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Abstract: Although environmental and clean energy research has identified graphitic carbon nitride
impregnated with reduced graphene oxide (rGO/g-C3N4) as a potential, efficient non-metallic
photocatalyst, its efficacy against Contaminants of Emerging Concern (CECs) is relatively unknown.
This study reports an optimized photocatalyst (response surface methodology, RSM) to remove the
plasticizer and endocrine disruptor bisphenol A (BPA) from water. The synthetic procedure included
sonication of prepared particles of g-C3N4 and graphite oxide (rGO), followed by reduction with
hydrazine (24 h reflux), increasing specific surface areas, and improving synthesis reproducibility. In
optimal conditions, the produced photocatalyst (50 mg L–1) removed 90% of BPA (100 mL, 100 µg L−1)
in 90 min (30 min in the dark + 60 min irradiated) using a UV source (centered at 365 nm, 26 W)
and exhibiting pseudo-first-order kinetics. For comparison purposes, under the same experimental
conditions, pure g-C3N4 removed 50% of the BPA solution. Radical scavenging tests identified the
superoxide radical as the main reactive oxygen species involved in the degradation. Two major
degradation products were identified by mass spectrometry, both of them less ecotoxic than BPA to a
variety of test organisms, according to in silico estimations (ECOSAR 2.0).

Keywords: rGO; g-C3N4; bisphenol A; heterogeneous photocatalysis; experimental design

1. Introduction

The use of water resources is a subject for discussion and it is essential for any techno-
logical advancement. A total of 2.2 billion people lack safe drinking water and 4.2 billion
lack wastewater treatment, causing the pollution of vital water sources. Therefore, develop-
ing water and wastewater treatment technologies is crucial [1].

Traditional water treatment involves floc coagulation, decantation, and disinfection;
those processes cannot efficiently remove contaminants ranging from ng L−1 to µg L−1,
concentrations usually not regulated by environmental agencies. Those pollutants are
called Contaminants of Emerging Concern (CECs), and are reported to induce chronic
effects in a variety of organisms [2]. Bisphenol A (BPA), a plasticizer used in many sectors,
is one of them. BPA-contaminated water may cause infertility, obesity, cancer, and attention
deficit hyperactivity disorder [3–5]. BPA is resistant to chlorination and ozonation [6].
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Heterogeneous photocatalysis is a feasible BPA abatement approach that complements
drinking water technologies. In this process, semiconductors absorb light to generate
electron-hole pairs for redox processes, and the charge carrier recombination time mostly
determines the process efficiency [7,8].

Titanium dioxide (TiO2) is the most common semiconductor used as a photocatalyst
due to its low recombination rates. On the other hand, it can only be activated by near
ultraviolet light, which represents less than 4% of the solar light that reaches the planet’s
surface [9], therefore, making solar-based treatments less efficient, and making visible-
light-activated semiconductors necessary [7,8,10,11]. ZnO, MnxOy, and CdS are better
solar-light activated than TiO2. However, metal-based semiconductors (a) may contaminate
treated waters with metallic ions (secondary pollution), (b) have low photo-corrosion
resistance when non-noble metals are used, and (c) may be poisoned by degradation
products, prompting research on metal-free semiconductors [12–15].

Graphitic carbon nitride (g-C3N4) is a good candidate due to its easy manufacture
from low-cost precursors (e.g., melamine or urea), high synthesis throughput, and visible
light activation (although this also means high charge recombination rates [13,16,17]). To
improve charge separation in g-C3N4, it can be combined with reduced graphene oxide
(rGO), resulting in a metal-free composite. For reducing graphene oxide (GO) from graphite
oxide (GrO), exfoliation is a good route for high throughput synthesis. The rGO acts as an
electron acceptor and boosts photocatalytic activity in semiconductors [18–21].

In this composite, rGO and g-C3N4 are responsible for concentrating electrons and
holes, respectively [22–26]. Thermal or sonochemical methods may create rGO/g-C3N4
composites [25,27]. The thermal method typically poorly distributes rGO into the g-C3N4
matrix, while the sonochemical one can provide materials with increased specific surface
areas, improved reduction, and lower energy usage. This approach also improves synthesis
control and reproducibility [28].

Although there are few reports on rGO/g-C3N4 composite preparation, the reported
photocatalytic efficiencies varied greatly, even in similar works that typically study the pho-
tocatalytic degradation of synthetic dyes, phenol halides, and antibiotics like ciprofloxacin
and tetracycline [13,27,29,30]. Chen, Wang, and Hou studied rGO/g-C3N4 for degrading
BPA [22]. However, all of these studies used a univariate approach to enhance degradation,
which probably resulted in non-optimal conditions [31].

By using the response surface methodology (RSM) with BPA photodegradation as
the response variable, this study optimized the rGO/g-C3N4 composite synthesis and its
photocatalytic activity. The synthesized composite was characterized, the BPA degradation
kinetics and mechanism were elucidated, and the photodegradation products ecotoxicities
were estimated.

2. Results
2.1. The rGO/g-C3N4 Preparation and Characterization

As the electrostatic agglomeration of pre-formed particles is one of the crucial stages
in the composite formation, the zeta potential (ZP) was measured at various pH values to
determine the pH at which the precursors had opposite charges. According to Figure S1,
at pH 3.0, the surface charges of g-C3N4 and the exfoliated rGO (also known as graphene
oxide, GO), respectively, are roughly +7.96 and −32.7 eV. All processes were carried out at
that pH.

As shown in Table S1, an initial 23 (3 factors, 2 levels) full factorial design in duplicate
was performed, producing 16 experiments. The estimated experimental error was 1.9%
(Equation S1). That error may be considered quite low as it reflects all stages (catalyst
synthesis, photocatalytic experiments, extraction, and HPLC analyses). The findings of this
initial factorial design were adjusted to a first-order polynomial model (Equation (1)), where
x1, x2, and x3 represent the codified factors (by Equation S2) of the mixture’s sonication
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time, the weight ratio of N2H4 to rGO, and the weight percentage of rGO in the mixture
prior to reduction, respectively.

Removal (%) = 23.5 + 5.25x1 − 2.45x2 + 5.20x1x2 + 6.32x1x3
±0.465 ±0.930 ±0.930 ±0.930 ±0.930

(1)

Figure S2 displays the main and interaction effects, their statistical significance, and
their 95% confidence interval. One can observe that GrO concentration and sonication
time, as well as their interaction, were statistically significant. Moreover, decreasing the
sonication time increases the answer, as increasing GrO amount also does. This probably
occurred because increasing the amount of rGO results in more electron acceptors in the
material, allowing for extended charge separation; decreasing the sonication time reduces
the exfoliation of the formed composite, allowing for the separation of g-C3N4 from GO
(instead of a true composite, one would simply get a physical mixture). The GrO:N2H4
weight ratio factor was not statistically significant within the studied values, even though
the interaction between the GrO amount and GrO:N2H4 weight ratio was. This could imply
that there was too much hydrazine at both selected levels. Therefore, in the subsequent
tests, the hydrazine concentration was kept at its lower level.

Next, the experimental conditions that resulted in the best BPA removal (Table S2)
along the path of steepest ascent were used as the central point of a central composite
design (CCD) (Table S3). Equation (2) presents the estimated model for the CCD.

Removal (%) = 61.0 − 8.65x1 − 2.52x2 + 4.73x1x2 − 8.98x2
1 − 7.83x2

2 + 5.78x3
1

±0.917 ±1.78 ±0.562 ±0.794 ±0.669 ±0.669 ±1.12
(2)

The surface shown in Figure S3 is produced by Equation (2). The ANOVA (Table S4)
and Fisher statistics both indicated that the model was well adjusted. The maximum (ideal
synthetic conditions) was calculated as follows: x1 = −0.039 and x2 = −0.26, or, respectively,
%GrO = 15% and sonication time = 7 min 20 s. One can observe the gain achieved in BPA
removal, which increased roughly threefold from 24% (central point conditions, initial 23

full factorial design) to 65% (optimal conditions, CCD).
The composite’s crystalline structure was consistent with that of g-C3N4 according to

the X-ray diffraction (XRD) analysis (Figure 1), which agrees with Gu et al. [19] and Liu
et al. [29]. This is explained by the fact that (a) rGO emits weak signals in XRD and (b)
there is little rGO present in the compound, which is insufficient to change the crystalline
structure of g-C3N4. According to the literature [16,27,32,33], GrO is distinguished by a
single peak at 11.6◦ related to the (1 0 0) plane, matching JCPDS file 75-2078 [34]. According
to JCPDS file 87-1526, g-C3N4 exhibits two main peaks at 13.2◦ (1 0 0) and 26.6◦ (0 0 2), as
well as minor peaks at 44.6◦ (2 0 0) and 56.4◦ (0 0 4). Cao et al. [12], Ma et al. [35], and Sun
et al. [36] also described these features.

According to the microstructures shown in Figure 2, precursors and composite parti-
cles do not appear to have any specific habits on a micro-scale. As the composite is made
of groups of precursor layers, the materials are indistinguishable. The observed lamellar
grouping (Figure 2c) might be related to a synthesis that relied on bidimensional precursors
self-assembly. The specific surface areas (SSA) of g-C3N4 and GrO were roughly 25.8 and
160 m2 g−1, respectively. The optimized composite SSA was 85.9 m2 g−1, whereas the
SSA of g-C3N4 under similar exfoliation conditions (without GrO) was 31.7 m2 g−1. This
difference suggests that rGO increased the composite SSA, probably by unpacking g-C3N4
layers due to an electrostatic effect. This hypothesis was confirmed by measuring the SSA
of a simple mixture of g-C3N4 and GrO at the same content (16% GrO): 47 m2 g−1.
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Figure 2. Scanning Electron Microscopy of (a) GrO, (b) g-C3N4, and (c) optimized rGO/g-C3N4.

As pH influences how well the material exfoliates and aggregates, the pH at which
the composite was formed (3.0) can also be linked to its SSA [37]. The composite ZP curve
(Figure S4) was close to that of pure g-C3N4 (Figure S1).

The Energy Dispersive Spectroscopy (EDS) analyses (Figure S5) showed that the
produced g-C3N4 was quite pure, given that the solid-phase synthetic method used just one
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reagent. The detected impurities (1.92%) can be attributed to the sample holder. It appears
that the limited contact with atmospheric air during annealing was enough to allow for a
partial oxidation of the material. This would account for the oxygen found in the EDS tests.
Even after the extensive purification performed, GrO (Figure S6) was impregnated with
tiny amounts of sulfur, chlorine, and manganese. However, due to the minimal residual
contamination (2.21%), the material was deemed suitable for the following synthetic stages.
The only visible impurity in the optimized composite (Figure 3) came from the sample
holder at 3.25%.
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Figure 3. EDS (a) distribution and (b) spectrum for the optimized rGO/g-C3N4.

Elemental analyses (CHNSO) were performed to estimate the rGO concentration in
the synthesized photocatalyst. The nitrogen concentration of the g-C3N4 precursor was
first calculated. Second, the composite was also examined, and the amount of g-C3N4
was determined using the previously mentioned nitrogen content. The rGO mass was
determined by deducting the g-C3N4 mass from the composite mass. As a result, it was
determined that the composite rGO concentration was roughly 4.0%.

The Fourier Transform Infrared Spectrophotometry (FTIR) spectra of the precursors
and the optimized material were also used to describe them (Figure 4, Table 1). Bands were
identified according to Aleksandrzak et al. [27]. Nearly oxygen-free rGO was primarily
made of carbon and hydrogen (small electronegativity difference). As the magnet dipoles
of the chemical bonds are not strong enough to couple with infrared waves, the spectrum
of the optimized material resembles that of g-C3N4.

Table 1. Attribution of the bands from the FTIR analysis.

Band Wave Number (cm−1) Attribution

I (a) 1057 stretching vibration of C–O bonds of alkoxy groups

II (a) 1620 stretching and bending vibration of OH groups

III (a) 1726 stretching vibration of C=O of carboxyl groups

IV (a) 3320 Stretching of the O–H bonds in hydroxyl groups

I (b) 806 breathing mode of the triazine units

II (b) 1234; 1313; 1398 stretching modes of C–N bond in heterocycles

III (b) 1625 stretching mode of C=N bonds

IV (b) 3130 stretching modes of secondary and primary amines
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rGO/g-C3N4 signals.

The rGO changed the bright yellow g-C3N4 into a dark gray material, which explains
why the composite has reduced reflectance (Figure 5a). One can observe from the Diffuse
Reflectance Spectroscopy (DRS) analysis that the existence of rGO in the structure had no
discernible effect on the band gap of g-C3N4 (Figure 5b). The rGO is a conductor species
(no substantial charge separation) with an allowed and direct transition (r = 0.5). As g-C3N4
favors oxidation, it is possible that the material enhanced photocatalytic activity resulted
from its increased SSA and low recombination rates, transferring charge to the rGO [38].
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Figure 5. (a) DRS and (b) Tauc’s plot of precursors and the optimized composite.

The empirical Equations S6–S8 were used to determine the VB and CB potentials of
g-C3N4 (+1.55 and –1.09 eV, respectively) [39]. The estimated band positions for g-C3N4
were assumed to be the same for the composite because rGO showed no noticeable charge
separation (Figure 5a) and the band gaps of pure g-C3N4 and the composite were nearly
identical (Figure 5b).
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2.2. BPA Degradation Kinetics and Scavenging Tests

BPA degradation rates under UV and visible lights are shown in Figure 6. Both
pure g-C3N4 and optimized rGO/g-C3N4 followed a pseudo-first-order behavior for both
light sources: kg−C3N4 (UV) = (0.94 ± 0.019) × 10−2 min−1 (R2 = 0.981), krGO/g−C3N4 (UV)

= (2.0 ± 0.083) × 10−2 min−1 (R2 = 0.986), kg−C3N4 (Visible) = (7.1 ± 0.29) × 10−3 min−1

(R2 = 0.984), and krGO/g−C3N4 (Visible) = (8.1 ± 0.28) × 10−3 min−1 (R2 = 0.985). In 90 min,
rGO/g-C3N4, under UV light, degraded BPA approximately 2.1 and 2.8 times faster than
g-C3N4 under UV and visible light, achieving 90 and 50% removals, respectively. In
contrast, dark absorption and direct photolysis removed 10.7 and 6.2%, respectively.
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Figure 6. BPA removal kinetics.

Scavenging tests pointed out that superoxide radical was the main reactive oxygen
species in BPA degradation (Table 2) [40,41], as the only scavenger that caused a significant
reduction in its removal was benzoquinone, a known inhibitor of superoxide radicals. It
was also possible to observe that holes and hydroxyl radicals played a relatively minor
role (IPA and KI scavengers, respectively). Considering the scavenging test results, the
calculated VB and CB potentials, and the required potentials for producing O2

•– and
•OH, one can realize that aqueous O2

•– could be readily formed in the presence of the
composite once its CB potential was –1.09 eV and the reduction potential of O2 into O2

•–

was 0.33 eV [42], which is about three times lower (in absolute value). It is also possible
to understand why •OH did not contribute significantly to the degradation process. H2O
has an oxidation potential of +2.80 eV [43], which is about two times greater than the VB
potential of +1.55 eV. However, because the VB potential is higher than +1.23 eV, the catalyst
can decompose H2O into O2 [43]. Chen et al. [22] and Sepehrmansourie et al. [44] also
pointed out that the primary species to be activated under visible light was the superoxide
radical, which is produced when the composite CB reduces dissolved molecular oxygen.
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Table 2. BPA degradations with scavengers.

Scavenger Removal (%)

None 65.0
IPA 64.5
BQ 42.0
KI 60.0

IPA = propan-2-ol; BQ = benzoquin-1,4-one; KI = potassium iodide.

2.3. Degradation Product Identification and Ecotoxicity

Two main degradation products (DPs) were identified: 4,4’-(propane-2,2-diyl)bis
(cyclohexa-3,5-diene-1,2-dione) (DP1) and 4-(2-(3,4-dihydroxyphenyl)propan-2-yl)cyclohexa-
3,5-diene-1,2-dione) (DP2). Figure 7 depicts their structures, and Figure S7 presents their
mass spectra. Those compounds were also found by Kondrakov et al. [45]. As superoxide
radical was the main oxidizing agent present in the treatment, two concurrent degradation
mechanisms were suggested (Figure 8). In the first pathway, hydroperoxyl radical is created
when superoxide radical removes a proton from the BPA OH moiety. Hydroperoxyl radical
attacks the carbon next to the formed ketone, forming a double bond with the deprotonated
oxygen atom. A proton is taken away from that carbon by an additional hydroperoxyl
radical, which results in the removal of water and the formation of a double bond with
the last oxygen atom. In the second pathway, hydroxyl ion is eliminated while superoxide
radical attaches an oxygen radical to BPA (vicinal carbon to the OH moiety). A proton is
removed from water by the radical oxygen, creating hydroxyl radical. As a result, DP1 is
produced when BPA reacts via both pathways, while DP2 is produced when BPA reacts
only via pathway (1) or when DP1 is oxidized [46,47].
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Figure 8. Proposed oxidative mechanism of BPA phenolic rings.

The ECOSAR 2.0 software was used to predict the ecotoxicities of BPA and suggested
DPs (Figure 9). The LC50 and EC50 endpoints are the concentrations at which a sole
exposure to a chemical over a specific period of time causes 50% of the tested population to
die or experience negative effects, respectively (L—Lethal; E—Effect). The chronic value
(ChV) is the concentration at which a continuous exposure causes chronic effects [48]. The
Globally Harmonized System of Classification and Labeling of Chemicals states that the
ecotoxicity of a compound is determined by the ratio (R) between the acute effect (LC50
or EC50) and the chronic one (ChV): This way, if R ≤ 1, the compound is Very Toxic; if
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1 < R ≤ 10, than it is Toxic; if 10 < R ≤ 100, it is Harmful; and it will be Not harmful if
R > 100 [49].
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Figure 9. Estimated BPA, DP1, and DP2 acute * and chronic ** ecotoxicities (ECOSAR 2.0 software).
* Fish and Daphnid (LC50), Green algæ (EC50). ** Fish, Daphnid, and Green algæ (ChV).

BPA was toxic to all of the test organisms, as anticipated. DP1 was nearly as harmful
as BPA. DP2, on the other hand, was not toxic, but was harmful to fish and daphnids. Those
slight variations in toxicities are probably due to the fact that DP1 and DP2 are quite similar
to BPA. Therefore, to fully remove BPA and, more importantly, remove ecotoxicity, longer
irradiation times would be required. This is crucial because BPA, DP1, and DP2 were all
toxic to green algae, which forms the base of many food systems.

3. Materials and Methods
3.1. Materials

Melamine (99%, Sigma-Aldrich, St. Louis, MO, USA), graphite powder (99%, Synth
LDT, São Paulo, Brazil), potassium permanganate (99%, Synth LDT), hydrogen peroxide
(30%, Synth LDT), sulfuric acid (96%, AppliChem Panreac, Darmstadt, Germany), hy-
drochloric acid (37%, Chemis, São Paulo, Brazil), and aqueous hydrazine (80%, Merck,
Darmstadt, Germany) were used as received.

3.2. Synthesis of g-C3N4, rGO, and rGO/g-C3N4

The g-C3N4 was produced by adapting prior methods [17]. A muffle furnace (EDG
7000 coupled to an EDG heater EDGCON 3P) was used for pyrolyzing 2.00 g of melamine
in a porcelain crucible with a lid. The material was first heated (10 ◦C min−1) from room
temperature to 50 ◦C, and maintained for 30 min. Then, the powder was heated (6 ◦C min–1)
from 50 to 605 ◦C, and maintained for 183 min. Finally, the muffle oven was allowed to
cool down to room temperature. The yellowish material obtained inside the crucible was
ground in an agate mortar/pestle, transferred to Falcon® tubes (50 mL), and kept in the
dark until usage.

The rGO was produced using a modified Hummers process [50] (see Supplementary
Material). To a mixture of graphite powder (1.00 g) and concentrated sulfuric acid (70 mL),
potassium permanganate (9.00 g) was added. The mixture was then magnetically stirred
at 40 ◦C for 40 min and ultrapure water (150 mL) was added. The flask was filled with
more ultrapure water (500 mL), concentrated hydrogen peroxide (10 mol L–1, 10.0 mL),
and magnetically stirred for more than 15 min. The solid was vacuum filtered through
a 0.45-µm cellulose acetate membrane, suspended again in hydrochloric acid 1.0 mol L–1
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(250 mL), and vacuum filtered once again. The generated GrO was homogenized, frozen,
ground, and dialyzed with a 8000–14,000 Da membrane that removed the impregnated
ions. The outside solution was exchanged every 2 h on the first day, every 4 h on the second
one, and then every 12 h until the pH of the spent water and that of ultrapure water were
the same (pHmeter Marconi PA 200). The purified material was air dried and lyophilized
for six days. Then, this material was finally pulverized in an agate mortar/pestle and kept
in the dark inside Falcon® tubes (50 mL).

Composites were prepared by a sonochemical approach. To obtain 1.0 g L–1 suspen-
sions, the required amounts of g-C3N4 and GrO were weighed and sonicated in parallel for
1.5 h with two ultrasonic (tip) devices (BRANSON models 450 and 550, for GO and g-C3N4)
at 14 W in pulses (3 s on, 7 s off). Those suspensions were magnetically stirred and H2SO4
(3.0 mol L–1) was added to adjust the pH to 3.0. This acidified suspension was sonicated for
20 min more using the same pulse routine. The sonicated mixture received a certain amount
of hydrazine and was refluxed at 98 ◦C for 24 h. Before vacuum filtration, the suspension
naturally cooled to room temperature. The obtained composite was vacuum filtered and air
dried for 24 h in a dark environment, pulverized with an agate mortar/pestle, and stored
in 1.5-mL Eppendorf® tubes.

The RSM was used to improve the composite synthesis [31]. The response-variable
was BPA degradation (see Supplementary Material). First, a 23 full-factorial design was
duplicated. The %rGO, sonication time, and N2H4:rGO weight ratio were assessed. Second,
a polynomial was fitted to the data, and a series of experiments (according to Equation S4)
was performed along the path of steepest ascent, i.e., towards increasing BPA degradation.
Finally, a CCD was performed over the region of maximum BPA degradation. A new
polynomial was adjusted to the data and used for estimating the optimal synthetic BPA
degradation conditions. An ANOVA tested the model goodness of fit.

Several characterizations were performed in the precursors and in the optimized
composite: XRD, FTIR, Dynamic Light Scattering—ZPs, Scanning Electron Microscopy with
Field Emission Gun, EDS, DRS with the Tauc plot approach [51], and elemental analyses.

3.3. Photodegradation Experiments

The photodegradation studies were performed in a 250 mL, temperature-controlled
(20 ◦C) open-jacketed reactor. Typically, the reactor was fed with BPA 100 µg L–1 (100 mL) at
pH 6.0 (adjusted with aqueous ammonia) and the photocatalyst (composite, 5.0 mg). That
suspension was magnetically stirred and bubbled with air (approximately 270 mL min–1)
for 30 min in the dark. Then, a black light bulb lamp (BLB) (Empalux®, 25 W) was
turned on (60 min) and placed 15 cm above the suspension surface. After irradiation,
the suspension was put into amber flasks, refrigerated (5 ◦C), and filtered using cellulose
acetate membranes (0.45 µm pore size). Identical procedures were used for the adsorption
and photolysis tests, without the lamp and photocatalyst, respectively.

A vortex-assisted liquid–liquid microextraction approach, based on Yangzi et al. [52],
was used to extract residual BPA from the samples (filtered suspensions). Then, n-octanol
(100 µL) was added with the aid of a 10–100 µL micropipette to a glass tube containing
the sample (10.0 mL) without spraying it deep into the solution. The tube was centrifuged
with a relative centrifugal force of 1264 g at 25 ◦C for 20 min after being vortex stirred at
3800 rpm for 2.5 min. Using a liquid chromatographic syringe (25 µL, Hamilton Series 700
with fused needle), the organic phase was collected and put into a 100 µL insert inside
a 1.5 mL amber chromatographic vial. One used a Shimadzu Prominence 20A liquid
chromatograph LC-20AT single pump (Kyoto, Japan), manual injection six-port valve
(20 µL of loop injection), CBM-20A controller running LCsolutions® software, DGU-20A5
degasser, SPD-20A UV-vis detector for quantifying the samples’ residual BPA. Column:
Luna® C8(2) (5 µm, 100 Å; 150 × 4.6 mm). Mobile phase: 1:1 mixture of water (2% acetic
acid in volume) and acetonitrile. Chromatographic parameters: injection volume (20 µL),
reversed mode of elution, isocratic mode, flow rate (1.00 mL min–1), detection (λ = 230 nm),
total run time (8 min), and BPA retention time (5.3 min).



Catalysts 2023, 13, 1069 11 of 14

The degradation kinetics was estimated at the optimized conditions, but using 10.0 mg
of the photocatalyst instead of 5.0 mg. The experiments were performed at random in the
visible (Taschibra, daylight 20 W) and ultraviolet (Empalux, 24 W) regions. In accordance
with Wang et al. [53], experiments with scavengers (2.0 mmol L–1) were also performed.
The scavengers were added just before the BLB lamp was turned on (Table 3).

Table 3. Scavengers and respective inhibited species.

Scavenger Inhibited Species

propan-2-ol (IPA) hydroxyl radical (•OH)
benzoquin-1,4-one (BQ) superoxide radical (O2

•–)
potassium iodide (KI) holes in the valence band (hBV

+)

3.4. Identification of the DPs and Ecotoxicity Estimation

The LC-MS/MS analyses were performed in the following equipment: LC-20AD
Prominence Series UHPLC connected to an Esquire 6000 Ion Trap (IT) from Bruker Daltonics
(Bremen, Germany), electrospray ion source. Column x-TERRA MS (WatersTM, Milford,
MA, USA) 5.0 µm 150 × 2.1 mm, gradient elution with 0.05% ammonium hydroxide in
water (A) and acetonitrile (B) from 20% (B) to 90% (B) in 10 min, hold for 2 min, then
to 20% in 15 min, flow rate (0.250 mL min–1), injection volume (15 µL). The following
parameters were applied to the mass spectrometer: negative ionization mode, scan mode in
the 50–500 Da range, drying gas flow rate (8.0 L min–1), nebulizer pressure (20 psi), drying
temperature (300 ◦C), capillary voltage (3500 V). Ecotoxicities were estimated with EPA’s
freeware ECOlogical Structure-Activity Relationships (ECOSAR), version 2.0.

4. Conclusions

One may conclude that the RSM (multivariate approach) was effective for synthesizing
a material with optimized photocatalytic properties. Moreover, ultrasound, during the
exfoliation step of the synthesis, improved reproducibility and boosted the material specific
surface area.

Although fully characterizing the composite was challenging due to the similarity
of the precursors, increased specific surface area and photocatalytic activity indicated the
presence of rGO, helping it also to explain the higher photocatalytic activity towards BPA
of the synthesized composite against pure g-C3N4, regardless of the light source used.

Regarding the environmental application of the material, using BPA as a model-
pollutant at a near-environmental concentration (100 µg L–1) was crucial to deal with treat-
ment conditions close to the ones in real-life situations, despite the analytical challenges.

It was also possible to determine that the superoxide radical was the main reactive
oxygen species generated by the composite and that the material was able to almost
completely degrade BPA and partially detoxify the treated solution in a short period
of time.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/catal13071069/s1. Figure S1: Zeta potential versus pH curve of
g-C3N4 and GO; Figure S2: Pareto’s chart for the 23 full factorial design; Figure S3: CCD response
surface; Figure S4: Zeta Potential versus pH curve for the optimized composite; Figure S5: EDS (a)
distribution and (b) spectrum for g-C3N4; Figure S6: EDS (a) distribution and (b) spectrum for GrO;
Figure S7: Mass Spectra for BPA, DP1, and DP2; Table S1: Factors, levels, experimental matrix, and
results of the initial 23 full factorial design; Table S2: Path of steepest ascent; Table S3: Factors, levels,
experimental matrix, and results of CCD; Table S4: ANOVA analysis; Additional Information about
the experimental procedures (Details regarding the GrO synthesis; Optmization of the rGO/g-C3N4
synthesis; Characterization); Details about the pre-optimization experiments; Optimization of the
formation of rGO/g-C3N4; the precursors characterizations; Equations S1–S8.
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