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Abstract  The SAFER (Simple Algorithm for Evapo-
transpiration Retrieving) algorithm and the radiation 
use efficiency (RUE) model were coupled to test large-
scale remote sensing environmental indicators in Bra-
zilian biomes. MODIS MOD13Q1 reflectance prod-
uct and gridded weather data for the year 2016 were 
used to demonstrate the suitability of the algorithm to 
monitor the dynamics of environmental remote sens-
ing indicators along a year in the Brazilian biomes, 
Amazon, Caatinga, Cerrado, Pantanal, Atlantic Forest, 
and Pampa. Significant spatial and temporal variations 
in precipitation (P), actual evapotranspiration (ET), 
and biomass production (BIO) yielded differences on 
water balance (WB = P−ET) and water productiv-
ity (WP = ET/BIO). The highest WB and WP differ-
ences were detected in the wettest biomes, Amazon, 
Atlantic Forest, and Pampa, when compared with the 
driest biome, Caatinga. Rainfall distribution along the 

year affected the magnitude of the evaporative fraction 
(ETf), i.e., the ET to reference evapotranspiration (ET0) 
ratio. However, there was a gap between ETf and WB, 
which may be related to the time needed for recovering 
good soil moisture conditions after rainfalls. For some 
biomes, BIO related most to the levels of absorbed 
photosynthetically active radiation (Amazon and 
Atlantic Forest), while for others, BIO followed most 
the soil moisture levels, depicted by ETf (Caatinga, 
Cerrado, Pantanal, and Pampa). The large-scale mod-
eling showed suitability for monitoring the water and 
vegetation conditions, making way to detect anomalies 
for specific periods along the year by using historical 
images and weather data, with strong potential to sup-
port public policies for management and conservation 
of natural resources and with possibilities for replica-
tion of the methods in other countries.
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Introduction

In several places of the world, water demands and 
population are growing under unsustainable natural 
resource consumption. The consequent environmen-
tal impacts have been generally measured on local 
scales; however, with continuous development of 
remote sensing technologies, they can nowadays be 
analyzed using environmental indicators on a coun-
try scale with acceptable accuracies. Under climate 
and land-use change scenarios, these technologies are 
powerful tools to monitor the effects of these changes, 
what should be considered when aiming at sustain-
able development (de Teixeira, Leivas, et  al., 2020; 
de Teixeira, Leivas, Pacheco, et al., 2021; de Teixeira, 
Leivas, Struiving, et al., 2021; de Teixeira, Takemura, 
et al., 2020; Jardim et al., 2022).

Climate and land-use changes affect energy, water, 
and carbon balances (Ceschia et  al., 2010; Zhao & 
Running, 2010). Understanding the responses of 
water and vegetation parameters and their dynamics is 
critical for ecological restoration and for assessments 
of these balances (Yang et al., 2016; Zhang & Zhang, 
2019). Brazilian biomes feature a large diversity of 
natural species (Lewinsohn & Prado, 2005) and suffer 
under several environmental impacts, such as defor-
estation, burnings, air, water, and soil pollution, as 
well as intensive agricultural crops replacing natu-
ral species (Casagrande et  al., 2021; Mariano et  al., 
2018). These problems demand large-scale studies 
to support sustainable consumptions of the natural 
resources (Araujo et  al., 2019; de Teixeira, Leivas, 
Pacheco, et al., 2021; de Teixeira, Leivas, Struiving, 
et  al., 2021; Jardim et al., 2022; Nuñez et al., 2017; 
Santos et al., 2020).

Quantifying energy, water, and carbon balance 
components by using remote sensing together with 
gridded weather data in mixed agroecosystems is a 
suitable way to elaborate and apply environmental 
indicators to support the rational management of nat-
ural resources. After accounting for all the radiation 
balance components, the net radiation (Rn) is the dif-
ference between incoming and outgoing radiation for 
both short and long wavelengths, and Rn is partitioned 

into latent (λE), sensible (H), and ground (G) heat 
fluxes. Acquiring λE deserves highlighting, because it 
represents the energy for actual evapotranspiration—
ET, which is the main use of water resources by well-
watered vegetation and is also related to biomass pro-
duction—BIO (de Teixeira, Leivas, et  al., 2020; de 
Teixeira, Takemura, et al., 2020).

On the one hand, although ET is related to BIO, 
increasing its rates means less water availability for 
ecological and human uses. On the other hand, H 
magnitude may indicate surface warming or cool-
ing effects (Bhattarai et  al., 2017; de Teixeira, Lei-
vas, et al., 2020; de Teixeira, Leivas, Struiving, et al., 
2021). Regarding carbon balance, replacing natural 
vegetation with agricultural crops may produce car-
bon sinks, affecting BIO (Ceschia et al., 2010), while 
water scarcity increases vegetation mortality rates and 
changes the ecosystem’s species compositions (Zhao 
& Running, 2010). Quantifying these effects and 
monitoring their dynamics along the years is essential 
for ecological restoration and to assess the dimension 
of environmental impacts (Yang et  al., 2016; Zhang 
& Zhang, 2019).

Some energy, water, and carbon balance field 
measurements have been done using different meth-
ods in distinct Brazilian agroecosystems (Cabral 
et  al., 2015; da Silva et  al., 2017; de Teixeira et  al., 
2008; Lathuillière et  al., 2018; Marin et  al., 2019; 
Marques et al., 2020; Rubert et al., 2018). However, 
few efforts have been carried out to produce envi-
ronmental indicators for comparisons among the dif-
ferent biomes along the country. In addition, point 
measurements are not suitable for these comparisons, 
because of large spatial variations of weather and cli-
mate conditions within the biomes. Due to these limi-
tations, up-scaling environmental indicators by means 
of remote sensing algorithms is a suitable alternative 
to support environmental policies.

Due to its operational characteristic while main-
taining the physical basis, the Penman-Monteith 
equation has been suggested for coupling remote-
sensing parameters and weather data (Cleugh et  al., 
2007; Consoli et al., 2016; Consoli & Vanella, 2014; 
Nagler et  al., 2013; Olivera-Guerra et  al., 2018). 
When applied together with gridded weather data, 
this equation has potential for use with low spa-
tial resolution satellite images (Mateos et  al., 2013; 
Vanella et  al., 2019). Considering the operational-
ity of the Penman-Monteith equation for large-scale 
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applications, the SAFER (Simple Algorithm for 
Evapotranspiration Retrieving) algorithm was devel-
oped using simultaneous field and remote-sensing 
measurements in irrigated crops and natural vegeta-
tion under strong thermohydrological conditions in 
the Brazilian Northeast region, to determine environ-
mental remote-sensing based indicators (de Teixeira, 
2010; de Teixeira et al., 2008).

Besides its applicability, the actual version of 
SAFER does not require the use of satellite thermal 
bands to estimate ET. This one of the main reasons 
why it was chosen in the current research, because by 
using the MODIS thermal band, the spatial resolu-
tion of 1 km implies that the images will cover more 
pixels containing mixed land-cover types. Coupling 
the SAFER algorithm with Monteith’s radiation use 
efficiency (RUE) model (Monteith, 1977) to esti-
mate BIO has great potential for environmental stud-
ies under climate and land-use changes conditions 
(de Teixeira, Leivas, et  al., 2020; de Teixeira, Take-
mura, et al., 2020; de Teixeira, Leivas, Pacheco, et al., 
2021). The remote-sensing parameters considered in 
the current paper to elaborate and test the environ-
mental indicators are combinations of ET and BIO 
with gridded on precipitation (P) data, retrieving the 
water balance and water productivity components.

The RUE model, based on absorbed photosyn-
thetically active radiation, may be used inside remote-
sensing algorithms to retrieve BIO on a country scale 
(Bastiaanssen & Ali, 2003; Claverie et  al., 2012; 
Franco et  al., 2016; Nyolei et  al., 2019; Rampazo 
et al., 2020; de Teixeira et al., 2018; de Teixeira, Lei-
vas, Pacheco, et al., 2021; Zhao et al., 2005). The BIO 
to ET ratio, i.e., water productivity (WP), is another 
important environmental indicator, which may aid 
with sustainable managements of natural resources 
on different spatial and temporal scales (Franco 
et al., 2016; Nyolei et al., 2019; de Teixeira, Leivas, 
Pacheco, et  al., 2021). Improving WP decreases the 
additional water used in agriculture, resulting in more 
water resources available for the maintenance of eco-
systems (Molden et al., 2007), an important issue in 
biomes where natural vegetation is being intensively 
replaced by agricultural crops.

Aiming at the operational implementation of coun-
try-scale monitoring system that uses historical data 
sets, and using Brazil as reference, we tested the latest 
version of the SAFER algorithm together with Mon-
teith’s RUE model. We used MODIS’ MOD13Q1 

reflectance product and 16-day weather data for the 
year 2016. This was done to demonstrate the suitabil-
ity of the algorithm’ application to monitor dynamics 
of environmental remote sensing indicators derived 
from energy, water, and carbon balance components 
in distinct biomes. The reasons for using data from 
2016 are twofold: Brazilian ecosystems were recov-
ering their good levels of soil moisture, after a pro-
longed drought period from 2012 to 2015 (Mariano 
et  al., 2018; Rebello et  al., 2020), and the availabil-
ity weather data covering the whole country during 
this year. The spatial determinations of ET and BIO 
and their association with precipitation gridded data 
will be useful to subsidize public policies regard-
ing the management and conservation of the natu-
ral resources. Although the modeling was tested for 
only one year, historical series of data may be used to 
detect anomalies for specific periods of any year. The 
successful applications carried out of this scientific 
research in Brazil may encourage replications of the 
methods in other countries through simple calibra-
tions of the modeling equations.

Material and methods

Biomes and data set

Figure  1 presents the locations of the 491 weather 
stations used from the Brazilian National Institute 
of Meteorology (INMET ˗ https://​www.​gov.​br/​agric​
ultura/​pt-​br/​assun​tos/​inmet) and highlights Brazilian 
geographic regions with their altitudes and biomes, 
classified according to the Brazilian Institute of Geo-
graphic and Statistics (IBGE ˗ www.​ibge.​gov.​br).

The Amazon biome has tropical rainforest cli-
mate with high air temperatures (Casagrande et al., 
2021; Nobre et  al., 2016); Caatinga and Cerrado 
face frequent droughts, and their natural species 
develop resilience with increasing aridity under 
these dry conditions (Almagro et  al., 2017; de 
Azevedo et  al., 2020; Jardim et  al., 2022; Sano 
et  al., 2019; Santos et  al., 2014); Pantanal is the 
largest tropical wetland in the world, with two well-
defined seasons: a rainy summer and a dry winter 
(Assine et al., 2015; Marengo et al., 2021); Atlantic 
Forest has a humid tropical climate (Ribeiro et al., 
2009), but contrasting microclimates among natu-
ral and anthropized areas (Souza Jr et  al., 2020); 

https://www.gov.br/agricultura/pt-br/assuntos/inmet
https://www.gov.br/agricultura/pt-br/assuntos/inmet
http://www.ibge.gov.br
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and Pampa has temperate climate with low air tem-
peratures (Roesch et al., 2009; Rubert et al., 2018).

The weather data obtained from the Brazilian 
National Institute of Meteorology (INMET) were 
interpolated using the geostatistical “moving average” 
method and used for the reference evapotranspiration 
(ET0) calculations, by applying the Penman-Monteith 
method (Allen et al., 1998). These gridded data were 
coupled with reflectance pixel values from bands 1 and 
2 of MODIS’ MOD13Q1 product, at a spatial reso-
lution of 250  m and temporal resolution of 16  days, 
downloaded from the EARTHDATA AppEEARS’ site 
(https://​lpdaa​csvc.​cr.​usgs.​gov/​appee​ars/), to derive the 
large-scale environmental indicators. Despite low den-
sities of stations in some places, such as the Amazon 
biome, their interpolated weather data resampled to the 
MODIS image resolution had enough accuracy for bet-
ter characterization of the spatial weather conditions. 
For quarter (Q) analyses, the average MODIS 16-day 
images and up-scaled daily weather data for this tem-
poral scale were considered between January and 
March (Q1), April and June (Q2), July and September 
(Q3), and October to December (Q4). For water bal-
ance (WP), total precipitation (P) within these peri-
ods was used together with total ET, taking the aver-
age daily ET value and the number of days for these 
quarters.

Remote sensing environmental indicators modeling

Figure 2 shows the flowchart for modeling the large-
scale remote sensing environmental indicators by 

applying the SAFER algorithm and the RUE model 
using MODIS’ MOD13Q1 reflectance product and 
gridded weather data.

All regression coefficients described in Fig.  2 were 
previously determined and statistically validated by 
simultaneous satellite and field measurements made in 
Northeast Brazil (de Teixeira, 2010; de Teixeira et  al., 
2008; de Teixeira et  al., 2013). The field data used 
involved irrigated crops and natural vegetation (Caat-
inga) from 2001–2007 with strong thermos-hydrologi-
cal and soil cover contrasts, collected in irrigated crops 
and natural vegetation (Caatinga) from 2001 to 2007. 
Table grapes were micro-sprinkler irrigated and con-
ducted by an overhead trellis system, wine grapes were 
drip irrigated and conducted by a vertical trellis system, 
and mango orchard were micro sprinkler irrigated. The 
experimental period for Caatinga involved different spe-
cies and rainfall conditions above and below the local 
long-term value (de Teixeira et al., 2008).

In the current paper, a correction factor is applied 
to the evaporative fraction (ETf) in the main SAFER’s 
equation, to consider distinct atmospheric demands for 
ET acquirements regarding the original modeling con-
ditions. Thus, the SAFER algorithm has been validated 
in several Brazilian agroecosystems (Araujo et  al., 
2019; Leivas et al., 2015; Nuñez et al., 2017; Rampazo 
et al., 2020; Santos et al., 2020; Silva et al., 2019; de 
Teixeira, Leivas, et  al., 2020; de Teixeira, Takemura, 
et al., 2020; de Teixeira, Leivas, Struiving, et al., 2021; 
de Teixeira, Leivas, Pacheco, et  al., 2021; Venan-
cio et  al., 2021). Besides these previous validations, 
the corrected ETf values were satisfactorily checked 

Fig. 1   Brazilian geographic 
regions, altitudes, biomes, 
and weather stations used 
with remote-sensing param-
eters. Geographic regions: 
N, North; NE, Northeast; 
CW, Central West; SE, 
Southeast; S, South (a). 
Biomes: AM, Amazon; CT, 
Caatinga; CE, Cerrado; PT, 
Pantanal; AF, Atlantic For-
est; PP, Pampa (b)

https://lpdaacsvc.cr.usgs.gov/appeears/
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against those from literature, as well. Thus, one may 
expect sufficient accuracy for our main objective of 
testing an operational monitoring system for envi-
ronmental indicators, allowing comparisons among 
biomes, and offering a first insight into their spatial and 
temporal dynamics. To attain this goal, new expensive 
validations with simultaneous field and satellite data 
are not strictly necessary, since they are very difficult 
and expensive for many local conditions in Brazil, 
along the years.

Following Fig. 2, the α0 pixel values were calcu-
lated as

where ρ1 and ρ2 are the MODIS reflectances from 
bands 1 (red) and 2 (near infra-red), respectively; 
a, b, and c are regression coefficients (Araujo et  al., 

(1)�0 = a + b�1 + c�2

2019; Rampazo et al., 2020). In the Northeast region 
of Brazil, coefficients a, b, and c were 0.08, 0.41, and 
0.14, and involved irrigated crops and natural veg-
etation under contrasting thermo-hydrological condi-
tions may be calibrated for specific environments if 
more accuracy for α0 is desirable (de Teixeira et al., 
2008, de Teixeira et al., 2013).

NDVI is used as a remote-sensing parameter for 
surface cover and moisture conditions:

With RG and Ta measured at the weather stations, and 
Ra astronomically calculated, Rn was estimated using 
the Slob equation (de Bruin, 1987):

(2)NDVI =
�2 − �1

�2 + �1

(3)Rn =
(

1 − �0

)

RG − aL�sw

Fig. 2   Flowchart for modeling the large-scale remote sens-
ing environmental indicators, by using the MODIS MO13Q1 
reflectance product, together with gridded weather data. 
Dashed polygonal shaped boxes are data from the weather 
stations. Note: ρ1,2, reflectance from bands 1 and 2, respec-
tively; NDVI, normalized difference vegetation index; α0, sur-
face albedo; T0, surface temperature; RG, incident global solar 
radiation at the surface; Ra, incident solar radiation at the top 
of the atmosphere; Ta, air temperature; RH, relative humidity; 

u2, wind speed at 2-m height; ETf, evapotranspiration fraction; 
ET0, reference evapotranspiration; ε0, surface emissivity; εa, 
atmospheric emissivity; Rn, net radiation; G, ground heat flux; 
ETeq, equilibrium evapotranspiration; ET, actual evapotranspi-
ration; P, precipitation; WB, water balance; PARinc, incident 
photosynthetically active radiation; PARabs, absorbed photo-
synthetically active radiation; BIO, biomass production; WP, 
water productivity
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where τsw is the short-wave atmospheric transmissiv-
ity (RG/Ra) and aL is a regression coefficient up-scaled 
throughout the Ta pixel values.

where the regression coefficients aT and bT for the 
Northeast region, involving strong thermos-hydrolog-
ical conditions, were 6.8 and −40, respectively, but 
may be adjusted for specific environmental conditions 
(de Teixeira, 2010; de Teixeira et al., 2008).

The atmospheric emissivity (ɛA) was calculated 
according to de Teixeira, Leivas, Struiving, et  al. 
(2021); de Teixeira, Leivas, Pacheco, et al. (2021):

where aA and bA are regression coefficients, which are 
reported as 0.94 and 0.11, respectively, for the North-
east region, involving strong thermo-hydrological 
conditions, but may be calibrated using field radiation 
balance measurements for specific environmental envi-
ronments (de Teixeira, 2010; de Teixeira et al., 2008).

Surface emissivity (ɛ0) was estimated according 
to Rampazo et al. (2020) and Silva et al. (2019):

where a0 and b0 are regression coefficients, which 
were reported as 0.06 and 1.00 for the Northeast 
region, involving strong thermos-hydrological condi-
tions, but may be acquired for specific environmental 
environments by simultaneous field radiation balance 
and remote sensing NDVI measurements (de Teix-
eira, 2010; de Teixeira et al., 2008).

Using the residual method, according to the physi-
cal principle of the Stefan-Boltzmann’ low, T0 was esti-
mated as (Rampazo et al., 2020; Silva et al., 2019)

where σ = 5.67 10-8  W  m-2  K-4 is the Stefan-Boltz-
mann constant.

To acquire ET, its ratio to ET0 (the evapotranspira-
tion fraction - ETf) was modeled (Araujo et al., 2019; 
Dehziari & Sanaienejad, 2019; Venancio et al., 2021):

(4)aL = aTTa + bT

(5)�A = aA
(

ln �sw
)bA

(6)�0 = a0 lnNDVI + b0

(7)T0 =

4

√

RG

(

1 − �0

)

+ ��aTa
4
− Rn

��0

(8)ETf = exp

[

asf + bsf

(

T0

�0NDVI

)]ET0year

5

where asf and bsf are regression coefficients for the 
Northeast region valued 1.90 and −0.008, being 
possible to be calibrated using field measurements 
for ET and ET0 and the remote-sensing parameters 
α0, NDVI, and T0 in contrasting hydrological sur-
faces (Venancio et  al., 2021; de Teixeira, Leivas, 
Pacheco, et al., 2021; Safre et al., 2022; de Almeida, 
Souza, Nogueira, et  al., 2023; de Almeida, Souza, 
Pilon, et al., 2023). As these measurements are very 
difficult and expensive in the whole Brazil, we intro-
duced 

ET0year

5
 as a correction factor to consider dis-

tinct atmospheric demands regarding the original 
modeling region, with the denominator of 5 mm d-1 
being the annual reference evapotranspiration 
( ET0year

 ) for the period when the SAFER algorithm 
was elaborated in the Brazilian Northeast (de Teix-
eira, 2010; de Teixeira et  al., 2008), as the same 
weather parameters affecting ET0 will also affect 
ET.

Equation 8 does not work for water bodies or mix-
tures of land and water (NDVI <0); thus, under these 
circumstances, the concept of equilibrium evapotran-
spiration—ETeq (Raupasch, 2001) —is used in the 
SAFER algorithm:

where Δ is the inclination of the curve relating the 
saturation vapor pressure (es) and Ta, γ is the psychro-
metric constant, and G is estimated according to

where aG and bG are regression coefficients, 3.98 and 
−25.47, respectively, for the Northeast region, involv-
ing strong thermos-hydrological conditions, but may 
be calibrated using simultaneous field energy balance 
measurements for other environmental conditions (de 
Teixeira, 2010; de Teixeira et al., 2008).

Throughout conditional functions applied to the 
NDVI values, daily ET pixel values were acquired as

where ET0 was calculated using daily gridded 
weather data on RG, Ta, RH, and u2 (de Teixeira, Lei-
vas, et al., 2020; de Teixeira, Takemura, et al., 2020).

(9)ETeq = 0.035

(

Δ
(

Rn − G
)

Δ + �

)

(10)
G

Rn

= aG exp
(

bG�0
)

(11)ET = ETf ET0 or ETeq
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Similarly, to what was done in Australia (Cleugh 
et al., 2007) and Southeast Brazil (de Teixeira et al., 
2017), water balance (WB) was computed as

where P are gridded precipitation data from the net of 
weather stations.

For BIO large-scale estimations, Monteith’s RUE 
model (Monteith, 1977) was applied introducing the 
root-zone moisture effect through ETf (Araujo et al., 
2019; Franco et  al., 2016; Nuñez et  al., 2017; Ram-
pazo et al., 2020; de Teixeira et al., 2018; de Teixeira, 
Leivas, Pacheco, et  al., 2021; de Almeida, Souza, 
Nogueira, et  al., 2023; de Almeida, Souza, Pilon, 
et al., 2023):

where εmax is the maximum radiation efficiency 
use, which for the majority of C3 crops in Brazilian 
biomes was considered 2.45 g  MJ-1 (Bastiaanssen & 
Ali, 2003); and 0.864 is the unit conversion factor.

According to Monteith (1972), if not under water 
stressed, εmax varies only if the crops are C3 and 
C4. The improvements to Monteith’s model have 
resulted in corrections for environmental condi-
tions, including soil moisture and heat stresses. 
However, even though some uncertainties about the 
εmax values arise, due to spatiotemporal variations 
(van Heerden et  al., 2010; Zhao et  al., 2005) and 
moisture conditions (de Silva & De Costa, 2012), 
a constant value has been considered acceptable for 
large-scale remote-sensing applications (Bastiaans-
sen & Ali, 2003; Franco et al., 2016; Nuñez et al., 
2017; Nyolei et al., 2019; de Teixeira, Leivas, et al., 
2020; de Teixeira, Takemura, et  al., 2020; Zwart 
et  al., 2010). Considering the strong biodiversity 
of the whole Brazil and our objective of having a 
monitoring system to offer a first insight into water 
and vegetation conditions for further detailed obser-
vations, considering the majority of C3 species 
has enough accuracy for our purpose, overcoming 
the lack of expensive observations over the whole 
country.

PARabs was estimated from PARinc, which in turn 
was considered as a fraction of RG:

(12)WB = P − ET

(13)BIO = �maxETf PARabs0.864

(14)PARabs =
(

apNDVI + bp
)

PARinc

where ap and bp are regression coefficients, 1.257 
and −0,161, respectively, found in mixed crops (Bas-
tiaanssen & Ali, 2003), but they may be calibrated for 
specific environmental conditions using field meas-
urements of PARinc and PARabs together with NDVI 
values.

Water productivity (WP) was considered as (de 
Teixeira, Leivas, Pacheco, et al., 2021):

Analysis of variance (ANOVA) was performed 
using 2-way ANOVA in R (ver. 3.5.1) with a pair-
wise comparison by applying the Tuckey honestly 
significant difference (HSD) post hoc test at the 5% 
significance level, for the six Brazilian biomes at 
quarter and annual timescales. HSD is an integral part 
of ANOVA to test the equality of at least three group 
means. Statistically significant results indicate that 
not all the group means are equal, exploring differ-
ences between them while controlling the wise error 
rates.

Results and discussions

Water balance dynamics

Figure 3 shows the spatial distributions of the quarterly 
average totals for precipitation (P), together with the 
mean pixel values and standard deviations (SD), for each 
Brazilian geographic region, along the year 2016.

Spatial and temporal variations on P pixel values 
along the year are strongly noticed among quarters 
and geographic regions. The lowest values were 
detected in the Northeast (Q4), where the Caatinga 
biome is concentrated, and the highest ones in the 
North (Q1), with only the Amazon biome (see also 
Fig.  1). Intercrossing Figs.  1b and 3, Table  1 pre-
sents the quarterly and annually average totals of P 
and standard deviation (SD) values, for each of Bra-
zilian biome during the year 2016, together with the 
pairwise comparisons from Tuckey’s honestly sig-
nificant difference (HSD) post hoc test.

According to Tuckey’s HSD post hoc test, sig-
nificant differences on P values arise among biomes. 
The highest values were detected for Amazon and 
Pampa, during all quarters of the year, and from April 

(15)WP =
BIO

ET
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to September (Q2 to Q3) for Cerrado; while for Pan-
tanal, from January to December (Q1 to Q4), there 
were no significant differences, in comparison with 
the driest Caatinga biome.

In Amazon, with an annual P of 1,009  mm  yr-1, 
the highest quarterly rainfall amounts occurred in 
Q1 (January to March), with average total above 
315 mm Q-1. The lowest values happened in Q3 (July 

Fig. 3   Spatial distributions 
of the quarterly average 
precipitation (P) values for 
each Brazilian geographic 
regions, together with the 
averages and standard devi-
ations (SD) during 2016. 
Overlines mean the average 
P total for the region. Quar-
ters (Q): Q1—January to 
March, Q2—April to June, 
Q3—July to September, and 
Q4—October to Decem-
ber. Geographic regions: 
North—N, Northeast—NE, 
Central West—CW, South-
east—SE, and South—S

Table 1   Quarterly and annually average total values of precipitation (P) and standard deviations (SD) for each Brazilian biome, dur-
ing the year 2016, together with the pairwise comparisons from Tuckey’s honestly significant difference (HSD) post hoc test

1 Quarters (Q): Q1—January to March, Q2—April to June, Q3—July to September, and Q4—October to December. 2Biomes: AM—
Amazon, CT—Caatinga, CE—Cerrado, PT—Pantanal, AF—Atlantic Forest, and PP—Pampa. P values with the same letter in each 
column indicate no significant differences from each other at 5% (pairwise comparisons using Tuckey’s HSD post hoc test for each 
quarter and for the whole year)

Quarter1/biome2 Q1 (mm Q-1) Q2 (mm Q-1) Q3 (mm Q-1) Q4 (mm Q-1) Year (mm yr-1)

AM 319 ± 130c 236 ± 124c 157 ± 86c 297 ± 98c 1,009 ± 320c
CT 174 ± 52a 82 ± 38a 50 ± 29a 84 ± 44a 390 ± 93a
CE 233 ± 55b 102 ± 39a 83 ± 31a 255 ± 68b 672 ± 153b
PT 202 ± 39a 96 ± 22a 85 ± 18a 195 ± 37a 578 ± 91a
AF 275 ± 62b 211 ± 62b 170 ± 80b 300 ± 82b 956 ± 230b
PP 298 ± 34c 265 ± 41c 226 ± 29c 346 ± 42c 1,135 ± 112c
Mean 250 ± 62 165 ± 54 128 ± 46 246 ± 62 789 ± 167
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to September), when the average total was below 
160  mm Q-1, but showing the highest spatial varia-
tions among quarters, with standard deviation (SD) 
accounting for 55% of the average. The lowest SD 
occurred in Q4 (October to December) when it rep-
resented 33% of the mean total value. In central Ama-
zon, Kunert et  al. (2017) reported a higher annual 
rainfall of 2,302 mm in 2013, but drier conditions in 
2016 were detected in 2016 for this biome in the cur-
rent study.

Among the Brazilian biomes, Caatinga showed 
the lowest rainfall amounts, with an annual P 
around 390 mm yr-1. The smallest average quarterly 
value was 50  mm Q-1, during Q3 (July to Septem-
ber), when happened the highest spatial variations, 
with SD accounting for 58% of the average. How-
ever, during the rainy period, the mean total was 
above 170 mm Q-1 in Q1 (January to March), when 
occurred the lowest SD, accounting for 30% of the 
average. da Silva et al. (2017) reported an annual P 
of 430 mm in the Caatinga from 2014 to 2015, a lit-
tle higher than our value in Table 1, showing that this 
biome suffered much water scarcity along the year 
2016.

The Cerrado biome showed an annual average 
P of 672  mm  yr-1, within the values from 560 to 
1,663 mm yr-1 reported by Fernandes et al. (2018) for 
2003 to 2014, but much lower than the highest end 
of this range. The largest rainfall amounts for this 
biome happened in Q4 (October to December), when 
the mean pixel total value was 255 mm Q-1 and the 
lowest values, below 85 mm Q-1, were in Q3 (July to 
September). The highest and the smallest spatial vari-
ations occurred in Q2 (April to June) and Q1 (Janu-
ary to March), when SD represented 38 and 24% of 
the average, respectively.

In the Pantanal biome, with an annual average value 
of 578 mm yr-1, the highest rates were detected in Q1 
(January to March), when the mean P total was above 
200 mm Q-1. The lowest ones occurred in Q3 (July to 
September), around 85  mm Q-1. The largest spatial 
variations happened in Q2 (April to June), when SD 
accounted for 23% of the mean pixel value, while the 
smallest ones were in Q1 (January to March), when SD 
accounted for 19% of the average. Moreira et al. (2019) 
reported an annual average P of 1,112 mm yr-1 based 
on measurements from 2003 to 2014, evidencing that 
this biome was climatically drier in 2016, when half of 
this value was detected in the current study.

For the Atlantic Forest biome, with an annual aver-
age P of 956  mm  yr-1, the highest quarterly value of 
300  mm Q-1 occurred in Q4 (October to December), 
while the lowest one, 170  mm Q-1 happened in Q3 
(July to September), when there were the largest spatial 
variations, with SD accounting for 47% of the mean 
pixel value. The lowest SD occurred in Q1 (January 
to March), when it was 23% of the average. Based on 
water balance measurements taking during the year 
2008 in this biome, Pereira et  al. (2010) reported an 
annual P of 1,313 mm yr-1, a little higher than the value 
in Table 1.

The highest rainfall amounts among biomes hap-
pened for Pampa, with an annual average P value of 
1,135 mm yr-1. This biome showed the most regular 
rainfall distribution along the year when compared 
with the other ones and the highest P in Q4 (October 
to December), with an average total above 345  mm 
Q-1 and the lowest ones in Q3 (July to September), 
but still higher than 225  mm Q-1. The slightly larg-
est spatial variations were detected in Q2 (April to 
June), when SD accounted for only 11% of the aver-
age. Scottá and da Fonseca (2015) reported an annual 
average P for the Pampa biome of 1,446 mm  yr-1, a 
little higher than our annual value.

Considering all Brazilian biomes, the quarterly 
periods with the highest rainfall amounts were from 
January to March (Q1) in Amazon, Caatinga, and 
Pantanal; and from October to December (Q4) in 
Cerrado, Atlantic Forest, and Pampa. However, the 
lowest rainfall amounts for all of them were in Q3 
(July to September). Comparing our precipitation 
values with literature data for all biomes, one may 
notice that during the year 2016, although vegetation 
was recovering from a drought period between 2012 
and 2015 (Mariano et al., 2018; Rebello et al., 2020), 
rainfall amounts were still low.

Figure  4 shows the spatial distributions of the 
quarterly daily average actual evapotranspiration 
(ET), together with the mean pixel values and stand-
ard deviations (SD) for each Brazilian geographic 
region along the year 2016.

As for precipitation (P), spatial and temporal vari-
ations on ET pixel values among quarters and geo-
graphic regions are also strong, with the lowest values 
in the Northeast (Q3) where the Caatinga biome is 
concentrated and the highest ones in the South (Q3), 
with only the Pampa biome (see also Fig.  1). Inter-
crossing Figs. 1b and 4, Table 2 shows the quarterly 
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and annually average values of ET and standard devi-
ations (SD) for each Brazilian biome during the year 
2016, together with the pairwise comparisons from 
Tuckey’s honestly significant difference (HSD) post 
hoc test.

According to Tuckey’s HSD post hoc test, sig-
nificant differences in ET rates were found among 
biomes; however, lower than those for precipitation 
(P), and the highest ones for the Pampa biome during 
Q1 (January to March), Q3 (July to September), and 

Fig. 4   Spatial distributions 
of the quarterly average 
actual evapotranspiration 
(ET) for each Brazilian 
geographic region, together 
with the mean pixel values 
and standard deviations 
(SD) during 2016. Over-
lines mean the average ET 
for the region. Quarters (Q): 
Q1—January to March, 
Q2—April to June, Q3—
July to September, and 
Q4—October to Decem-
ber. Geographic regions: 
North—N, Northeast—NE, 
Central West—CW, South-
east—SE, and South—S

Table 2   Quarterly and annually average values of actual evap-
otranspiration (ET) and standard deviations (SD) for each Bra-
zilian biome during the year 2016, together with the pairwise 

comparisons from Tuckey’s honestly significant difference 
(HSD) post hoc test

1 Quarters (Q): Q1—January to March, Q2—April to June, Q3—July to September, and Q4—October to December. 2Biomes: AM—
Amazon, CT—Caatinga, CE—Cerrado, PT—Pantanal, AF—Atlantic Forest, and PP—Pampa. ET rates with the same letter in each 
column indicate no significant differences from each other at 5% (pairwise comparisons using Tuckey’s HSD post hoc test for each 
quarter and for the whole year)

Quarter1/biome2 Q1 (mm d-1) Q2 (mm d-1) Q3 (mm d-1) Q4 (mm d-1) Year (mm d-1)

AM 1.89 ± 0.75a 2.17 ± 0.70a 2.44 ± 0.74b 2.31 ± 0.73b 2.20 ± 0.73b
CT 2.37 ± 1.00a 1.85 ± 1.08a 0.80 ± 0.83a 0.75 ± 0.79a 1.44 ± 0.93a
CE 2.66 ± 0.91a 2.18 ± 0.88a 1.33 ± 0.90a 2.21 ± 0.89b 2.10 ± 0.90b
PT 2.21 ± 0.79a 2.33 ± 0.67a 1.94 ± 0.79a 2.42 ± 0.88b 2.23 ± 0.78b
AF 2.84 ± 0.83b 2.41 ± 0.78b 2.49 ± 1.13b 2.68 ± 0.92b 2.61 ± 0.92b
PP 3.24 ± 0.71c 2.57 ± 0.81b 3.22 ± 1.01c 2.97 ± 0.97c 3.00 ± 0.98c
Mean 2.54 ± 0.83 2.25 ± 0.82 2.04 ± 0.90 2.22 ± 0.86 2.26 ± 0.85
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Q4 (October to December); but there were no signifi-
cant differences from January to June (Q1 to Q2) for 
Amazon and from January to September (Q1 to Q3) 
for Cerrado and Pantanal, when compared with the 
driest Caatinga biome.

For the Amazon biome, the highest ET rates 
occurred in Q3 (July to September), with a mean 
value above 2.40  mm d-1, while the lowest ones 
were in Q1 (January to March), when the average 
was below 1.90 mm d-1. On the annual scale, ET for 
this biome was 806  mm  yr-1. In Central Amazon, 
from eddy covariance measurements made in 2013, 
Kunert et  al. (2017) reported a higher annual ET of 
1,360 mm yr-1. Casagrande et al. (2021) applied water 
balance models and found also higher annual ET val-
ues between 1,300 and 1,500 mm yr-1 in the Amazon 
Forest, using data from 2005 to 2015.

The Caatinga biome stands out for its strong 
hydrological contrast among quarters, with aver-
age ET below 0.80  mm d-1 during the driest condi-
tions from July to December (Q3 to Q4), but above 
2.30 mm d-1 within the rainiest period in Q1 (January 
to March). On the annual scale, it showed the lowest 
ET among biomes, with a mean total of 527 mm yr-1. 
From eddy covariance measurements taken between 
2014 and 2015 in this biome, da Silva et  al. (2017) 
found average ET values from 0.98  mm d-1 during 
the dry season to 1.96 mm d-1 within the rainy season 
in this biome. Using the same energy balance tech-
niques, also for the period from 2014 to 2015 in Caat-
inga, Marques et  al. (2020) reported an average ET 
range between 0.20 and 0.30 mm d-1 during the dry 
season to values from 2.60 to 1.70 mm d-1 during the 
wet season. These rates are like the ones in Table 2.

In the Cerrado biome, the ET peaks were in Q1 
(January to March), with average above 2.60  mm 
d-1, while the lowest rates, below 1.40 mm d-1, hap-
pened in Q3 (July to September). The annual ET of 
767 mm yr-1 was a little lower than that for the Ama-
zon. From eddy covariance measurements taken 
in Cerrado, Giambelluca et  al. (2009) reported an 
average ET ranging from 1.91 to 2.25  mm d-1 and 
varying according to plant densities, while apply-
ing the SEBAL algorithm to Landsat images also in 
this biome, Laipelt et  al. (2020) found average ET 
in grassland/pasture and agricultural areas between 
2.0 and 3.2  mm d-1. Both ranges from these studies 
involve our ET rates depicted in Table 2.

Regarding the Pantanal biome, the highest ET 
rates were detected in Q4 (October to December), 
when the average was above 2.40 mm d-1, while the 
lowest ones occurred in Q3 (July to September), 
when it was below 2.00 mm d-1. On the annual scale, 
ET for Pantanal was 814 mm yr-1. From Bowen ratio 
measurements taken for different tree species within 
this biome, Sanches et al. (2011) reported average ET 
values of 2.50 and 4.00  mm d-1 for its dry and wet 
seasons, respectively. These rates are higher than 
those found in the current research, but specific for 
their studied ecosystems. However, using water bal-
ance measurements taken in the Pantanal biome, 
Moreira et al. (2019) found ET ranging between 1.63 
and 3.53 mm d-1, for the driest and rainiest periods, 
respectively. Considering the average values and 
standard deviations in Table  2, these last values are 
comparable.

For Atlantic Forest, the ET rates were more constant 
throughout the year than those detected for the previ-
ous biomes, with averages above 2.40 mm d-1 during all 
quarters. However, the highest ones were in Q1 (Janu-
ary to March), when the average surpassed 2.80  mm 
d-1, while the lowest ones occurred from April to Sep-
tember (Q2 to Q3), below 2.50 mm d-1. With an annual 
value of 953 mm yr-1, Atlantic Forest showed the sec-
ond highest ET rates, behind only the Pampa biome. 
From water balance studies in this biome, Pereira et al. 
(2010) found an average annual ET of 3.20 mm d-1, a 
little higher than that from Table 2. However, also from 
water balance measurements taken between 2013 and 
2018 in Atlantic Forest, Rodrigues et al. (2021) reported 
ET mean values from 1.40 to 1.80 mm d-1, within the 
ranges for Q3 (July to September), represented by the 
mean pixel value and the SD of our study.

The highest ET rates for the Pampa biome hap-
pened in Q1 (January to March) and Q3 (July to 
September), when the mean pixel values were 
above 3.20  mm d-1, while the lowest ones occurred 
in Q2 (April to June), when the average was below 
2.60  mm d-1. The high daily rates produced the 
highest annual ET of 1,098 mm  yr-1 among biomes. 
From eddy covariance measurements taken between 
2014 and 2016 in two distinct ecosystems of Pampa, 
Rubert et  al. (2018) reported average ET values of 
2.36 ± 1.40 and 2.56 ± 1.70  mm d-1, involving our 
mean annual value, considering the ranges encom-
passed by the average and SD.
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Considering all Brazilian biomes, the highest ET 
rates occurred from January to March (Q1), while the 
lowest ones happened from July to September (Q3). 
According to the SD values, the largest ET spatial 
variations occurred during Q4 (October to Decem-
ber) for Caatinga, when SD was 105% of the aver-
age, while the lowest ones happened in Q1 (January 
to March) for Pampa, when SD accounted for 22% of 
the average ET. Rainfall water variability is the main 
weather parameter driver for these variations, what 
may explain the large differences between the North-
east and Southeast regions where the Caatinga and 
Pampa biomes are located, respectively (see Figs. 1b 
and 4 and Table  1). The ET differences could be 
caused by distinct soil moisture levels, but they can 
also be controlled by the available energy (Senevi-
ratne et al., 2010). However, it should be emphasized 
that other important reason for varying ET among 
biomes might be differences in soil covered by veg-
etation, which affect the absorbed solar radiation and 
partitions into transpiration and evaporation (Villa-
lobos et  al., 2013). The ET ranges from the current 
study are reasonably comparable with those in the lit-
erature, even considering our lower P values.

Accounting the P and ET rates by intercrossing 
Tables  1 and 2, the highest positive water balance 
(P > ET) values occurred from January to March 
(Q1) for the Amazon (WB = 147  mm) and Pantanal 
(WB = 1  mm), but from October to December (Q4) 
in the Caatinga, Pampa, Atlantic Forest, and Cerrado 
biomes, with WB quarterly values of 84, 73, 53, and 
52  mm Q-1, respectively. The most negative water 
balance (P < ET) happened from July to Septem-
ber (Q3) for the Pampa, Amazon, and Atlantic For-
est biomes, with quarterly values of −70, −67, and 
−59  mm Q-1, respectively; and, from April to June 
(Q2) for the Pantanal, Cerrado, and Caatinga, biomes, 
with quarterly values of −116, −96, and −86 mm Q-1, 
respectively. On the annual scale, the most negative 
WB was detected for the Pantanal biome (average of 
−238 mm yr-1), while the most positive WB occurred 
in the Amazon biome (average of 204  mm  yr-1). 
The first biome showed annual P of 578  mm  yr-1 
with a corresponding ET of 816  mm  yr-1, while for 
the Amazon these values were 1,009  mm  yr-1 and 
805  mm  yr-1. Although with similar ET rates, the 
greatest differences were on P values: those for Pan-
tanal were half of those for Amazon.

Water productivity dynamics

Figure 5 shows the spatial distributions of the quar-
terly daily average biomass production (BIO), 
together with the mean pixel values and standard 
deviations (SD), for each Brazilian geographic region 
along the year 2016.

As for P and ET, spatial and temporal variations 
on BIO pixel values among quarters and geographic 
regions are also evident with the lowest values in the 
Northeast (Q3) where the Caatinga biome is concen-
trated and the highest ones in the South (Q1), with 
only the Pampa biome (see also Fig. 1). Intercrossing 
Figs. 1b and 5, Table 3 shows the quarterly and annu-
ally average values of biomass production (BIO) and 
standard deviations (SD) for each Brazilian biome 
during the year 2016, together with the pairwise com-
parisons by using Tuckey’s honestly significant differ-
ence (HSD) post hoc test.

On the one hand, according to Tuckey’s HSD test, 
there were statistical differences in BIO rates, mainly 
comparing the wettest biomes Atlantic Forest in Q1 
(January to March) and Pampa during Q1 (January 
to March) and Q3 (July to September) with the dri-
est Caatinga biome. On the other hand, there were no 
significant differences for Amazon from January to 
March (Q1), Cerrado from April to September (Q2 to 
Q3), and Pantanal from January to June (Q1 to Q2), 
when compared with Caatinga.

To infer the effect of root-zone conditions on the 
BIO rates (equation  13), Fig.  6 shows the quarterly 
average pixel values for the evapotranspiration frac-
tion (ETf), together with their standard deviations 
(SD) for each Brazilian biome.

The ETf average values ranged between 0.14 in 
Caatinga from October to December (Q4) and 1.15 in 
Pampa from April to September (Q3). The respective 
annual averages were 0.29 and 0.94. In agreement 
with our results, de Teixeira et  al. (2017) found ETf 
values between 0.04 and 0.34 for the Caatinga biome 
using SAFER with Landsat 8 images, while Rubert 
et al. (2018) also reported small differences between 
ET and ET0, with ETf of 0.83 and 0.92 in two dis-
tinct Pampa ecosystems, throughout eddy covariance 
measurements taken from 2014 to 2016.

In pastures from Florida (USA), Sumner and 
Jacobs (2005) reported ETf values ranging from 0.47 
to 0.92 under irrigation conditions, while in steppes 
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under desertic conditions of Mongolia, China, Zhang 
et  al. (2012) found an ETf range between 0.16 and 
0.75. These values are similar in several situations 
depicted in Fig.  6, in which the lowest values were 
detected for the Caatinga and Cerrado biomes and 
the highest ones for the Pampa and Atlantic Forest 

biomes. According to Zhou and Zhou (2009), the cli-
mate variables that most affect ETf are air tempera-
ture, air humidity, and available energy. However, its 
values will also depend on stomata aperture and adap-
tation of species to water scarcity (Mata-González 
et  al., 2005), what is more visible in Caatinga and 

Fig. 5   Spatial distribu-
tions of the quarterly daily 
average biomass production 
(BIO) for each Brazilian 
geographic region, together 
with the mean pixel values 
and standard deviations 
(SD) during 2016. Over-
lines mean average BIO for 
the region. Quarters (Q): 
Q1—January to March, 
Q2—April to June, Q3—
July to September, and 
Q4—October to Decem-
ber. Geographic regions: 
North—N, Northeast—NE, 
Central West—CW, South-
east—SE, and South—S

Table 3   Quarterly and annually average values of biomass production (BIO) and standard deviations (SD) for the Brazilian biomes 
during the year 2016, together with pairwise comparisons from Tuckey’s honestly significant difference (HSD) post hoc test

1 Quarters: Q1—January to March, Q2—April to June, Q3—July to September, and Q4—October to December. 2Biomes: AM—
Amazon, CT—Caatinga, CE—Cerrado, PT—Pantanal, AF—Atlantic Forest, and PP—Pampa. BIO values with the same letter in 
each column indicate no significant differences from each other at 5% (pairwise comparisons using Tuckey’s HSD post hoc test for 
each quarter and for the whole year)

Quarter1/biome2 Q1 (kg ha-1 d-1) Q2 (kg ha-1 d-1) Q3 (kg ha-1 d-1) Q4 (kg ha-1 d-1) Year (kg ha-1 d-1)

AM 72 ± 35a 93 ± 38b 101 ± 39b 89 ± 37b 89 ± 30b
CT 73 ± 42a 54 ± 43a 18 ± 28a 19 ± 28a 41 ± 25a
CE 96 ± 44b 78 ± 46a 37 ± 37a 79 ± 42b 72 ± 34b
PT 80 ± 38a 91 ± 37a 60 ± 36b 85 ± 42b 79 ± 35b
AF 114 ± 48c 104 ± 52b 95 ± 65b 104 ± 51b 104 ± 46b
PP 119 ± 52c 101 ± 57b 115 ± 67c 91 ± 55b 107 ± 50c
Mean 92 ± 43 87 ± 46 71 ± 45 78 ± 43 82 ± 37
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Cerrado than in Pampa and Atlantic Forest biomes in 
Fig. 6.

Our results evidenced that there is a gap between 
ETf and WB values along the year, which could be 
related to the time needed for recovering good soil 
moisture after rainfalls, but also because of some 
rainfall water is lost by runoff and percolation, what 
will affect BIO, and thus water productivity (WP) 
values.

Besides ETf, BIO rates are also affected by absorbed 
photosynthetically active radiation (PARabs). Figure  7 
presents the quarterly average PARabs values, together 
with standard deviations (SD) for each Brazilian 
biome.

From Table 3, for the Amazon biome, the maximum 
BIO occurred in Q3 (July to September), when the 
mean pixel value was above 100 kg  ha-1 d-1, because 

of a high ETf (average of 0.57, Fig.  6) at its largest 
PARabs (around 6.86 MJ m-2 d-1, Fig. 7). The minimum 
BIO values occurred in Q1 (January to March), when 
the average was below 75 kg  ha-1 d-1, under the low-
est both ETf (around 0.49, Fig.  6) and PARabs (mean 
of 5.71 MJ m-2 d-1, Fig. 7). Regarding the annual scale, 
the average BIO for Amazon was 32.6  t  ha-1  yr-1. 
According to Vieira et  al. (2003), BIO in this biome 
may vary across regions due to differences in edaphic, 
climatic, and historical land-use factors, thus render-
ing most relationships among spectral properties and 
site-specific forest age. In Central Amazon, from eddy 
covariance measurements taken between 2008 and 
2011, in primary and secondary forests, von Randow 
et  al. (2020) reported average BIO rates of 162 and 
156 kg  ha-1 d-1, respectively. These values are higher 
than found in the current study.

Fig. 6   Quarterly average pixel values for the evapotranspira-
tion fraction (ETf), together with the standard deviations (SD) 
during the year 2016. Overlines mean ETf average pixel value 
for the biome. Quarters: Q1—January to March, Q2—April to 

June, Q3—July to September, and Q4—October to December. 
Biomes: Amazon—AM, Caatinga—CT, Cerrado—CE, Panta-
nal—PT, Atlantic Forest—AF, and Pampa—PP
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In Caatinga, the highest average BIO, above 
70  kg  ha-1 d-1, happened during the rainiest quar-
ter Q1 (January to March), when both the highest 
ETf (average of 0.48, Fig.  6) and PARabs (around 
5.70 MJ  m-2 d-1, Fig.  7) occurred. However, outside 
this period, from Q3 to Q4 (July to December), the 
mean BIO pixel value was below 20  kg  ha-1 d-1 at 
both the lowest ETf (average of 0.14 in Q4, Fig.  6) 
and PARabs (around 3.40  MJ  m-2 d-1 in Q3, Fig.  7). 
The annual average was only 15.0 t ha-1 yr-1, the low-
est one among Brazilian biomes. From eddy flux 
measurements taken from 2014 to 2015 in Caat-
inga, da Silva et  al. (2017) reported that its species 
act as atmospheric carbon sources during the driest 
periods yielding lower BIO, and as carbon sinks in 
the wettest periods promoting higher BIO. Pereira 

et al. (2020) confirm that BIO in the Caatinga biome 
decreases under water stress conditions, resulting in 
rapid changes in carbon dynamics, as these condi-
tions affect phenology, seasonality of stomatal con-
ductance, and photosynthesis. These previous works 
agree with the results in Table 3.

The highest BIO rates in Cerrado were detected in 
Q1 (January to March), when the average was above 
95 kg ha-1 d-1, at its highest mean ETf of 0.61 (Fig. 6), 
together with a high PARabs (mean of 6.15 MJ m-2 d-1, 
Fig. 7). The lowest BIO happened in Q3 (July to Sep-
tember), with a mean pixel value below 40 kg ha-1 d-1, at 
both its lowest ETf (average of 0.30, Fig. 6) and PARabs 
(mean pixel value of 4.20 MJ m-2 d-1, Fig. 7). The mean 
annual BIO was 26.5 t ha-1 yr-1, the second lowest value 
after the Caatinga biome. The seasonal behavior of BIO 

Fig. 7   Quarterly average values of the absorbed photosyn-
thetically active radiation (PARabs), together with standard 
deviations (SD) for each Brazilian biome during the year 2016. 
Overlines mean PARabS average for the biome. Quarters: Q1—

January to March, Q2—April to June, Q3—July to September, 
and Q4—October to December. Biomes: Amazon—AM, Caat-
inga—CT, Cerrado—CE, Pantanal—PT, Atlantic Forest—AF, 
and Pampa—PP
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in the Cerrado biome described in Table 3 is in accord-
ance with Arantes et al. (2016), who, using the MODIS 
MOD13Q1 Enhanced Vegetation Index, reported that 
vegetation developments were maximum from January 
to March and decreased to half the values from August to 
September. BIO decline in Q3 (July to September) in the 
current study also agrees with dos Santos et al. (2021), 
who, using MODIS products, reported a reduction on 
BIO values in the Cerrado biome following rainfall 
declines (see also Table 1).

Although Pantanal showed the most negative 
annual water balance (WB) among biomes, its BIO 
rates were still higher than those for Caatinga and 
Cerrado. Maximum BIO, with mean pixel value 
above 90 kg ha-1 d-1, occurred in Q2 (April to June), 
at the highest average ETf of 0.68 (Fig.  6), together 
with a big mean PARabs of 5.23 MJ m-2 d-1 (Fig. 7). 
Minimum BIO rates, around 60  kg  ha-1 d-1, hap-
pened in Q3 (July to September), at its lowest both 
ETf (average of 0.46, Fig.  6) and PARabs (around 
4.97 MJ  m-2 d-1, Fig. 7). The annual BIO for Panta-
nal was 28.9 t ha-1 yr-1. From Table 3, one may notice 
that differences in BIO values among quarters were 
not so large for this biome, what agrees with Pozer 
and Nogueira (2004), who reported no differences on 
BIO values for humid and dry months, because Pan-
tanal terrestrial species may be replaced by its aquatic 
ones. However, according to Sanches et  al. (2014), 
BIO in Pantanal is higher during the rainy season 
when solar radiation levels are large, what agrees 
with the period from January to June (Q1 to Q2) in 
the current study.

In the Atlantic Forest, BIO values were more con-
stant along the year when compared with the previ-
ous biomes. The highest average, above 110 kg ha-1 
d-1, was detected in Q1 (January to March), at both 
high ETf, mean of 0.74 (Fig. 6), and PARabs, average 
of 6.15 MJ m-2 d-1 (Fig. 7). The lowest BIO, around 
95  kg  ha-1 d-1, happened in Q3 (July to Septem-
ber), at a mean ETf of 0.76 (Fig. 6), under the low-
est average PARabs of 4.64 MJ  m-2 d-1 (Fig. 7). On 
the annual scale, the average BIO of 38.2 t ha-1 yr-1 
was the second highest among biomes, behind only 
Pampa. Rebello et al. (2020), using MODIS images, 
reported that drought significantly impacted BIO 
in Atlantic Forest from 2012 to 2015, followed by 
a strong successive recovery pulse after the drier 
period. de Teixeira, Takemura, et al. (2020) applied 
the SAFER algorithm to MODIS images and found 

annual average BIO ranging from 47 to 93 kg  ha-1 
d-1 for this biome within the São Francisco River 
basin, corroborating our rates, considering the lim-
its involved in the average and the SD values.

As for the Atlantic Forest, the Pampa biome also 
showed regular tendency on BIO values along the 
year; its maximum average was above 115 kg ha-1 d-1 
in Q1 (January to March), at a high mean ETf of 0.85 
(Fig. 6) and the highest average PARabs of 5.49 MJ m-2 
d-1 (Fig.  7). The minimum BIO rates occurred in Q4 
(October to December), but the mean pixel value did 
not fall below 90  kg  ha-1 d-1, when the lowest mean 
ETf of 0.69 (Fig. 6) occurred at an average PARabs of 
5.19 MJ m-2 d-1 (Fig. 7). The Pampa biome showed the 
highest average annual BIO of 39.2 t ha-1 yr-1, 2.6-folds 
that for Caatinga. Using remote sensing measurements 
taken from 2001 to 2011, Scottá and da Fonseca (2015) 
also found maximum BIO values during Q1 (January 
to March) for Pampa; however, they affirmed that BIO 
correlations with weather conditions should be consid-
ered for this biome. According to Rubert et al. (2018), 
plant diversity in Pampa is what determines the vegeta-
tion growth capacity during the seasons of the year, but 
it is also affected by the available energy, what agrees 
with our highest BIO values in Q1 (January to March), 
which showed the highest PARabs levels.

Considering all biomes, the quarterly periods with 
the highest BIO values occurred from July to Septem-
ber (Q3) for Amazon; from January to March (Q1) for 
Caatinga, Cerrado, Atlantic Forest, and Pampa; and from 
April to June (Q2) for Pantanal. The lowest BIO rates 
happened in Q1 (January to March) for Amazon; in Q3 
(July to September) for Caatinga, Cerrado, Atlantic For-
est, and Pantanal; and in Q4 (October to December) for 
Pampa. According to the SD values, the largest BIO spa-
tial variations occurred during Q3 (July to September) 
for Caatinga, when SD was 156% of the average, while 
the lowest ones happened in Q3 (July to September) for 
Amazon, when SD accounted for 39% of the average.

For some biomes, BIO was more strongly related 
to ETf (Cerrado, Caatinga, Pantanal, and Pampa 
biomes) while for others BIO rates followed the 
PARabs levels (Amazon and Atlantic Forest). As 
there is a correlation between ET and BIO, this can 
be explained by the fact that soil moisture provides 
a first-order control on BIO when water is limiting 
(i.e., low ETf), while when ETf is high (i.e., good soil 
moisture levels), BIO is more affected by the avail-
able energy (Seneviratne et  al., 2010). One should 
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have highlight that in the current research, BIO is the 
daily biomass production and not the actual biomass, 
which is the reason why Atlantic Forest and Pampa 
showed higher BIO than Amazon, which has larger 
natural vegetated areas with trees. For example, a 
grassed surface may increase BIO faster from one day 
to another than taller surfaces.

Accounting for ET and BIO values by intercrossing 
Tables  2 and 3, the periods of the year with the high-
est water productivity (WP) values (equation  15) were 
from April to June (Q2) for the Atlantic Forest, Amazon, 
Pampa, and Pantanal, with respective WP of 4.32, 4.29, 
3.93, and 3.91 kg m-3 and from January to March (Q1) 
for Cerrado and Caatinga, with respective WP of 3.61 
and 3.08 kg m-3. The lowest WP values occurred in Q1 
(January to March) for Amazon, when it was 3.81 kg m-3; 
Q3 (July to September) for Caatinga, Cerrado, Pantanal, 
and Atlantic Forest, with respective values of 2.25, 2.78, 
3.09, and 3.82 kg  m-3; and from October to December 
(Q4) for Pampa, with WP of 3.06 kg  m-3. The strong-
est differences among biomes were detected for Ama-
zon and Atlantic Forest, both with annual WP values of 
4.00  kg  m-3, when compared with the driest Caatinga 
biome, with an annual WP of 2.80 kg m-3.

To integrate vegetation growth and environmental 
conditions in the Brazilian biomes, Fig. 8 shows the 
relations among BIO, P, and ET, taking their quar-
terly average values during the year, for each Brazil-
ian biome.

On one hand, there was negative correlation of BIO 
with P only for the Amazon and Pampa biomes (Fig. 8a), 
with the highest correlation for the first (R2 = 0.77) than 
for the second (R2 = 0.36). This means that some rainfall 
water was not productive, with more situations of water 
going away from the root zones and not being used by 
vegetation, mainly in the Amazon biome. On the other 
hand, this correlation was positive for Caatinga, Cerrado, 
Pantanal, and Atlantic Forest biomes, with the highest 
one for Caatinga (R2 = 0.70) and the lowest one for Pan-
tanal (R2 = 0.13). Regarding the correlations of BIO with 
ET (Fig. 8b), they were positive for all biomes the with 
the highest ones for Caatinga and Cerrado (R2 = 0.99), 
while the lowest correlation was for Pampa (R2 = 41).

Caatinga biome stands up by the highest positive 
correlations in Fig. 8, what can be explained that this 
biome, under high solar radiation levels during the 
rainy periods, has a high-water consumption yielding 
large BIO. In Pampa biome, even with large rainfall 
amounts promoting large ETf values (Fig. 6), the gap 

in water balance and soil moisture conditions together 
with low PARabs levels (Fig. 7) promoted the lowest 
correlation of BIO to ET.

Conclusions

We demonstrated the suitability of the SAFER algo-
rithm for use with MODIS’ MOD13Q1 reflectance 
product and gridded weather data to monitor the 
dynamics of environmental remote sensing indica-
tors in the Brazilian biomes, derived from energy, 
water, and carbon balance components. According 
to Tukey’s honestly significant difference (HSD) post 
hoc test, significant differences in precipitation (P), 
actual evapotranspiration (ET), and biomass produc-
tion (BIO) yielded distinct water balance (WB) and 
water productivity (WP) results. The largest WB and 
WP differences among biomes were detected for the 
Atlantic Forest and Pampa, when compared with the 
driest Caatinga biome.

Rainfall variability is the main responsible weather 
parameter driver for the spatial ET and BIO variations, 
which explains the large differences between Caatinga 
and Pampa. It should be emphasized that varying ET 
might also be caused by different areas of soil covered 
by the vegetation within these biomes, affecting the parti-
tions into transpiration and evaporation. Amazon showed 
the highest positive WB among biomes, while Pantanal 
showed the most negative WB, evidencing that agroeco-
systems in this last biome were strongly affected by water 
scarcity during 2016.

Rainfall distribution along the year in each biome 
also contributed to the magnitude of the evaporative 
fraction (ETf). However, there were gaps between ETf 
and WB, which may be related to the time needed 
for recovering good conditions of soil moisture lev-
els after rainfalls, but also because some of the rain-
fall water is lost by runoff and percolation, what also 
affects BIO, and thus WP. On one hand, these rainfall 
water lost produced negative correlations between 
BIO and P in the Amazon and Pampa biome. On the 
other hand, the most positive relations for both BIO 
with P and with ET were for Caatinga, because of the 
fast response of their species to rainfalls. The high-
est WP was detected for the Amazon biome, while 
the lowest WP happened in Caatinga. For the Ama-
zon and Atlantic Forest biomes, BIO rates were much 
related to the levels of absorbed photosynthetically 
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active radiation, while for the Cerrado, Caatinga, Pan-
tanal, and Pampa biomes, ETf values affected more 
BIO values.

Although the methods were tested for only one 
year in the current research, the success of the coupled 
use of MODIS’ MOD13Q1 reflectance product and 

gridded weather data showed potential for the imple-
mentation of an operational environmental monitor-
ing system by using historical data sets, with enough 
details to differentiate the Brazilian biomes using 
remote-sensing indicators. The spatial determinations 
of ET and BIO and their association with precipitation 

Fig. 8   Relations between the quarterly values for biomass pro-
duction (BIO) with those for precipitation (P) and actual evap-
otranspiration (ET) in each Brazilian biome during the year 

2016. Biomes: Amazon—AM, Caatinga—CT, Cerrado—CE, 
Pantanal—PT, Atlantic Forest—AF, and Pampa—PP
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gridded data showed with good potential to support 
public policies regarding the management and con-
servation of natural resources, with possibility for rep-
lication of the methods in other countries, after local 
calibrations of the regression equations. Limitations 
for application of the methods in other environments 
could be lack of meteorological data on large scales 
and the probable need of equation calibrations which 
will demand simultaneous field and satellite measure-
ments. Future research may focus on detecting water 
balance and water productivity anomalies for specific 
years in comparison with long-term conditions.
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