explanation may 
come from the classification algorithm used on the 
images, the maximum likelihood, which was not 
presently used. 

From these results, it seems that purely 
environmental variations (bedrock, climate) are not 
decisive to differentiation within the Estates group, 
since, for example, the Estates on volcanic rocks (W2, 
W3, W5 and W6), all of them with a more humid climate, 
do not form a separate group. This suggested that more 
complex processes are involved in the construction of 
reflectance spectra of vines (or of vegetation in general) 
confronted to environmental changes.

CONCLUSION

In this research, we investigated the 
potential of field hyperspectral leaf reflectance 
measurements to differentiate grape varieties 
and grape production regions. Our results have 
demonstrated that such separability is indeed 
possible, with significant accuracies. Acquiring 
spectral information about the vines in situ, without 
removal of leaves for laboratory analysis represents 
a gain both in costs and in logistical preparations. 
Due to its extreme signal-to-noise ratio, allowing the 
detection of subtle spectral features, the hyperspectral 
proximal sensor data presently used was a crucial tool 
in the detailing of faint leaf traits, making possible 
to discriminate grapevine varieties and the influence 
of environmental aspects. In this sense, our results 
can contribute to the comprehension of terroir issues 
related to regional variations, as discussed by VAN 
LEEUWEN & SEGUIN (2007). In fact, focusing on 
the presently demonstrated capability of spectrally 
separating regions, even when the bedrock is similar 
(being the cases of estates W2, W3, W5, and W6, all 
on volcanic acidic rocks), we saw that the geological 
similarity was not a confounding factor; these classes 
were fairly separated, suggesting that additional 
discriminating factors, like climate, also play a role 

on plant development leading to specific spectral 
traits in leaf reflectance.

The wavelength extraction by the SR 
technique demonstrated advantages over the KPCA 
method when both were used for classification with 
the LGBM algorithm. This paper points towards the 
feasibility of the spectral discrimination of grapevines 
at leaf level, using a non-destructive method, for 
identification of vine varieties and their region, 
with applications valuable to the producer, allowing 
building a spectral library of grape wines. 
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