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Abstract: Agricultural intensification practices have been adopted in the Brazilian savanna (Cerrado),
mainly in the transition between Cerrado and the Amazon Forest, to increase productivity while
reducing pressure for new land clearing. Due to the growing demand for more sustainable practices,
more accurate information on geospatial monitoring is required. Remote sensing products and
artificial intelligence models for pixel-by-pixel classification have great potential. Therefore, we
developed a methodological framework with spectral indices (Normalized Difference Vegetation
Index (NDVI), Normalized Difference Water Index (NDWI), and Soil-Adjusted Vegetation Index
(SAVI)) derived from the Harmonized Landsat Sentinel-2 (HLS) and machine learning algorithms
(Random Forest (RF), Artificial Neural Networks (ANNs), and Extreme Gradient Boosting (XGBoost))
to map agricultural intensification considering three hierarchical levels, i.e., temporary crops (level
1), the number of crop cycles (level 2), and the crop types from the second season in double-crop
systems (level 3) in the 2021–2022 crop growing season in the municipality of Sorriso, Mato Grosso
State, Brazil. All models were statistically similar, with an overall accuracy between 85 and 99%. The
NDVI was the most suitable index for discriminating cultures at all hierarchical levels. The RF-NDVI
combination mapped best at level 1, while at levels 2 and 3, the best model was XGBoost-NDVI. Our
results indicate the great potential of combining HLS data and machine learning to provide accurate
geospatial information for decision-makers in monitoring agricultural intensification, with an aim
toward the sustainable development of agriculture.

Keywords: multisensor; HLS; agriculture; artificial intelligence; remote sensing; Cerrado

1. Introduction

The Brazilian tropical savanna (Cerrado) covers an area of more than 200 million
hectares in the central region of Brazil and is the largest food, fiber, and agro-energy pro-
ducer in the country, mainly through the production of soybean (Glycine max L.), maize
(Zea mays L.), cotton (Gossypium L.), sugarcane (Saccharum officinarum L.), fruit, and cattle
beef [1]. This region stands out due to its agricultural intensification practices, mainly in
the transition zone between the Cerrado and Brazilian Amazon in Mato Grosso State [2,3].
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Agricultural intensification involves more applications of pesticides, herbicides, and chemi-
cal fertilizers and the adoption of irrigation to increase productivity [4,5]. Another method
of intensification is the use of a double cropping system in which farmers plant short-cycle
varieties of soybean so that they still have enough time to plant a second crop during the
same rainy season [6–9].

From a remote sensing perspective, the monitoring of the Cerrado’s agricultural inten-
sification, especially farms involving double or even triple cropping systems, is challenging
due to its high spatial variability, spectral similarity among some crops, different planting
dates, and presence of cloud coverage, especially during the six-month rainy season (Octo-
ber to March) [10]. However, with the recent launch of several orbital platforms carrying
different sensors operating in distinct image acquisition modes, there are new possibilities
to monitor such intensification, expansion, and retraction [9,11–14].

Agricultural monitoring in the Brazilian savanna has been carried out mainly using
products derived from high temporal resolution sensors, such as the Moderate Resolution
Imaging Spectroradiometer (MODIS), especially vegetation indices with a 16-day temporal
resolution and a spatial resolution of 250 m [10,15–17]. However, the spatial resolution of
the MODIS prevents a more precise analysis of the pixel-by-pixel mapping of agricultural
intensification since there is an impact of landscape fragmentation on the performance of
models with coarse-resolution images, limiting their application for large-scale agricul-
ture [10,15]. Therefore, to overcome this disadvantage, it is appropriate to use products
with higher spatial resolution, for example, the Harmonized Landsat Sentinel-2 (HLS),
proposed by NASA, which considers the combination of the Landsat Operational Land
Imager (OLI) and the Sentinel-2 Multispectral Instrument (MSI) satellites and improves the
number of overpasses with a spatial resolution of 30 m [18].

Previous studies have massively focused on the use of the Normalized Difference
Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) to map intensive cropping
systems [8,10,15–17,19]. Thus, it becomes relevant to diversify vegetation indices, which
can translate into statistical gains and, consequently, into better discrimination of different
types of crops. The NDVI and EVI have the same purpose, which is to evaluate the
vegetation’s vigor; therefore, combining these with indices measuring moisture content,
such as the Normalized Difference Water Index (NDWI), can help in the discrimination of
different crops, especially irrigated crops, or the use of indices capable of eliminating the
soil response in the reflectance recorded by the sensor, such as the Soil-Adjusted Vegetation
Index (SAVI), could increase the ability to discriminate sparse crops from exposed soil.
Previous studies found that index diversification, especially the addition of shortwave
infrared (SWIR) wavelengths, improves the separability of crop types [14,20,21].

Therefore, this study aimed to evaluate the potential of three different spectral indices
derived from HLS products, namely NDVI, NDWI, and SAVI, to map agricultural intensifi-
cation and crop types (corn, cotton, beans, and other crops cultivated in the second crop
season) in an area with very high production. To the best of our knowledge, there is no
study using these data to assess agricultural intensification in the Brazilian savanna. The
performance of three ML algorithms was also assessed: one that has been previously used
in related studies, i.e., the Random Forest (RF), and two that have not yet been tested in
the analysis of agricultural intensification: an Artificial Neural Network (ANN), an algo-
rithm that has already proven useful for several purposes in an agricultural context [22],
including crop mapping [23], and Extreme Gradient Boosting (XGBoost), a relatively recent
algorithm that has shown superior performance in classifying crop types when confronted
with multiple ML classifiers [21,24,25].

Based on this methodological structure, we intend to answer the following scientific
questions. (i) Is the improved temporal resolution made possible by HLS data sufficient
to capture phenological variations and discriminate between different types of crops and
cropping practices? (ii) Does the diversification of spectral indices improve the accuracies
in mapping intensification and crop types? (iii) Can the use of an ANN and XGBoost
provide even more robust mapping of intensification and crop types than RF?
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2. Materials and Methods
2.1. Study Area

The study area corresponds to the municipality of Sorriso (central coordinates: 55◦40′41.6′′

W and 12◦44′30.7′′ S), located in the central part of Mato Grosso State, Brazil, in a transitional
zone between Cerrado and the tropical rainforest (Figure 1). This municipality is officially
named the “national capital of agribusiness” (Federal Law n. 12.724, 16 October 2012) because
of its highly mechanized production of rainfed grains for export [26]. The topography is
predominantly composed of lowlands (altitude varying between 300 m and 470 m); the soil
texture is favorable for extensive grain production (clayey and medium textures) and the
rainfall is sufficient for double cropping with low climatic risk [27,28].
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Figure 1. (A) Location of the study area, which corresponds to the municipality of Sorriso in the
Brazilian tropical savanna (Cerrado) and Mato Grosso State, Brazil. (B) Digital elevation model of
the study area obtained from Copernicus DEM GLO-30: Global 30 m using the Google Earth Engine.
Sources: territorial boundaries [29]; Cerrado boundaries [30]; HLS tiles [31]; water courses [32].

In 2021, the Sorriso municipality harvested more than 1.2 million ha of temporary
crops, mostly from double cropping systems (Table 1), following the same trend as Mato
Grosso State. In this state, in the 2000–2001 crop growing season, double cropping systems
were adopted in about 6% of the total temporary croplands [2]. Nowadays, it is the most
common production system, estimated at 8.4 million ha in 2016 [15]. The expansion of
irrigation practices, mostly based on center pivots, also contributed to the intensification.
For example, in 2000, there were 14 center pivots installed in Sorriso, which increased to
173 in 2019 [32].
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Table 1. Total area harvested in the municipality of Sorriso, Mato Grosso State, Brazil, in the
2020−2021 crop growing season.

Crop Type Crop System Harvested Area (ha)

Soybean First crop 605,000
Corn Second crop 544,000

Cotton Second crop 37,113
Beans Second and third (by irrigation) 32,200
Rice First crop 4400

Others - 33
Watermelon - 45
Sugarcane - 2300

Source: Brazilian Institute of Geography and Statistics [33].

2.2. Remote Sensing Data Sets

This study was based on spectral indices derived from HLS images processed by
spatial, temporal, and band filters [18]. The HLS Landsat OLI images converted into
surface reflectance and top-of-atmosphere (TOA) brightness data (HLS.L30) and the HLS
Sentinel-2 MSI images converted into surface reflectance (HLS.S30) were downloaded from
NASA’s Application for Extracting and Exploring Analysis Ready Samples (AρρEEARS)
data access platform. All available surface reflectance data from red (R) (640–670 nm), near-
infrared (NIR) (850–880 nm), and shortwave infrared (SWIR) (1570–1650 nm) wavelengths
were acquired within the limits of the study area at a 30 m spatial resolution between
September 2021 and August 2022. Whenever HLS.L30 and HLS.S30 overpasses coincided,
we selected the latter.

The HLS data set is produced by NASA through the following processing chain: atmo-
sphere correction, spatial co-registration, Bidirectional Reflectance Distribution Function
(BRDF) normalization, and bandpass adjustment [18]. The atmosphere correction involves
the use of the Land Surface Reflectance Code (LaSRC) based on the 6S radiative transfer
code [34]. The Automated Registration and Orthorectification Package [35] is used to
perform the spatial co-registration between Landsat OLI and Sentinel-2 MSI images to the
same reference per tile. The c-factor technique and global coefficients are used to reduce the
sun sensor geometry effects by estimating BRDF and Nadir BRDF-adjusted reflectance with
scattering models [36,37]. Finally, differences between MSI and OLI equivalent bands are
adjusted by linear fit using slope and offset coefficients generated with 160 global hyperion
scenes [18].

The images were additionally processed using R statistical software [38] to apply the
scale factor (0.0001), cloud masking, gap filling, and generation of the spectral indices.
Initially, the original HLS quality assessment band (Fmask) removed pixels flagged with
cloud, cloud shadow, cloud shadow adjacencies, and water. Therefore, only the integer
values 64, 128, and 192, representing clean pixels and the medium aerosol limit, were
kept. It was necessary to use pixels with this limit to reduce the amount of data lost since
Fmask tends to overestimate aerosol levels (see the users’ guide [39] for full details on HLS
cloud masking). HLS.L30 and HLS.S30 images were stacked, and the gaps created in the
multispectral time series by the cloud masks were filled by simple linear interpolation
across layers using the “raster” package [40].

Finally, we calculated the following spectral indices: the NDVI, NDWI, and SAVI (see
equations in Table 2. In general, agricultural intensification studies are carried out using
MODIS products, so the EVI and NDVI are readily available. The selected spectral indices
capture the phenological dynamics of crop cycles well [8,10,41]. The NDVI is the most
popular vegetation index used for mapping land use and land cover (LULC) and a wide
range of other applications since it is related to photosynthetic activity [42]. The SAVI is less
sensitive to soil background effects than the NDVI and has proven to be a valuable variable
for agriculture mapping in previous studies (e.g., Parreiras et al. [14]). The NDWI considers
a SWIR band that is sensitive to the leaf water content and biochemical component variation
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among several vegetation types, which can be an advantage for differentiating between
classes with similar spectral responses in the NIR and red domains [43]. The combined use
of the three spectral indices was also evaluated, henceforth referred to as All VI.

Table 2. Equations and citations of the spectral indices used in the study.

Spectral Index Equation Reference

Normalized Difference
Vegetation Index (NDVI)

λNIR−λRed
λNIR+λRed

Rouse et al. [44]

Normalized Difference Water
Index (NDWI)

λNIR−λSWIR1
λNIR+λSWIR1

Gao et al. [45]

Soil-Adjusted Vegetation
Index (SAVI)

λNIR−λRed
λNIR+λRed

× (1 + L) Huete [46]

L is a constant related to the soil background effects; here, the value was to 0.5.

2.3. Methodological Approach

The main steps of our methodological approach were (i) fieldwork for the selection of
samples; (ii) creation of synthetic samples; (iii) elaboration of the hierarchical classification
scheme; (iv) obtaining the HLS data set and generating spectral indices; (v) training ML
algorithms for classification; and (vi) accuracy assessment (Figure 2).
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Figure 2. Workflow showing the main steps and variables for the machine learning classifications
performed in this study. NDVI = Normalized Difference Vegetation Index; SAVI = Soil-Adjusted
Vegetation Index; and NDWI = Normalized Difference Water Index.

To assess agriculture intensification and second-season crop types in Sorriso, we
conducted a field campaign from 6 to 9 June 2022, which corresponded to the end of
the second crop season as well as the start of the third season for irrigated crops. We
gathered 318 randomly distributed ground samples with the support of the AgroTag
mobile application developed by Embrapa [47]. AgroTag provides structured queries
to allow the storage of detailed, georeferenced ground sample information, as well as
panoramic and nadir field photos (Figure 3).
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Figure 3. Field panoramic photos obtained in early June 2022 showing the general stage of develop-
ment of corn (A), cotton as the second crop (B), and irrigated beans as the third crop (C).

Based on field information, a hierarchical classification scheme was adopted to dis-
criminate the main LULC classes found in Sorriso (Figure 4). Initially, we created a mask
to distinguish areas with vegetation, including natural and agricultural land, and areas
without vegetation. Data from the MapBiomas Project [48,49] were used to delineate the
pixels corresponding to all non-vegetated areas (urban, mining, water, and others). High-
ways were excluded based on the cartographic database from the Instituto de Terras de
Mato Grosso at a 1:100,000 scale [50]. A 30 m buffer was used to represent road width and
consequently carry out the extraction. From this procedure, all non-vegetated pixels were
masked out, and level 1 classification was performed on the remaining vegetated areas.
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Figure 4. Hierarchical classification scheme adopted to represent the main agricultural uses and
vertical intensification in Sorriso, Mato Grosso State, Brazil, in the 2021−2022 crop growing season.

In the level 1 classification procedure, we differentiated the study area into areas
containing (i) temporary crops, (ii) natural vegetation and planted forests (or silviculture),
and (iii) pasturelands. Planted forests were mapped together with the natural vegetation
because of their low occurrence in the study area. Then, we divided the temporary crops
based on the number of cycles, including single, double, or triple cropping (level 2).
Sugarcane was classified as a single crop, while triple cropping was exclusively observed
in center-pivot irrigation systems, mainly with beans as the third-season crop. Although
all triple cropping was related to center pivots, not all center pivots were related to triple
cropping. Finally, at level 3, double cropping areas were categorized into corn, cotton,
beans, and other crops, that is, mainly sorghum and millet. These crops were grown in the
second season, mainly following the soybean harvest.

Even though there is substantial progress regarding satellite image availability and
non-parametric, supervised classification algorithms, the acquisition of balanced ground
sample data sets is still a challenge in LULC mapping procedures. The imbalance of
reference data sets significantly affects image classification [51]; however, the sampling
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must be representative of the occurrence of LULC classes [52]. In this study, we faced a bias
toward the high occurrence of double cropping with corn as a second crop. It represented
approximately 50% of the total number of samples.

Therefore, additional samples of natural vegetation, pastures, planted forests, sug-
arcane, and triple cropping were collected remotely using a high-resolution Norway’s
International Climate and Forest Initiative (NICFI) PlanetScope monthly mosaic (Imagery
© 2022 Planet Labs Inc., San Francisco, CA, USA), an HLS 30 m RGB false color composite
of bands 8, 4, and 3, and the temporal NDVI profile from the MODIS sensor available in
the SatVeg platform developed by Embrapa Agricultura Digital [53]. The elements and
interpretation keys that guided the sample selection are described, with examples, in the
Supplementary Materials. Table 3 summarizes the final number of samples used for further
ML classification.

Table 3. The number of ground and remotely acquired samples for each land use and land cover
(LULC) class for the hierarchical classification scheme.

LULC Class Ground Samples Remote Samples Total

Natural vegetation 63 76 139
Planted forest 14 12 26

Pasture 70 95 165
Sugarcane 6 16 22

Triple cropping 17 54 71

At levels 2 and 3, the method known as the Synthetic Minority Oversampling Tech-
nique (SMOTE) was used to increase the number of samples of minor classes, that is, classes
with less than 15% occurrence in a specific level, by generating synthetic samples. The
SMOTE is the most popular algorithm to deal with imbalance problems in LULC classifi-
cation [44], and it was implemented using the “scutr” package [54] in R software, version
4.2.2 [38]. Before creating synthetic samples, we carried out a quality control process to
check the correctness of every ground sample point with HLS color compositions from the
same period of the field visit. Table 4 summarizes the final number of samples used for
further ML classification at levels 2 and 3, while Figure 5 exhibits the spatial distribution of
the sampling points used in each level.

Table 4. The number of primary (acquired in situ or remotely) and synthetic samples generated by
the Synthetic Minority Oversampling Technique (SMOTE) for each class at classification levels 2
and 3.

Level Cropping
System

Primary
Samples

Synthetic
Samples Total

2
Single cropping 22 49 71
Double cropping 165 0 165
Triple cropping 71 0 71

3

Double cropping
with corn 165 0 165

Double cropping
with cotton 69 0 69

Double cropping
with beans 17 52 69

Double cropping
with other crops 16 53 69
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The methodological structure was set up using “Caret” and “randomForest” pack-
ages [55,56] in the R environment [38]. We considered the samples of LULC classes as the
y variables to be predicted and the satellite image time series database (NDVI, SAVI, and
NDWI) as the x predictor variables. We evaluated the following supervised classification
algorithms: XGBoost [57], ANN [58] (both available in the Caret package), and RF [56]
(using the randomForest package). We used a 70%/30% ratio to split the data sets into
training and test subsets for level 1. Due to the smaller number of observations in some
classes, a ratio of 60%/40% was adopted for levels 2 and 3.

RF is a decision tree model that uses the bootstrap method. More specifically, it creates
several sets of trees with different variables to decrease the correlation between the trees to
avoid overfitting in the predictions. Each tree presents a prediction, and the final prediction
is given by considering the voting rules for each class mapped in the trees [59]. The main
RF hyperparameters to be adjusted are the mtry, i.e., the number of features drawn for
the split, and the number of trees in the forest (nTree). XGBoost is also a model based on
decision trees; however, while RF uses the bootstrap method, XGBoost works with boosting,
in which trees with weak predictions are improved over time. The final classification is
based on improving trees through iterative processes [57]. The XGBoost hyperparameters
to be adjusted are nrounds, lambda, and alpha.

The ANN is a model inspired by the neurological behavior of the human brain. The
neural network is composed of layers, which comprise prediction phases. In the first
phase, there is the input layer, responsible for presenting the neural network with the
training variables and their behavior patterns. The second phase is where all the processing
occurs, i.e., the model training stage, known as hidden layers. Finally, there is the output
layer, where the result of the prediction is provided [58]; in our case, the prediction is
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the agricultural intensification classes. Size and Decay are the hyperparameters in the
ANN model. All models were trained and the hyperparameters were automatically tuned
through a grid search cross-validation with 5 folds and 10 repetitions.

To assess the model performances, we considered the confusion matrices and their
corresponding metrics of overall accuracy (OA), which refers to the rate of correct answers
in relation to the total number of samples, and the kappa index, which refers to the degree
of agreement between the classification results and the reference data. Additionally, to
assess class accuracies, we also considered errors of omission (OEs; samples that were not
classified according to the reference classes in the rows of the matrix) and commission errors
(CEs; reference samples misclassified as belonging to other classes in the columns) [60].

The model results were subjected to analysis of variance (ANOVA) to assess possible
statistical differences after the Shapiro–Wilk normality test. The importance of model
variables was evaluated using the VarImp function. For the RF algorithm, the importance
was given by the Mean Decrease Accuracy (MDA), while for XGBoost and ANN, we con-
sidered the relative importance, that is, Overall%. MDA measures the impact of changing
the variable of interest on model accuracy. In the Overall%, the importance values were
scaled from 0 to 100, with the least important variables close to 0 and the most explanatory
close to 100. The results of this study were also analyzed in comparison to similar studies,
mainly those carried out in the Brazilian savanna, to identify the advances brought by the
proposed approach.

3. Results
3.1. Data Availability and Cloud Cover

Tropical areas are severely affected by cloud presence, especially during the rainy
season, creating challenges for the monitoring of crop development with optical remote
sensing, i.e., crop mapping [61]. We found an average cloud cover of 57.5% over Sorriso
between September and March (rainy season) and 11% between April and August (dry
season) (Figure 6). The median gap between valid observations was five days in the rainy
season and three days in the dry season. Among the 102 overpasses (some dates that
were entirely cloud-covered were disregarded), 60 were from Sentinel-2 (HLS.S30) and
42 were from Landsat 8/9 (HLS.L30). However, the total number of observations at each
pixel within the study period was 81 (60 HLS.S30 + 21 HLS.L30), considering the different
overpasses between paths/rows 227/68 and 226/69 from Landsat products.
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Figure 6. Daily precipitation (mm) obtained from the Climate Hazards Group InfraRed Precipitation
with Station (CHIRPS). Data are available in the Google Earth Engine (GEE) platform, and average
cloud cover (%) was estimated using Harmonized Landsat Sentinel-2 images in the municipality of
Sorriso, Mato Grosso State, Brazil.
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3.2. Accuracy Assessment and Importance of Variables

Tables 5–7 show the OA and kappa index for all three ML models at levels 1, 2, and 3,
respectively. The performances were above 93% in terms of OA and above 0.85 in terms of
kappa index, regardless of the ML classifier. These performances were similar according
to ANOVA (Supplementary Materials) without any statistical differences (p > 0.05). RF
associated with the NDVI performed better than the other models (OA = 95%; kappa
index = 0.93) at level 1, while XGBoost, also associated with the NDVI, performed better at
levels 2 and 3. Considering the combination of all indices (All VI) at level 1, RF performed
better. At level 2, the ANN had a better statistical performance, while at level 3, XGBoost
and the ANN performed similarly. Although it could be expected that merging the three
indices would improve performance, this was not the case in this study.

Table 5. Classification results by RF, ANN, and XGBoost, trained with the NDVI, NDWI, SAVI, and
All VI at level 1.

Level Data Set Classifier Overall
Accuracy Kappa

1

NDVI
RF 95.25% 0.9286

ANN 93.92% 0.9077
XGBoost 93.92% 0.9081

NDWI
RF 92.57% 0.8879

ANN 94.59% 0.9179
XGBoost 92.57% 0.8879

SAVI
RF 94.59% 0.9184

ANN 94.59% 0.9179
XGBoost 93.92% 0.9081

All VI
RF 94.59% 0.9187

ANN 93.20% 0.8980
XGBoost 93.20% 0.8980

Table 6. Classification results by RF, ANN, and XGBoost, trained with the NDVI, NDWI, SAVI, and
All VI at level 2.

Level Data Set Classifier Overall
Accuracy Kappa

2

NDVI
RF 97.32% 0.9570

ANN 90.98% 0.8502
XGBoost 99.18% 0.9864

NDWI
RF 96.47% 0.9444

ANN 94.26% 0.9030
XGBoost 96.72% 0.9446

SAVI
RF 97.60% 0.9591

ANN 95.08% 0.9197
XGBoost 95.08% 0.9190

All VI
RF 96.43% 0.9428

ANN 96.72% 0.9460
XGBoost 95.90% 0.9310
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Table 7. Classification results by RF, ANN, and XGBoost, trained with the NDVI, NDWI, SAVI, and
All VI at level 3.

Level Data Set Classifier Overall
Accuracy Kappa

3

NDVI
RF 95.71% 0.9406

ANN 93.20% 0.9029
XGBoost 97.28% 0.9610

NDWI
RF 92.86% 0.9001

ANN 93.92% 0.9141
XGBoost 93.24% 0.9033

SAVI
RF 93.62% 0.9119

ANN 92.57% 0.8942
XGBoost 93.24% 0.9033

All VI
RF 94.29% 0.9207

ANN 95.92% 0.9413
XGBoost 95.92% 0.9413

Tables 8–10 show the confusion matrices, with the OE, CE, OA(%), and the kappa index
of the three best ML models for levels 1, 2, and 3, respectively. Following the behavior of
global metrics, the specific statistics by LULC classes also confirmed the good performance
of the methodological framework, mainly with OE values ranging from 0 to 17% and CE
values from 0 to 23% (all confusion matrices are shown in the Supplementary Materials).

Table 8. Confusion matrix and accuracy metrics for the best level 1 model (Random Forest and
the NDVI).

Class Temporary Crops Natural Vegeta-
tion/Silviculture Pasture Omission Error (%)

Temporary crops 39 1 4 11.36
Natural vegetation/Silviculture 0 48 0 0.00

Pasture 2 0 54 3.57
Commission error (%) 4.88 2.04 6.90

Table 9. Confusion matrix and accuracy metrics for the best level 2 model (Extreme Gradient Boost
and the NDVI).

Class Double
Cropping

Single
Cropping

Triple
Cropping Omission Error (%)

Double cropping 65 0 0 0.00
Single cropping 1 28 0 3.45
Triple cropping 0 0 28 0.00

Commission error (%) 1.52 0.00 0.00

Table 10. Confusion matrix and accuracy metrics for the best level 3 model (Extreme Gradient Boost
and the NDVI).

Class Beans Corn Cotton Other Crops Omission Error (%)

Beans 27 0 0 0 0.00
Corn 0 64 0 2 3.03

Cotton 0 1 27 0 3.57
Other crops 0 1 0 25 3.85

Commission error (%) 0.00 3.03 0.00 7.41
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Figure 7 shows the ranking of importance of the variables that best explained the
variations of the LULC classes selected in the training phase in terms of overall percentage
and MDA. Our data sets were composed of 102 overpasses; however, we selected the 20
most important ones for further analysis, and at all levels, more than 80% of the most
relevant images were from the dry period (April to September).
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tion Index.

3.3. Machine Learning-Based Digital Classification Results

We selected the ML models associated with spectral indices with the highest metrics by
hierarchical levels (Tables 5–7) for the spatialization of agricultural intensification mapping
(Figure 8). At level 1, we found that most of the municipality was covered by temporary
crops (57%), followed by natural vegetation and planted forests (29%) and pastures (11%)
(Figure 8). This reinforces the fact that the municipality of Sorriso is considered the “national
capital of agribusiness”. At level 2, we found a predominance of double cropping (96%),
with less territorial expression of single cropping (~1%) and triple cropping (~3%). At level
3, our model (XGBoost associated with the NDVI) mapped corn as the main crop cultivated
in the second season (439,304 ha). Cotton was the second largest crop (51,958 ha), followed
by other crops, mainly millet and sorghum. Corn was the main crop in the double cropping
system in the municipality of Sorriso and also in Mato Grosso State [15] and other regions
of the Brazilian savanna [8,9].
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4. Discussion
4.1. Accuracy Assessment and Importance of Variables

The adoption of sustainable agriculture requires accurate mapping and monitoring
procedures to discriminate between different production systems [10,62–64]. Hence, the use
of ML models coupled with spectral indices for this purpose has grown worldwide [42,65].
In our study, we used ANNs, RF, and XGBoost coupled with the NDVI, NDWI, and SAVI
and four crop levels validated with ground, remote, and synthetic samples. Based on
this approach, we obtained mapping accuracies between 85% and 99%, suggesting high
reliability of the models.

RF and XGBoost, which are decision tree models, were the most efficient models at the
three levels analyzed. This pattern of higher performances for decision tree models agrees
with the previous studies carried out in other regions, both in agricultural [10,23,66] and
environmental contexts [67]. RF and XGBoost have a robust methodological architecture
related to their training, bootstrap, and boosting methods [57,59]. In RF, the bootstrap can
create several subgroups of samples during the construction of trees. These samples are
divided randomly, with the aim of decreasing the correlation between trees [55]. These
characteristics make RF a powerful model for classifying complex land uses [59], which
is the case in the Brazilian savanna [8,9,14–16]. As mentioned previously, XGBoost uses
boosting logic, in which the model trains several trees and the trained trees with low
performance are optimized and sequentially improved [57]. Although agricultural classes
are very heterogeneous, boosting provides a high potential for separability, as seen in other
studies [68].

The ANN did not present a significant difference (p-value > 0.05); in general, it
produced lower metrics compared to the other models. Studies applying an ANN for
LULC classification found that when compared with other models, especially the ones
based on decision trees, the ANN tends to present a lower performance [23–66], which
can be associated with its limited number of hidden layers. The use of convolutional and
recurrent neural networks (CNNs and RNNs, respectively) has been suggested to solve
this ANN problem [69]. However, the computational cost can be high, mainly when the
time series of high-resolution images are involved.

Our estimated data for corn presented a difference of 104,696 ha (−19%) in relation to
the Municipal Agricultural Production (PAM) data provided by the Brazilian Institute for
Geography and Statistics [33]. As PAM is based on interviews with a sample of producers
and technicians, it is more suitable for comparisons encompassing large areas or long time
periods, as carried out in [70]. Thus, differences between crop areas mapped by remote
sensing and IBGE at the municipal scale were already expected.

Considering the 20 most important variables selected by the models, there was a
predominance of dry season images (>80%). This suggests that using images in this season
is more efficient in distinguishing areas of natural vegetation, pastures, and crops. This
season allows high spectral contrast between pastures and natural vegetation/planted
forests (or silviculture) since pastures become dry quickly [14]. Agricultural crops are
certainly associated with the fact that their phenological development is expected to occur
in the transition to the dry season, that is, between April and September.

4.2. Crop Calendar and Vegetation Index Temporal Signature

According to the Agricultural Climate Risk Zoning (ZARC) produced by the Brazilian
Ministry of Agriculture and Livestock, the recommended sowing dates for corn as the
second crop in Sorriso following soybean harvest are between February and March [71]. The
HLS-NDVI time series was able to capture this trend. The NDVI values started to increase
at the beginning of February, reaching a peak in early April (Figure 9, level 3). In general,
the cotton sowing period as the second crop in Sorriso occurs right after the soybean
harvest, up until February, and crop’s physiological maturation takes about 170 days [72].
This aspect is represented by the larger peak of the NDVI values in Figure 9 from early
April to early June. The amplitude of the beans cycle depends on the crop cultivar and
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production system, but it usually ranges from 75 days to 95 days in Mato Grosso [73]. The
NDVI values for beans as second crops started to increase in early March and then began
decreasing until early June. Beans can be cultivated in double cropping systems following
soybeans, with sowing dates between January and March, or under irrigation systems in
the third season, between May and June.
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Figure 9. Median HLS NDVI time series for levels 1, 2, and 3 between September 2021 and August
2022, indicating the occurrence of the first, second, and third crop seasons for agricultural areas with
more than one cycle. Level 3 exhibits the entire crop season NDVI signature; however, only the
second season profiles refer to the target crops: corn, cotton, beans, or other crops.

During the fieldwork conducted in early June 2022, most of the corn fields were
already harvested; in the cotton fields, the bolls were fully open or starting senescence;
beans as a second crop were also harvested, although there were some bean plantations
presenting primary leaves in center pivots, starting the third crop season. All these patterns
can also be observed in Figure 9. These spectral behaviors agree with the previous works
carried out in the Cerrado biome [8,10], showing that spectral indices can capture these
seasonal climatic conditions, which are crucial for mapping agricultural intensification and
crop types.
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4.3. Advances and Limitations

Previous studies have mapped agricultural intensification in Brazil, particularly in
the Cerrado region; for example, agricultural intensification in the state of Mato Grosso
was mapped using a MODIS time series with a coarse resolution [10,15–17,19]. More
recent studies have employed improved spatial resolution data, such as Landsat [8] and
PlanetScope monthly mosaics [9], in the states of Bahia (northeast of Brazil) and Goiás
(central part of Brazil), respectively. ML algorithms such as RF [8,9,16], Decision Tree
Classifiers [10,17], and Support Vector Machines [15,16] have been increasingly used,
resulting in models with high overall accuracy (>80%), particularly the decision tree-
based models.

The EVI and NDVI, either raw or transformed into derivatives, such as phenometrics
(start, end, and length of the season, among others), have been widely used as explanatory
variables for agricultural intensification mapping [8,10,16]. This study brings some important
contributions, including the use of HLS data, a multisensor approach still underexplored in
Brazil [14] that provided a time series with a median temporal resolution of up to 4.5 days.
Although [8,9] mapped double cropping systems using 30 m and 4.77 m spatial resolution
satellite images, the temporal resolution was limited to 8 and 30 days, respectively.

As mentioned, high cloud cover in tropical regions affects agricultural mapping
through optical remote sensing. Prudente et al. [61] showed that the frequency of clouds
over the central portion of Mato Grosso State usually exceeded 70% between December
and February, making it challenging to monitor crops, such as soybean and corn, during
the summer. In this study, the average cloud cover in the rainy season was 57.5%, varying
between 10% and 97% depending on the day. Therefore, answering the first question in
our Introduction (see Section 1), the higher frequency of observations provided by HLS
was fundamental to improving the probability of acquiring valid information per pixel,
consequently favoring interpolation and capturing phenology signatures which, in turn,
positively impacted the performance of the classifiers.

Unlike other approaches, we used an irregular but robust time series, especially in the
dry season (May to August), when it achieved a 3-day mean temporal resolution, proving
itself valuable for detecting agricultural intensification and differentiating crop types with
a 30 m spatial resolution and minimal processing. Even though we used interpolation for
gap filling, no smoothing filters, such as the Savitzky–Golay or FlatBottom, were employed
since this processing step does not necessarily lead to better results in crop mapping [16]
and may bias the analysis by changing the temporal pattern of vegetation indices [10,15,74].

Answering the second scientific question in our Introduction, the combination of spec-
tral indices did not improve the models’ performances, although the All VI classifications
performed very similarly to the individual indices. Although the literature and our data
(Tables 5–7) show that models trained only with the NDVI are statistically superior, we
encourage other studies to explore other indices in mapping agricultural intensification in
the Brazilian savanna and other regions. The third and last question concerned the potential
of using different ML classifiers from those commonly used in the literature. Our results
showed that XGBoost was the best algorithm for mapping agricultural intensification and
crop types at levels 2 and 3.

Once the validity of our methodological framework is proven, especially the high
validation metrics (kappa from 0.85 to 0.99 and overall accuracy from 93% to 99%), we
believe that our study can fit the transferability approach to map agricultural intensification
in the regions of the Cerrado in Mato Grosso. Considering that one of the biggest challenges
for mapping crops in different regions is the collection of field samples for administrative,
financial, and logistical reasons [75], with an area of ~90 million hectares, these challenges
are even more pronounced in Mato Grosso. Studies have shown that machine learning
models based on time series and time compositions from bands and spectral indices
are transferable in space [75] and time [20]. Ground samples have been transferred to
other areas with similar climate conditions to map crop types and practices [17]. The
transferability of the models or samples assumes that the phenological patterns of cultures
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are similar in different regions and periods. However, differences in terrain, topology,
climate, soil properties, cloud condition, and time of the acquisition of images produce
variability that can affect the performance of the transferred models, so it is crucial that
environmental conditions are similar [20,75].

It is important to emphasize the following limitations of our study. (i) During the
fieldwork, we did not observe any single cropping area that was associated with soybeans
without a second crop; however, it was not possible to affirm that it did not occur on a
smaller scale. Consequently, our single-crop class was exclusively represented by sugar-
cane fields. (ii) Because of the high predominance of corn as a second crop, we had an
unbalanced sample data set. Although the SMOTE is a popular algorithm for unbalanced
learning problems in LULC mapping, there are some variations of it, such as the geometric-
SMOTE [51] and the borderline SMOTE [76], that we did not explore. (iii) Our mappings
were performed at a median temporal resolution of 4.5 days for up to 3 days during the
dry season. Although this temporal resolution could capture crop variations well, future
studies may use near daily temporal resolutions by combining other sensors to monitor
other demands of agricultural intensification, for example, water consumption.

5. Conclusions

Our results showed the potential of RF, XGBoost, and ANN classifiers associated
with the NDVI, SAVI, and NDWI spectral indices derived from the Harmonized Landsat
Sentinel (HLS) time series for mapping agricultural intensification in the Brazilian tropical
savanna at three hierarchical levels. In the validation process, all models showed similar
performance, with no significant differences in OA and the kappa index. In terms of
machine learning classifiers, tree-based models (RF and XGBoost) were superior, especially
when trained with the NDVI time series. The performances of LULC class mapping in the
study region at all hierarchical levels were > 85%. Data from April to August proved to be
more efficient for mapping agricultural intensification.

In general, we emphasize that the mapping of agricultural intensification must con-
sider seasonal climate variations when choosing the time series. The median temporal
resolution of the HLS during the dry season was 3 days and 4.5 days, which is unprece-
dented for a time series analysis of 30 m satellite images in the Cerrado. Therefore, this
work presents itself as a pioneer in the savanna areas of Brazil in terms of mapping agricul-
tural intensification using multiple ML models and spectral indices using the HLS time
series. Therefore, the results obtained in this study can provide important assistance for
decision-makers, especially in geospatial analyses for agro-environmental planning. We
emphasize that our methodological structure is replicable in other regions, mainly because
the remote sensing data used in this study are freely available on the internet.

Supplementary Materials: The following supporting information can be downloaded at (https:
//www.mdpi.com/article/10.3390/ijgi12070263/s1).
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