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H I G H L I G H T S  

• Licuri oil is an alternative to meet the energy demand of the diet provided to ewe. 
• Different levels of licuri oil in diets for Santa Inês ewes were tested. 
• Diets containing up to 2% licuri oil increase the DM intake and weight gain in ewes.  
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A B S T R A C T   

The aim of this study was to evaluate the effect of inclusion of licuri oil on intake, digestibility, ingestive 
behavior, rumen protozoa population, and productive performance of Santa Inês ewe. Thirty-two Santa Inês ewe 
(multiparous, non-lactating, 2–4 years old and 36.7 ± 0.87 kg body weight) were distributed in a randomized 
block design, receiving diets containing licuri oil (0, 2, 4, and 5% based on total dry matter) in partial 
replacement of ground corn (n = 8 per treatment). The inclusion of licuri oil promoted a quadratic effect for the 
intakes of dry matter (P = 0.008), and neutral detergent fiber (P = 0.004), dry matter digestibility (P = 0.004), 
ether extract (P < 0.0001), average daily gain (P = 0.01), rumination time (min/day; P = 0.039 and min/g DM; 
P = 0.041), chewing time (min/g DM; P = 0.020), and for protozoa counts of the genus Entodinium (P < 0.0001). 
Ewe fed diets containing licuri oil showed higher consumption of ether extract (P < 0.0001), feed conversion (P 
= 0.004), and rumen pH (P < 0.0001), in contrast, a reduction in digestibility was observed neutral detergent 
fiber (P = 0.002) and total population of protozoa (P < 0.0001) in relation to those fed the control diet. In 
experimental conditions, it is possible to include licuri oil up to 2% in diets with 50% roughage offered to Santa 
Inês ewe to provide an increase in the intake and digestibility of dry matter and neutral detergent fiber, greater 
weight gain, and greater total protozoa count.   

1. Introduction 

Confinement of less specialized animals like culling ewe requires 
new strategies to reduce feeding costs. Additionally, the high costs of 
inputs, such as corn and soybean meal, widely used in animal nutrition, 
increase production costs (Goes et al., 2019). As a result, it is necessary 

to use alternative and good quality food that will reduce the costs 
associated with food and, at the same time, improve the efficiency and 
competitiveness of production systems (Pinto et al., 2020). 

The inclusion of vegetable oils as alternative ingredients in the ewe 
diet is considered a promising approach in feedlot systems, not only 
because it provides essential fatty acids and fat-soluble vitamins, but 
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also because it increases the energy density of diets and modifies the 
fatty acid profile of products of animal origin, decreasing the content of 
short chain fatty acids (SCFA) and increasing the content of vaccenic 
(18:1 trans11) and rumen (18:2 cis9 trans11) acids (Toral et al., 2018; 
Meschiatti et al., 2019; Nudda et al., 2020). Thus, vegetable oils have the 
potential to reduce caloric increase by increasing efficiency in the use of 
metabolizable energy for animal productive performance (Parente et al., 
2020). 

However, factors related to lipid sources and concentrations can 
decrease feed intake and fiber digestibility in ewe, so that the inclusion 
of levels above 70 g/kg DM can interfere with the ruminal microbiota 
(Lima et al., 2018; Candyrine et al., 2019) and consequently, modify the 
protozoan population in the rumen, affecting methane production. This 
is due to the fact that lipids have toxic effects on ruminal bacteria 
(Parente et al., 2018), which limits the use of these sources in diets. 

The oil extracted from licuri can represent an important alternative 
to meet the energy demands of the diet supplied to Santa Inês ewe. This 
oil is extracted from the fruit of a palm tree (Syagrus coronata (Martius) 
Beccari) endemic to the Brazilian semi-arid region, found mainly to the 
east of the São Francisco River, in the states of Alagoas, Bahia, Per
nambuco, Sergipe, and northern Minas Gerais (Noblick, 2017; Araújo 
et al., 2019) and which has great energy potential. Licuri, whose almond 
has a high oil content (54% of the almond weight) (Rodrigues et al., 
2020), although it is little known as an additive for animal feed (Lima 
et al., 2015), is quite appreciated in the manufacture of cosmetics and 
soaps (Daza et al., 2020). 

Of the total fatty acids present in licuri oil, more than 40% are made 
up of lauric acid (C12:0) (Lisboa et al., 2020). This fatty acid has a strong 
effect on ruminal defaunation, in addition to facilitating digestion and 
the ability to assist in reducing and controlling blood cholesterol levels. 
Thus, the inclusion of licuri oil in the diet of ewe may affect ruminal 
biohydrogenation, favor greater absorption of polyunsaturated fatty 
acids (Araújo et al., 2020), and promote a greater concentration of 
conjugated linoleic acid (CLA) (Morais et al., 2017) and α-linolenic fatty 
acids (Bianchi et al., 2017), in addition to influencing fat deposition in 
tissues (Miltko et al., 2019; Vargas et al., 2020). 

To the best of our knowledge, the potential of licuri oil in diets for 
ewes, has not been sufficiently studied. Thus, we hypothesize that the 
inclusion of licuri oil in the diet of ewe increases energy density and 
reduces the dry matter intake without impairing animal performance. 
The aim of this study was to evaluate the effect of inclusion of licuri oil in 
the form of licuri oil on intake, digestibility, ingestive behavior, rumen 
protozoa population, and productive performance of ewe. 

2. Material and methods 

2.1. Experiment location and ethical aspects 

The experiment was conducted at the premises of the Laboratory of 
Animal Requirement and Metabolism (LEMA) belonging to the Agri
cultural Sciences Campus of the Federal University of the São Francisco 
Valley (CCA/UNIVASF), Petrolina, Pernambuco, Brazil. The climate, 
according to the classification of Köppen and Geiger (1928), is of the hot 
semi-arid type, with a rainy season (BSh), with an average annual pre
cipitation of 376 mm. During the experimental period, the maximum 
and minimum temperatures were 33.83 and 24.56◦C, respectively, with 
relative humidity between 50.50% and 73.56%. 

This research was approved and certified by the Ethics Committee on 
Human and Animal Studies of UNIVASF (protocol n◦ 0002/241017). 

2.2. Animals, treatments, and experimental diets 

Thirty-two Santa Inês ewes (multiparous, non-lactating, 2–4 years 
old, and 36.7 ± 0.87 kg body weight), were distributed in individual 
pens (2.42 m2), equipped with drinking fountains and feeders. The 
experimental design used was in randomized blocks, with four 

treatments (diets) and eight repetitions per treatment. The initial body 
weight was used to define the blocks. 

The confinement was carried out in a hollow shed (without side 
walls), with a beaten floor and covered with metal tiles. The experi
mental period lasted 77 days, preceded by 15 days to adapt the animals 
to the facilities, experimental diets, and handling. At the beginning of 
the adaptation period, the animals were identified, weighed, treated 
against endo and ectoparasites, and randomly allocated to the bays 
previously identified according to the treatments. 

The treatments consisted of increasing levels of licuri oil in the diets 
(0, 2, 4, and 5%), partially replacing the ground corn, based on the total 
dry matter. The experimental diets were composed of elephant grass 
(Pennisetum purpureum Schun) in natura, ground corn, soybean meal, 
mineral mixture (Ovinofós, Tortuga, São Paulo, Brazil), dicalcium 
phosphate, and licuri oil, formulated to be isoproteic, with a 50:50 
roughage:concentrate ratio (Table 1), to obtain daily weight gains of 40 
g/day, following the recommendations of the NRC (2007), since the 
same study was evaluated concomitantly to collect test data reproduc
tive system for harvesting oocysts in which high weight gain could 
impair the responses of the response variables. 

The licuri oil used in making the diets was obtained by cold extrac
tion of the almonds from the licuri fruit, preheated, decanted, filtered, 
and processed at Escola Família Agrícola do Sertão (EFASE), located in 
the municipality of Monte Santo – BA, Brazil. Samples of licuri oil were 
collected to determine the fatty acids profile through gas chromatog
raphy, adopting the methodology described by Visentainer (2012) 
(Table 2). 

The diets were provided in the form of complete ration twice a day, 
at 0900 and 1600, and water was provided ad libitum. The leftovers of 
food offered were collected and weighed to determine the intake and to 
adjust the dry matter intake in order to allow 10% leftovers in the 
trough. Weekly samples of the food offered and leftovers were collected 
weekly for chemical analysis. 

Table 1 
Proportion of ingredients and chemical composition of experimental diets.  

Ingredients (% DM) Inclusion levels of licuri oil (% DM) 
0 2 4 5 

Ground corn 34.3 32.3 29.8 28.5 
Soybean meal 13.8 13.8 14.3 14.6 
Licuri oil 0 2.0 4.0 5.0 
Mineral mixture1 1.6 1.6 1.6 1.6 
Dicalcium phosphate 0.3 0.3 0.3 0.3 
Elephant grass 50.0 50.0 50.0 50.0 
Chemical composition (% DM) 
Dry matter2 54.9 55.1 55.3 56.1 
Ash 8.6 8.6 8.7 8.7 
Crude protein 11.6 11.5 11.5 11.6 
Ether extract 2.0 3.9 5.8 6.8 
Neutral detergent fiber 47.2 46.6 45.9 45.5 
Metabolizable energy – SRNS (Mcal/kg) 2.5 2.6 2.7 2.7 
Fatty acids (%) 
Caproic (C6:0) 0.045 0.042 0.039 0.039 
Capric (C10:0) 0.044 0.169 0.294 0.357 
Lauric (C12:0) 1.569 2.409 3.245 3.667 
Miristic (C14:0) 0.493 0.779 1.064 1.207 
Palmitic (C16:0) 19.539 19.463 19.396 19.364 
Palmitoleic (C16:1) 0.144 0.142 0.139 0.138 
Heptadecanoic (C17:0) 0.141 0.140 0.140 0.139 
Stearic (C18:0) 3.447 3.489 3.543 3.570 
Oleic (C18:1n9c/t) 13.515 13.290 13.027 12.892 
Linoleic (C18:2n6c) 36.135 35.017 33.883 33.315 
α‑Linolenic (C18:3) 18.496 18.464 18.474 18.483 
Archaic (C20:0) 0.139 0.136 0.133 0.132 
Eicosanoic/Gadoleic (C20:1) 0.062 0.060 0.057 0.056 
Dihomo-γ-linolenic (C20:3) 0.073 0.071 0.070 0.069  

1 Composition: 7.5% P; 19% Ca; 1% Mg; 7% S; 14.3% Na; 21.8% Cl; 500 ppm 
Fe; 300 ppm Cu; 4600 ppm Zn; 1100 ppm Mn; 80 ppm I; 405 ppm Co; 30 ppm Se. 

2 in% of natural matter. 
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2.3. Intake and apparent digestibility 

The daily dry matter intake (DMI) was obtained by the difference 
between the total DM of feed intake and the total DM present in the 
leftovers. Nutrient intake was determined as the difference between the 
total nutrients present in the feed intake and the total nutrients present 
in the leftovers, on a total DM basis. 

A digestibility test was carried out in the final third of the experi
mental period, lasting five days of collection. Fecal samples were 
collected directly from the final portion of the rectum of each animal, 
every two hours (Chizzotti et al., 2007). The feces were weighed and a 
subsample of 10% of the total amount of feces was collected to form a 
composite sample for each treatment. The samples were stored at 
− 20◦C, for further laboratory analysis. 

2.4. Chemical analysis 

Samples of the ingredients, diets, leftovers, and feces were pre-dried 
in a forced ventilation oven at 55◦C for 72-h and ground into 1 mm and 2 
mm particles (Wiley Mill, Marconi, MA-580, Piracicaba, Brazil). 
Chemical analyses were performed using the procedures described by 
the AOAC (2016) for dry matter (DM; method 967.03), ash (method 
942.05), crude protein (CP; method 981.10), and ether extract (EE; 
method 920.29). The neutral detergent fiber (NDF) was determined 
according to Mertens (2002). 

The apparent digestibility coefficient of nutrients was estimated 
using indigestible neutral detergent fiber (NDFi) as an internal indicator 
to predict the production of fecal DM (Cochran et al., 1986). Samples of 
feces, food, and leftovers were incubated in situ in the rumen of adult 
Sindi cattle (± 550 kg), previously adapted for 10 days to a diet con
taining licuri oil, for a period of 240-h in bags of TNT (tissue non-woven, 
with 100 g/m2), in duplicate (Casali et al., 2008). After incubation, the 
remaining material was subjected to extraction with neutral detergent 
(Mertens, 2002) and the residue was considered as NDFi. The dry matter 
digestibility coefficient (DMDC) was calculated according to the formula 
(Cochran et al., 1986): 

DMDC = [1 − (%NDFiDMingested /%NDFiDMfeces)] ∗ 100  

2.5. Ingestive behavior 

Ingestive behavior was assessed at the beginning, middle, and end of 
the experimental period. For this evaluation, all animals were observed 
visually for 24-h, with observations recorded at intervals of five minutes. 
A record of water intake (W), food (F), rumination (R), and idleness (I) 

activities were collected by trained observers using digital timers. 
Artificial lighting was used to assist in nighttime assessments. The re
sults for the behavioral variables of feeding were obtained using equa
tions adapted from Bürger et al. (2000). The ingestion, rumination, and 
chewing times per gram of DM ingested and per gram of neutral 
detergent fiber ingested were calculated considering the dry matter 
intake and the neutral detergent fiber intake in the respective days 
assessment of ingestive behavior. 

2.6. Productive performance 

The animals were weighed at the beginning, weekly, and at the end 
of the experimental period, after a 16-h period of solid food deprivation 
(with access to water), to obtain the final body weight and average daily 
gain. Feed conversion was calculated using the following equation: 

FC = drymatterintake/averagedailygain  

2.7. Collection of rumen fluid 

After 77 experimental days, the animals were subjected to a fast for 
16-h for slaughter. The animals were desensitized by electronarcosis and 
bled through section of the jugular vein and carotid artery according to 
Brazilian regulations for industrial and sanitary inspection of products of 
animal origin (Brazil, 2017). Collection of ruminal fluid was performed 
immediately after slaughter. The samples of ruminal fluid was obtained 
at 3 points of the ventral rumen sac using a 25 mL sterile tubes, which 
was subsequently homogenized and 1 mL was removed from it, being 
placed in sterile test tubes containing 2 mL of formaldehyde and trans
ported in isothermal boxes. 

2.8. Determination of pH, identification and counting of protozoa 

The rumen fluid showed mean values of volatile fatty acids (VFA) of 
17.64% acetic acid; 12.71% propionic acid; and 1.58% butyric acid. The 
pH of the ruminal liquid was measured immediately after collection, 
using a previously calibrated bench pH meter (Simpla PH140, São 
Leopoldo, Brazil). The total count of the protozoa present in ruminal 
fluid was performed according to the methodology described by 
Dehority (2003). The total protozoa count values were transformed into 
log (x + 1). For identification of these ruminal microorganisms, a drop of 
10− 1 or 10− 2 dilution was taken and together with a drop of lugol was 
mounted on microscopy slides. In these slides, coverslips were placed for 
analysis of the microstructures of the protozoa using a 40x objective and 
classification according to the key described in Dehority (1977). 

2.9. Statistical analysis 

The results obtained were analyzed using PROC GLM of the Software 
Statistical Analysis System (SAS 9.0 statistical package, Cary, NC, USA) 
and subjected to analysis of variance and regression at 5% probability. 
Regression equations were estimated using the PROC REG procedure. 
The following statistical model was adopted: 

Y = μ + Bi + Tj + eij  

where: Y = observed value of the variable; μ = overall mean; Bi = effect 
of block i; Tj = effect of licuri oil levels j; eij = residual error. 

3. Results 

The inclusion of licuri oil in the diets promoted a quadratic effect for 
DM (P = 0.008) and NDF (P = 0.004) intakes. A quadratic effect was also 
observed for DM (P = 0.004) and EE (P < 0.0001) digestibility co
efficients (Table 3). Ewe fed diets containing licuri oil showed higher EE 
intake (P < 0.0001) and a reduction in NDF digestibility (P = 0.002), 
compared to those fed the control diet (Table 3). 

Table 2 
Fatty acid profile (in %) of ingredients used in experimental diets.   

Licuri 
oil 

Ground 
corn 

Soybean 
meal 

Elephant 
grass 

Fatty acids (%)     
Caproic (C6:0) - 0.11 0.05 - 
Capric (C10:0) 6.27 0.02 0.09 0.04 
Lauric (C12:0) 41.97 0.01 - 3.13 
Miristic (C14:0) 14.35 0.08 0.14 0.89 
Palmitic (C16:0) 7.46 11.25 13.06 27.75 
Palmitoleic (C16:1) 0.03 0.14 0.13 0.15 
Heptadecanoic (C17:0) - 0.04 0.13 0.21 
Stearic (C18:0) 4.22 2.07 4.08 4.34 
Oleic (C18:1n9c/t) 12.47 23.74 16.19 6.27 
Linoleic (C18:2n6c) 2.53 58.41 55.20 16.96 
α‑Linolenic (C18:3) - 1.62 10.09 33.09 
Archaic (C20:0) 0.14 0.29 0.29 - 
Eicosanoic/Gadoleic 

(C20:1) 
0.03 0.14 0.10 - 

Dihomo-γ-linolenic 
(C20:3) 

- 0.10 0.28 - 

*Ground corn and Soybean meal (Lee et al. 2013); Elephant grass (Araújo 2020) 
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The average daily gain showed a quadratic effect (P = 0.01), 
increasing from 0 to 2% of inclusion of licuri oil in the diets and then 
decreasing, with lower gains observed for diets containing 5% of licuri 
oil (Table 3). The increase in levels of licuri oil in the diets provided an 
increase in feed conversion of the ewe (P = 0.004), with the worst feed 
conversion observed for ewe that received diets containing 5% licuri oil 
in their composition (Table 3). 

There was no difference between the levels of licuri oil tested in 
relation to the time that the ewe spent during feeding, chewing, idleness, 
and water intake (min/day) (P > 0.05). The time spent for rumination 
(min/day; P = 0.039 and min/g DM; P = 0.041) and chewing min/g DM; 
P = 0.020) were influenced by the presence of licuri oil in the diets, 
presenting a quadratic effect (Table 4). 

The time spent by the ewe for feeding (min/g DM and min/g NDF), 
rumination (min/g NDF), and chewing (min/g NDF) were not affected 
by the inclusion of licuri oil in the diets (P > 0.05) (Table 4). 

An effect of including licuri oil in the diets of the ewe was observed in 
the total population of protozoa present in the rumen liquid, with a 
linear decrease (P < 0.0001) being observed in the total population of 

protozoa with increasing levels of licuri oil in the diets. The reverse 
behavior was verified for ruminal pH, whose indices increased accord
ing to the increase in the levels of licuri oil in the diets, in relation to 
those receiving the control diet (P < 0.0001) (Table 5). 

The population of protozoa of the genus Entodinium in the rumen 
fluid of the ewe showed a quadratic effect (P < 0.0001), increasing from 
0 to 2% of inclusion of licuri oil in the diets (Table 5). There was no effect 
of the levels of licuri oil tested in relation to the population of protozoa 
of the genera Diplodinium, Eodinium, Eudiplodinium, and Ostracdinium (P 
> 0.05) (Table 5). 

4. Discussion 

Although the levels of EE in the diets were within the maximum 
limits (between 5 and 7%) established for ruminants (Lima et al., 2015; 
Lima et al., 2018), the reduction in the dry matter intake observed in 
ewe fed diets containing licuri oil is probably due to a regulatory 
response of the intake to the higher energy density of the diets in relation 
to the control diet. The reduction in the dry matter intake directly 

Table 3 
Average values of intake, digestibility coefficient of nutrients, and productive performance of Santa Inês ewes fed diets containing different levels of licuri oil.  

Variables Licuri oil levels (%) SEM P value 
0 2 4 5 L Q  

Intake (g/dia)    
Dry matter 1609.3 1758.9 1355.6 1307.3 50.44 0.002 0.0081 

Neutral detergent fiber 980 960 780 780 5.27 0.001 0.0042 

Ether extract 44 64 63 79 0.32 <0.00013 0.257  
Digestibility (%)    

Dry matter 62.78 70.93 62.33 58.49 1.51 0.071 0.0044 

Neutral detergent fiber 68.64 66.89 57.99 58.73 1.45 0.0025 0.677 
Ether extract 71.31 84.90 72.19 67.98 1.77 0.007 <0.00016  

Productive performance    
DWG (g/day) 91.31 103.97 63.96 49.58 5.98 0.002 0.017 

Feed conversion 18.20 17.07 22.59 27.40 1.33 0.0048 0.067 

DWG – Daily weight gain; SEM = Standard error of the mean; L – Significant for linear effect; Q – Significant for quadratic effect. 
Significant for the 5% probability level. 
Equations: 1ŷ=1631.01+97.07x–34.68x2, R2=0.60 

2 ŷ=0.991− 0.020x–0.005x2, R2
=0.89 

3 ŷ=0.04+0.001x, R2=0.82 
4 ŷ=63.19+6.09x− 1.44x2, R2=0.54 
5 ŷ=69.46− 2.32x, R2=0.63 
6 ŷ=72.04+9.50x− 2.14x2, R2=0.76 
7 ŷ=92.84+11.33x− 4.16x2, R2=0.64 
8 ŷ=16.28+1.83x, R2=0.36. 

Table 4 
Ingestive behavior of Santa Inês ewe fed diets containing different levels of licuri oil.  

Variables Licuri oil levels (%) SEM P value 
0 2 4 5 L Q 

Idleness(min/day) 571.25 682.50 727.50 647.50 24.50 0.117 0.087 
Water (min/day) 15.00 15.00 11.25 2.50 2.50 0.099 0.302 
Feeding 
Min/day 253.75 250,00 205.00 223.75 11.53 0.182 0.954 
Min/g DM 0.16 0.13 0.11 0.15 0.01 0.394 0.116 
Min/g NDF 0.53 0.57 0.64 0.39 0.03 0.470 0.094 
Rumination 
Min/day 600.00 492.50 496.25 566.25 20.34 0.396 0.0391 

Min/g DM 0.25 0.20 0.22 0.27 0.01 0.717 0.0412 

Min/g NDF 1.24 1.12 1.55 0.99 0.07 0.868 0.303 
Chewing 
Min/day 853.75 742.50 701.25 790.00 23.87 0.148 0.062 
Min/g DM 0.56 0.38 0.39 0.54 0.03 0.600 0.0203 

Min/g NDF 1.77 1.69 2.19 1.39 0.09 0.639 0.120 

DM – Dry matter; NDF – neutral detergent fiber; SEM – Standard error of the mean; L – Significant for linear effect; Q – Significant for quadratic effect. 
Significant for the 5% probability level. 
Equations: 1ŷ=601.59− 90.05x+16.43x2, R2=0.33 

2 ŷ=0.26− 0.05x+0.01x2, R2=0.31 
3 ŷ=0.57− 0.16x+0.03x2, R2=0.38. 
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affected the performance of the animals, which reduced daily weight 
gain and showed worse feed conversion. However, all diets provided a 
daily weight gain above 40 g/day, established during the formulation of 
the diets offered to the ewe (Table 3). 

The increase in the amount of medium chain fatty acids in diets may 
be associated with a reduction in the dry matter intake (Hristov et al., 
2011). The licuri oil used in our study is largely composed of medium 
chain fatty acids, with a predominance of lauric (41.97%) and myristic 
(14.35%) acids (Table 2). These fatty acids, absorbed by the abomasum, 
reaching the liver through the hepatic portal system, have a high pro
pensity to oxidation, behaving similarly to glucose (Daza et al., 2020). 
As metabolic fuels that reach the liver can increase satiety (Maher and 
Clegg, 2019), the presence of licuri oil in diets increased the EE intake, 
which may have decreased the dry matter intake by a post-absorptive 
satiety mechanism. 

There is interaction between intake, digestibility, and rate of pas
sage. Therefore, it is to be expected that any treatment that changes 
intake will result in a change in the rate of passage and therefore, the 
digestibility of nutrients. The increase in the proportion of short and 
medium chain fatty acids and unsaturated fatty acids in diets containing 
licuri oil may have caused an increase in cholecystokinin (CCK) pro
duction, which caused an increase in its concentration in plasma. CCK 
can suppress food intake by inhibiting gastric emptying, which conse
quently reduces motility and the rate of digestion through the gastro
intestinal compartments (Bielak et al., 2016; Liu et al., 2020), as a result 
of the negative effect of the presence of fat in the rumen environment on 
microbial growth, especially cellulolytic microorganisms (Elghandour 
et al., 2019), which may have influenced the reduction in neutral 
detergent fiber digestibility (Table 3). 

Considering that there is a negative correlation between short-chain 
fatty acids and ruminal pH (Shen et al., 2019), it is possible that a higher 
production of short-chain fatty acids from rumen fermentation may have 
been generated in ewe that received the control diet and the diet con
taining 2% licuri oil in its composition, given that the ruminal pH values 
were lower for these treatments (Table 5). The increase in the pH of the 
rumen content of ewe that received diets containing higher levels of 
licuri oil may be related to the partial replacement of corn grain by licuri 
oil (Table 1). Corn has, in its nutritional composition, rapidly ferment
able carbohydrates, which contribute to the production of organic acids, 
in addition to reducing salivary secretion, which consequently leads to a 
reduction in ruminal pH (Ma et al., 2015). 

The ruminal pH combined with the toxic effects of fatty acids present 

in licuri oil, mainly caprylic (10.35%), lauric (41.97%), myristic 
(14.35%), oleic (12.47%), and linoleic (2.53%), on the rumen micro
organisms, may also have contributed to the defaunation of the total 
rumen protozoa population, mainly of the genus Entodinium in in
clusions above 2% of licuri oil in the diets offered to the ewe. Entodi
niomorphic ciliated protozoa have high hemicellulolytic and cellulolytic 
activity that act directly on the degradation of dietary fiber, colonizing 
fiber particles, directly ingesting plant tissues, and facilitating the action 
of specific bacteria (Vargas et al., 2020). The elimination or reduction of 
protozoa of this genus reduces their digestive activity, due to the lower 
carboxymethyl cellulase activity in the rumen, directly affecting fiber 
digestibility (Hristov et al., 2009), a fact observed in the present study. 

The direct consequence of defaunation is a drop in the concentration 
of ammoniacal nitrogen due to a reduction of the proteolytic activity of 
the protozoa. The decrease in the number of protozoa is generally 
associated with a reduction in nitrogen recycling in the rumen envi
ronment, with an increase in the number of gram negative bacteria and a 
decrease in the ammonia concentration (Hristov et al., 2019). In this 
context, the use of licuri oil in diets offered to ewe can be considered a 
promising strategy to increase the efficiency of feedlots, bringing envi
ronmental benefits resulting from the reduction of methane production 
by 20–30%, and increasing the availability of metabolizable energy for 
animals by about 12% (Nguyen et al., 2016; Vargas et al., 2020). 

5. Conclusion 

In experimental conditions, it is possible to include licuri oil up to 2% 
in diets for ewes provided increase of intake, digestibility of dry matter 
and neutral detergent fiber, greater weight gain, and a higher total 
protozoa count. 
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