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A B S T R A C T   

Ecological niche models are used to quantify the relationships between known occurrence records of a given 
species and environmental variables at these locations. Maxent is among the most widely used algorithms for 
modeling species distribution and has demonstrated better performance compared to other methods. However, 
the extent of the study area is a critical issue in the development of presence-only species distribution models 
because it encompasses the region used to extract the background points employed to characterize the envi
ronments accessible to the species. Thus, this study evaluated the effect of the extension of the study area on the 
species distribution modeling with the Maxent algorithm and occurrence data from the invasive species Raoiella 
indica Hirst (Acari: Tenuipalpidae). The increase in the study area extent inflated most of the threshold- 
dependent and -independent metrics used to assess model performance. The selection of the study area also 
affected the predicted suitable areas for the species (its potential distribution). The analysis shows that models 
developed with smaller study areas resulted in model overfitting and an increase in false-negative predictions. 
The extent of the area used during model training has a strong influence on the model outputs, with significant 
consequences for predicting the potential distribution of invasive species and thus for the areas under risk of 
invasion.   

1. Introduction 

The interest in describing, understanding, and predicting the 
geographic and environmental distribution of species has existed for a 
long time (Wallace, 1860; Grinnell, 1917). Therefore, in recent decades 
several methods have been proposed for this purpose (Stockwell and 
Peterson, 2002; Phillips et al., 2006; Soberón et al., 2017; Valavi et al., 
2021). In general, such models use associations between known species 
occurrence records and environmental variables to estimate potential 
geographic distributions (Elith, 2017). Since the late 1990s, two main 
terminologies have been used to refer to modeling methods that corre
late known occurrence records and environmental conditions: "species 
distribution models" and "ecological niche models (ENMs)" (Peterson 
and Soberón, 2012). ENMs are extensively employed in numerous 
studies on ecology and evolution, including those focused on identifying 
suitable areas for invasive species (e.g. Zhu et al., 2012; Zhang et al., 

2021, Marchioro and Krechemer, 2023). This aids in decision-making 
regarding the implementation of phytosanitary measures aimed at pre
venting new instances of biological invasion (Bradshaw et al., 2016). 

When employing correlative models to estimate species distribu
tions, three common approaches are used, which vary based on the 
characteristics of the occurrence data: (1) using presence-only data; (2) 
using presence-absence data when available; and (3) using presence 
data and a sample of background data (Sillero et al., 2021). Background 
data represents a sample from the study area that helps characterize the 
environmental conditions throughout the region under investigation, 
including the accessible sites where the species could potentially exist 
(Fernandez et al., 2022). In recent decades, methods that do not rely on 
absence data have become popular, with the maximum entropy (Max
ent) algorithm, in particular, gaining prominence (Phillips et al., 2006). 

Maxent is a machine learning algorithm that was developed specif
ically to estimate potential distribution of species for scenarios where 
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only presence data are available (Phillips et al., 2006; Elith et al., 2011; 
Merow et al., 2013), and it shows good performance compared to other 
methods (Elith et al., 2006; Heikkinen et al., 2012; Venette, 2017; Feng 
et al., 2019; Jha et al., 2022). This algorithm estimates habitat suit
ability by contrasting environments where the species occurs with those 
sampled as backgrounds to determine which combinations of variables 
best predict the known distribution of the species. Therefore, back
ground data establish the environmental domain of the study, while 
presence data should establish under what conditions a species is more 
likely to be present than average (Hijmans and Elith, 2021). 

Studies have shown that the extent of the study area is critical for the 
development of presence-only niche models with pronounced effects on 
model performance and predictions, particularly for Maxent models 
(VanDerWal et al., 2009; Barbet-Massin et al., 2012; Anderson and 
Raza, 2010; Khosravi et al., 2016; Cooper and Soberón, 2018; Macha
do-Stredel et al., 2021). Some studies state that it is preferable to restrict 
background sampling based on an ecological reasoning or in a way that 
explains sampling bias, rather than sampling the entire background 
environment (Philips et al., 2009; Rodda et al., 2011). Conversely, 
others indicate that a smaller area closer to known occurrence points 
produces more accurate distributional predictions, whereas extensive 
study areas can have a negative impact on model performance and oc
casionally lead to inaccurate predictions (VanDerWal et al., 2009; Elith 
et al., 2010). 

The size and methodology used to define the study area are partic
ularly relevant for invasive species. Numerous approaches can be found 
in the literature for delineating the study area, including the creation of 
buffers (e.g. Fourcade et al., 2014), minimum convex polygons (e.g. 
Chetan et al., 2014), or the largest possible rectangle around the 
occurrence records (e.g. Jarnevich et al., 2017, Amaro et al., 2021). 
Alternatively, some studies use ecological classifications such as climate 
zones or biomes (e.g. Hill and Terblanche, 2014; Mota et al., 2022). 
These methods result in study areas of varying extents. Furthermore, 
depending on the purpose of the study, it can be essential to capture the 
full extent of a species’ presence to ensure the representation of entire 
ecological niche. However, in contexts where occurrence records exist in 
invaded areas, the inclusion of these records remains a subject of debate. 
The common argument is that these occurrences provide a closer 
approximation of a species’ fundamental niche and its potential for a 
future invasion, while records from the native area better reflect the 
realized niche (Elith, 2017). Previous studies have found that distribu
tion models for invasive species benefit from incorporating data from 
the invaded area (Mau-Crimmins et al., 2006; Broennimann and Guisan, 
2008; Beaumont et al., 2009; Sales et al., 2017), as it enables the iden
tification of conditions under which species can establish and thrive. 
However, contrasting results have also been reported in the literature 
(Vaclavık and Meentemeyer 2012; Barbet-Massin et al., 2018). 
Depending on the approach employed to define the study area, the in
clusion of invasive records, which are typically geographically distant 
from native records, can significantly expand the background extent. 

The red palm mite, Raoiella indica Hirst (Acari: Tenuipalpidae), was 
used as a model organism to evaluate the effects of study areas with 
different extents generated with three methods on model performance 
and the resulting predictions. This is a phytophagous species that feeds 
on several palm species (family Arecaceae), including economically 
important monocotyledonous plants such as coconuts and bananas 
(Roda et al., 2012; Otero-Colina et al., 2016; Gondim et al., 2012). 
Predicting the potential distribution of invasive species like R. indica, 
which have the capacity to cause significant economic losses, is crucial 
for implementing phytosanitary measures aiming at preventing new 
events of biological invasion (Peterson, 2003; McGeoch et al., 2010; 
Jiménez-Valverde et al., 2011). In this context, understanding how the 
extent of the study area impacts Maxent outputs can contribute to the 
development of more accurate models, which, in turn, can assist in 
identifying regions with a higher risk of invasion. 

2. Material and methods 

2.1. Occurrence records and environmental data 

A total of 220 records (from native and invaded regions) of R. indica 
were obtained from published literature (Amaro et al. 2021) and were 
cleaned via CoordinateCleaner v.2.0–20 R package (Zizka et al., 2019) 
using the tests “zeros”, “seas”, “equal”, “institutions”, “duplicates”, 
“centroids”, “gbif”, “validity”, “capitals”, resulting in 203 observations. 
Sampling bias resulting from heterogeneous geographical sampling 
(Moua et al., 2020) was reduced by applying an environmental filter 
(Varela et al., 2014) on the occurrences via the “occfilt_env” function in 
flexsdm R package v.1.3.0 (Velazco et al., 2022), using five classes. A 
final count of 150 observations was used for model calibration in this 
study (Fig. 1). 

Nineteen bioclimatic variables derived from the WorldClim 2.1 
database (Fick; Hijmans, 2017) at 2.5 min spatial resolution (~ 5 km at 
the equator) were used in the study. These variables were selected 
because they represent temperature and precipitation conditions that 
are known to constrain the distribution of different organisms (Slater 
and Michael, 2012). Furthermore, such bioclimatic variables were pre
viously used in a modeling study performed with R. indica (Amaro et al., 
2021). Correlated variables were removed from the analysis using the 
variance inflation factor (VIF; Marquaridt, 1970), performed with usdm 
package (Naimi et al., 2014). Variables with VIF > 10 (Naimi et al., 
2014) were excluded. A final set of 9 variables (Bio2, Bio3, Bio8, Bio9, 
Bio13, Bio14, Bio15, Bio18, and Bio19) were used in subsequent 
analysis. 

2.2. Delimitation of the study area 

Overall, six different study areas (calibration areas) were evaluated 
using three approaches: (1) buffers of different sizes (200, 400, 800, and 
1200 km) around the occurrence records, (2) the Minimum Convex 
Polygon (MCP) approach, and (3) the enclosing rectangle method (ER). 
The calibration areas were delimited with the “calib_area” function in 
the flexsdm R package. MCP is the smallest polygon in which no internal 
angle exceeds 180◦ and which contains all occurrence records. On the 
other hand, ER method creates the largest possible rectangle encom
passing the occurrence records. These methods were selected because 
they are commonly employed in different studies with the Maxent al
gorithm (Rodda et al., 2011; Chetan et al., 2014; Fourcade et al., 2014; 
Barga et al., 2018; Amaro et al., 2021, among others). 

2.3. Modeling process 

The models were developed with the Maxent algorithm using the 
flexsdm R package through a non-homogeneous Poisson process (Phil
lips et al., 2017). This machine-learning algorithm is widely used to 
predict the potential distribution of insect pests due to its robust sta
tistical performance (Elith et al., 2010). Maxent has two main settings 
that affect model performance and transferability into geographical 
space: (1) features classes (FCs), and (2) regularization multiplier values 
(RM) (Merow et al., 2013; Sutton and Martin, 2022). A feature corre
sponds to a mathematical transformation of the different covariates used 
in the model to allow complex relationships to be modeled (Elith et al., 
2010). The regularization multiplier is a parameter that adds new con
straints; that is, it is a penalty imposed on the model. The main objective 
is to avoid excessive complexity and/or overfitting, controlling the in
tensity of the features used to build the model (Elith et al., 2010; 
Shcheglovitova and Anderson, 2013). In this context, the “tune_max” 
function of the flexsdm R package was used to generate 50 Maxent 
models with different combinations of FCs (linear -L, quadratic - Q, 
hinge -H, LQ and LQH) and RMs ranging from 0.5 to 5 (with an incre
ment of 0.5). Product features were omitted because the (marginal) 
response curves for each predictor variable completely define the model 
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and are easier to interpret than those that depend on the values of other 
variables. The threshold that maximizes the sum of sensitivity and 
specificity was used to obtain the binary maps of environmental 
suitability. 

To control the potential spatial autocorrelation between model 
calibration and test data and improve its transferability, the spatial 

block cross-validation method was used for data partitioning (Roberts 
et al., 2017; Santini et al., 2021). Because calibration and evaluation 
localities are often close to each other, localities used to evaluate model 
performance are not truly independent of those used to calibrate it. 
Therefore, due to the spatial autocorrelation of the environment, they do 
not provide realistic tests of model performance, typically leading to 

Fig. 1. Data on the presence (record of occurrences) of Raoiella indica Hirst (Acari; Tenuipalpidae) (red dots), as described in Amaro et al., 2021. Studies show that 
Africa or the Middle East is the most probable origin of the Raoiella (Dowing et al. 2012). Thus, registers in America are invasive. 

Fig. 2. Distribution of occurrences of Raoiella indica Hirst (Acari; Tenuipalpidae) (red dots), background samples (black dots), 200 km buffer (a), 1200 km buffer (b), 
minimal convex polygon (c) and rectangle wrapper (d) on the grid created by partitioning into blocks. 
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overestimates of performance (Radosavljevic and Anderson, 2014). The 
spatial block cross-validation allows the evaluation of the model using 
spatially independent data from the calibration data (Radosavljevic and 
Anderson, 2014). This was performed with the “part_sblock” function in 
the flexsdm R package, using four partitions and keeping the default 
values for the other options, resulting in 47, 63, 28, and 12 presence 
records for each of the created partitions. The samplings of background 
points in the calibration area were proportional to the occurrences for 
each partition using the random points method in the “sample_back
ground” function within the flexsdm R package. Overall, 3133, 4200, 
1867, and 800 background points were generated for each partition (10, 
000 in total following Maxent default). Except for the calibration area, 
all other parameters were kept constant. The distribution of presence, 
background, buffer (800 km), and polygon (MCP) points can be viewed 
in Fig. 2, illustrating the differences in the methods used to delimit the 
study area. 

The selection of optimal model settings was performed for each of 
the six background extents evaluated using the True Skill Statistics (TSS) 
(Allouche et al., 2006). The best model for each of the six background 
extents was then projected onto Brazil using the “sdm_predict” function. 
The area predicted as suitable was calculated based on the binary map 
generated with a threshold that maximizes the sum of sensitivity and 
specificity (MSS), using the “expand” function of the terra R package v. 
1.5–21 (Hijmans, 2022). 

2.4. Evaluation of model performance 

Due to all the issues associated with distribution model evaluation 
and the lack of consensus on the best measure, following the recom
mendation of Konowalik and Nosol (2021), we chose to present multiple 
model metrics to enable comparisons and references: (1) Inverse Mean 
Absolute Error (IMA), (2) True Positive Rate (TPR), (3) True Negative 
Rate (TNR), (4) Sorensen, (5) Jaccard, (6) F Presence-Background (FPB), 
(7) Omission Rate at MSS (OR), (8) TSS, (9) Area Under the Curve 
(AUC), and (10) the continuous Boyce Index (BI). IMAE is calculated as 1 
– Mean Absolute Error to be consistent with the other metrics, where the 
higher the value of a given performance metric, the higher the model 
accuracy (Velazco et al., 2022). TPR or sensitivity is the proportion of 
correctly predicted presences among all presences (Fielding and Bell, 
1997). In contrast, TNR, or specificity, measures the proportion of 
correctly predicted absences among all absences (Fielding and Bell, 
1997). Sorensen and Jaccard are the similarity indices of Sørensen 
(Sorensen, 1948; Leroy et al., 2018) and Jaccard (Jaccard, 1912; Leroy 
et al., 2018), respectively, widely used in ecology applications. FPB 
corresponds to the weighted harmonic mean between precision and 
sensitivity (Daskalaki et al., 2006), considering the presence and back
ground points. The omission rate indicates the percentage of test sites 
that fall into areas not predicted to be suitable for the species (Phillips 
et al., 2006; Fielding and Bell, 1997). TSS is the mean prediction success 

rate for present and absent sites (Allouche et al., 2006). AUC of the 
Receiver Operating Characteristic Curve (ROC) (Fielding and Bell, 1997) 
expresses a threshold-independent metric and, despite several criti
cisms, continues to be used. Finally, the continuous Boyce index mea
sures agreement between predicted gradients of habitat suitability and 
the distribution of retained test points (Hirzel et al., 2006). This metric 
requires only presence data and is independent of a threshold. A higher 
value indicates that the model’s predictions are consistent with the 
observed distribution of presences in the test regions. All analyses were 
carried out in R statistical environment (R Core Team, 2022). 

3. Results 

The results show a pronounced influence of the method used to 
delimit the calibration area on model selection, performance, and pre
diction (Table 1). Both RM values and FCs varied according to the 
calibration area. These parameters varied even when the same method 
was used to define the calibration area, as evidenced by the contrast 
outcomes when comparing results from the buffer method with varying 
radius sizes. For most calibration areas, the selected models consist of 
only hinge feature classes (three models). However, two models incor
porated LQ feature classes. Regarding RM values, two selected models 
had RMs values of 0.5 and 1.0 (Table 1). 

The area predicted as suitable varied widely among the methods and 
extent of the calibration area. For example, a difference of 91% in the 
predicted suitable areas was observed between a study area delimited 
with a buffer of 200 km and one delimited with 1200 km. Conversely, 
such a difference was only 2% between MCP and ER (Table 1). The 
differences shown in Figs. 3 and 4 clearly demonstrate that the method 
used to delimit the study area clearly affects the predicted suitable 
geographic regions for the species. For instance, contrary to the buffer 
and ER models, MCP models predicted suitable areas for R. indica in 
southern Brazil (Fig. 4, Fig. 5e). Similar divergences were also observed 
in midwestern Brazil, where the model with a 200 km buffer predicted 
unsuitable conditions for R. indica, contrary to the other models (Fig. 4, 
Fig. 5). In fact, numerous presence records, particularly in the states of 
Minas Gerais, São Paulo, and Paraná, were found outside the region 
considered suitable for the species (Fig. 5a). This indicates that the 
model exhibits identifiable errors of omission. Furthermore, the evalu
ation of the probability frequency histograms (Fig. 4) reveals that as the 
study area expands, the potential geographic distribution becomes more 
localized and less inclusive overall. Consequently, records in areas with 
lower probabilities of occurrence are not classified as suitable, particu
larly considering that the models generated with buffers of 200 and 400 
km yielded higher threshold values (Fig. 5). 

Our findings also show a clear influence of the calibration area on 
most metrics used to evaluate model performance (Table 2, Fig. 3). In 
general, except for TPR and OR, the increase in the calibration area 
inflated most of the metrics used. A different pattern was observed 

Table 1 
Results of models generated by the flexsdm R package for different buffer sizes (200, 400, 800, 1200 km), minimum convex polygon (MCP) and enveloping rectangle 
(ER), considering the extension entire study area.  

Results 200 km 400 km 800 km 1.200 km MCP ER 

RM 2.50 3.50 0.50 0.50 1.00 1.00 
Features Q H LQ LQ H H 
Threshold A 0.69 0.69 0.51 0.48 0.50 0.53 
Area (km2) B 5,492,933 12,954,210 28,696,074 45,292,591 48,048,774 63,768,341 
Suitable area (km2) C 1,827,308 2,515,338 3,449,437 3,487,684 2,928,716 2,852,826 
% suitable area D 33.27 19.42 12.02 7.70 6.10 4.47 
Background% E 14.79 6.23 2.79 1.75 1.71 12.67  

A maximum (sensitivity + specificity). 
B Extent of the area used to calibrate the model (study area). 
C Area of potential geographic distribution, calculated based on the binary map (presence/absence). 
D Percentage of potential geographic distribution area relative to the total extent of the study area. 
E Percentage of the study area occupied by background points. 
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between areas delimited by buffer and polygon regarding the metrics 
TPR and OR. Both TPR and OP decreased as the buffer size increased. By 
contrast, the MCP and ER models presented very similar metrics 
(Table 2) and, although the total area of the extension used for the ER 
model was 33% larger than the extension area of the MCP model, its 
result, in terms of the predicted potential distribution area of R. indica 
(Fig. 5), was only 3% lower. Interestingly, regardless the observed 
variation in the metrics used to evaluate model performance, in general, 
all models exhibited good statistical performance. 

4. Discussion 

In this study, we evaluated the effects of the extension of the study 
area on both model performance and predicted suitability for an 
economically important agricultural pest. The findings clearly demon
strate that the choice of method used for defining the calibration area 
directly influences model performance and the resulting suitability 
maps. Thus, it is crucial to carefully consider this aspect when devel
oping maxent models, especially for invasive species. 

The projections of presence-background correlative models can be 
biased if the study area encompasses regions that are suitable for the 
species but remain unoccupied due to various factors, including: (1) 
limited dispersal or transient populations (Anderson and Raza, 2010; 
Elith et al., 2011); (2) biotic interactions (Anderson 2017; Jarnevich 
et al., 2015); and/or (3) environmental changes resulting from human 
activity (Anderson and Raza, 2010; Jiménez-Valverde et al., 2011). 
Therefore, ideally, the selection of the study area should consider the 
assumption that none of these three factors account for the species 
occupying an environmentally unsuitable subset. Consequently, despite 

the satisfactory evaluation metrics demonstrated by the MCP and ER 
models, their use could be deemed inappropriate for R. indica, given the 
extensive regions of Africa where no occurrences are known. However, 
it is not clear whether field surveys were conducted in this region and 
failed to record the presence of R. indica or if such surveys were not 
carried out. 

The size of the buffers used to define the calibration area had a 
marked influence on model predictions. Predictions with very small 
areas such as the ones obtained with the 200 km buffer may indicate 
model overfitting and result in false-negative predictions. This is often 
the case when area sampling is insufficient to capture the full range of 
environmental conditions occupied by a species. On the other hand, 
extensive areas can lead to the identification of locations that are not 
occupied by the species, resulting in false-positive predictions. This may 
be attributed to areas that lie beyond the species’ actual distribution or 
indicate dispersal limitations due to barriers or biotic interactions, such 
as competition and predation (Raxworthy et al., 2007). 

The extent of the area used during the modeling process has a great 
influence on model performance and, if it is very limited, the importance 
of some factors in delimiting the distribution can be underestimated 
(Barve et al., 2011). Increasing the extent often includes absences that 
are more environmentally distant from the presence records and, 
consequently, some metrics like AUC and TSS tend to increase (Lobo 
et al., 2008). This was observed when the evaluation metrics of buffer 
models with different radius size were compared, as seen in Table 1. The 
threshold-dependent metric AUC, for example, increased from 0.71 in 
models with buffers of 200 km to 0.80 in models with calibration areas 
generated with buffers of 1200 km. By contrast, other metrics like CBI 
and OR did not follow this pattern. 

Fig. 3. Relationship between the extension of the study area (X-axis) and the metric values (Y-axis), including a simple linear regression (line) and their respective 
correlation coefficients (R2), to illustrate trends related to area increase in each metric. The metric are true positive rate (TPR), true negative rate (TNR), Sørensen, 
Jaccard, F presence-background (FPB), omission rate (OR), true skill statistics (TSS), area ander the curve (AUC), and the continuous Boyce index (Boyce). 
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The metrics employed to assess model performance indicate that all 
models showed satisfactory results, regardless of the method used to 
delimit the study area. For instance, despite substantial variations in the 
suitability maps generated by models using study areas defined with 
buffers of 200 km and1200 km, both models consistently achieved high 
evaluation metrics. This is evident from the obtained AUC and Boyce 
index values, which were consistently above 0.70 and 0.80, respectively. 
This result reinforces the importance of using an ecological criterion in 
the definition of study area (Andersen et al., 2022; Elith et al., 2011; 
Marchetto et al., 2023; Phillips and Dudík, 2008; Kramer-Schadt et al., 
2013). Ideally, dispersal and habitat processes should be considered to 
adequately delimit the extension area for adequately modeling species 
dispersion. However, this information is not always available, and, in 
the special case of invasive species, the dispersion characteristics of the 
species do not depend only on its capacity but mainly on other agents 
that act as vectors. Some studies employ climate zones or biomes with 
one or more occurrence records to delimit the extent of the study area 
(Hill and Terblanche, 2014; Hill et al., 2017). In this context, the use of 
an “exploratory modeling” process, as done in this work, can help to 
understand the details underlying the current and potential species 
dispersion, which can be decisive for the adequate choice of calibration 
parameters of the models, especially considering the economic risks 
involved, resulting from the presence of invasive species. 

Considering that R. indica is an invasive species classified as a 
quarantine pest present in Brazil, the objective is to identify areas where 
it represents a more significant risk of invasion. Together with assess
ments related to the economic importance of host plants and dispersion 
routes, maps of potential distribution can be used to guide public pol
icies for phytosanitary control. Therefore, the cost of false negatives 

would potentially be greater than the cost of false positives for those 
locations where host plants are economically relevant. 

5. Conclusions 

In summary, this study assessed the effects of six study area extents 
generated with three different methods on model performance and the 
resulting environmental suitability maps. Our findings clearly demon
strate that both the extent and the method used to delimit the study area 
affect model performance and environmental suitability. Although all 
models showed good performance regardless of the extent area used, 
pronounced differences were observed in the resulting suitability maps. 
Such differences were also observed in models with study areas created 
with buffers of different sizes. This is particularly relevant for invasive 
species, such as the case of R. indica, when models are used to identify 
areas with a higher risk of invasion. In such circumstances, errors in the 
identification of areas at risk of pest establishment may result in sig
nificant economic and environmental losses. 
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