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Abstract: Soil structure controls soil hydraulic properties and is linked to soil aggregation processes.
The aggregation processes of Oxisols are controlled mainly by clay mineralogy and biological activity.
Computed microtomography (µCT) may be a tool for improving the knowledge of the hydraulic
properties of these soils. Thus, this study brings an advance in the use of 3D image analysis to
better comprehend the water behavior in tropical soils. In this work, three Oxisols were studied
with the objective to (i) characterize the soil water retention curve (SWRC), the corresponding pore
size frequency, and the saturated hydraulic conductivity (Ksat); (ii) use µCT to obtain, based on 3D
images of soil structure and pore size distribution; and (iii) correlating parameters from SWRCs, Ksat,
and µCT with other physical-hydric, chemical, and mineralogical attributes. Rhodic Haplustox—P1,
Anionic Acrustox—P2, and Typic Hapludox—P3 were the three studied Oxisols. The differences
among the SWRCs were related to the microgranular and block type’s structure morphology, which
modified the soil pore space. The pore size frequency was calculated from SWRCs for pores with
diameters of 87 ± 2 µm in P1, 134 ± 11µm in P2, and 175 ± 18 µm in P3. Pore size distribution from
µCT was determined for the range of 20–100 µm, mainly with the highest percentages: 12 ± 1.09% for
P1 and 12 ± 1.4% for P2. Pore connectivity was assessed from images by calculating Euler Numbers
(EN), with the differences related to the biggest pore (ENbigpore): P1 (−44,223 ± 10,096) and P2
(−44,621 ± 12,573) showed more connected pores (ENbigpore) in comparison to P3 (−11,597 ± 6935).
The parameter ENbigpore was decisive in understanding the water retention and conduction processes
of the studied soils. The better-connected pore space increased Ksat in P1 (220 ± 0.05 mm h−1) and
P2 (189 ± 0.1 mm h−1) in comparison to P3 (20 ± 0.3 mm h−1) and modified the shape of SWRCs.

Keywords: soil water retention curve; pore size distribution; pore connectivity; iron and aluminum
oxides; microaggregates

1. Introduction

Soil structure controls hydraulic properties and regulates soil functions and ecosystem
services [1]. The pore space organization is essential for predicting soil water retention, wa-
ter and solute transport, plant availability water, soil temperature and aeration, and finally
the intermediation of biogeochemical cycles. Soil structure functionality varies according
to the pore characteristics, which, in turn, are a result of soil aggregation processes [2].
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Soil aggregation and the development of soil structure interfere with the architecture and
dynamics of the pore space [3].

Aggregation processes in highly weathered soils are controlled mainly by iron/aluminum
oxides and kaolinite, but in some cases, other minerals (e.g., vermiculite with Hydroxyl-Al)
may coexist [4,5]. All processes are regulated by intense weathering and, therefore, for the
thermodynamic stability of the minerals present in the soil. According to FAO [6], Oxisols
(Ferralsols) cover approximately 750 million hectares in the world and are found mostly in
the humid tropics on the continental shields (e.g., South America and Africa). The main
physical characteristics of these soils are stable microaggregates, high porosity, and good
permeability and water infiltration. The mechanisms of the genesis of aggregates in Oxisols
are complex, influenced by biological activity and mainly by the mineralogy of the clay
fraction, because iron oxides (e.g., goethite and hematite), aluminum oxides (e.g., gibbsite),
and kaolinite are essential for the formation of microaggregates with high stability [7,8].

Soil hydraulic properties are related to soil structure, i.e., the porous space, pore
size distribution, pore morphology, and pore connectivity. One of the soil properties
used to understand the pore system is the soil water retention curve (SWRC). This soil
physical attribute expresses the relationship between soil water content (θ) as a function
of matric potential (ψm). The soil water retention curve may be applied for studying soil
water retention energy and to estimate the unsaturated hydraulic conductivity function [9]
and/or saturated hydraulic conductivity [10], and plant available water. Using capillary
theory (Young–Laplace equation) [11], it is possible to estimate pore size distributions from
the SWRC, which is conceptually divided into textural and structural porosity. The latter is
related to transmission pores and the former corresponds to pores formed by the individual
arrangement of particles [2,12]. This type of pore system, associated with a “bimodal pore
size distribution,” is commonly found in tropical soils typically composed of inter- and
intra-aggregate pores [13].

X-ray microtomography (µCT) has been used as an important tool in studies of soil and
sediments [14], particularly in the prediction of solute transport in structured soils [15], soil
aeration, and redox potential as a function of pore connectivity [16], changes in soil structure
as a function of soil use and management [17–20], and understanding the physical-hydric
properties related to soil aggregation and mineralogy [21]. X-ray microtomography opens a
great perspective for advancing the quantification on the structure of tropical soils and can
thus contribute to understanding the relationship between pore networks and soil processes
and functions [22]. In addition, µCT can be considered a complementary technique to
SWRC measurements, especially with respect to characterizing transmission pores, which
are crucial for transport and for which, besides pore size, other characteristics like pore
connectivity are important and can be determined from pore space images. The capillary
theory assumes the pore space as a capillary bundle model, which hardly represents the true
complexity of the soil pore space [23]. Another problem is related to the unimodal function
described by the van Genuchten model [24], which may not often represent the bimodal
and complex pore size distribution found in highly weathered Oxisols [25]. Thus, µCT not
only enables access to the complexity of the pore space by enabling detailed analysis of
pore sizes, but also anisotropy and connectivity, which are important for understanding
the dynamic processes in the soil.

The formation of the microstructure and the dynamics of the pore space in Brazil-
ian Oxisols were characterized by different techniques (2D and 3D image analysis) by
Pessoa et al. [21]. The image resolution used in these techniques was sufficient for com-
paring 3D image parameters with saturated hydraulic conductivity. However, most of
the parameters obtained from 3D image analysis, if not all, depending on the spatial scale
considered. Therefore, the spatial resolution of the image determines the range of pore
sizes that can be assessed and, typically, increasing the image resolution requires reducing
the sample size [26]. The pore space of Oxisols can often present intra and inter-aggregate
porosity (i.e., bimodal pore size distribution) due to the specific aggregation mechanisms
of these soils [2,7,8]. The presence of this complex pore space is directly linked to the
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mineralogy of the clay fraction (e.g., iron/aluminum oxides and kaolinite) and the active
biological activity characteristics of this class of soils [4,5,13]. The type of structure present
(e.g., blocks or microgranular) directly interferes in the pore space configuration. Previous
studies have evaluated the relationship between the type of structure of Oxisols and their
physical-hydric behavior [13,21]. However, scarce studies have clarified the direct connec-
tion between aggregate morphology—pore space configuration—soil water retention and
conduction properties, especially in highly weathered soils. Thus, the hypotheses of this
study were: (a) the morphology of soil aggregates modifies the pore space and, therefore,
pore size distribution, pore size frequency, and pore connectivity; (b) a better connectivity
pore space increases the saturated hydraulic conductivity, modifying the shape of SWRCs
and the soil water availability to plants; and (c) parameters from 3D image analysis are es-
sentials to improve the understanding of the physical-hydric behavior of highly weathered
soils. The objectives of this work were to (i) characterize the behavior of SWRC, its pore
size frequency, and the saturated hydraulic conductivity (Ksat); (ii) use the µCT to obtain
parameters of porous space and pore size distribution; and (iii) correlate the parameters
from the 3D image analysis with the physical-hydric properties, as well as the chemical
and mineralogical attributes of the Oxisols.

2. Materials and Methods
2.1. Soil Sampling and Study Areas

Typical soil profiles of clayey Oxisols were classified according to Soil Taxonomy [27]
and to the Brazilian Soil Classification System [28]. The studied Oxisols were: P1—Rhodic
Haplustox/Latossolo Vermelho Distroférrico típico, climate type Aw-tropical zone with
dry winter (20◦13′18.5” S, 48◦01′40.3” W); P2—Anionic Acrustox/Latossolo Vermelho
Acriférrico típico, climate type Cwa-dry winter and hot summer (21◦28′23” S, 47◦53′50” W);
and P3—Typic Hapludox/Latossolo Bruno Distrófico típico, climate type Cfb-humid sub-
tropical zone with temperate summer (25◦08′54” S, 50◦09′06” W). The decisive factors
for choosing the soil profiles for this study were mainly different proportions of kaolin-
ite argilomineral, a quantitative discrepancy between the iron oxides (e.g., goethite and
hematite), and aluminum oxides (e.g., gibbsite), different climatic conditions, and different
parent material for soil formation. All these factors affect the degree of development of the
structure of Oxisols, which can present a more pronounced formation of microaggregates
(microgranular structure) or the formation of a block-type structure [21].

Undisturbed and disturbed soil samples were collected on top of the Bw horizons of
the three chosen Oxisols (0.80–1.35 m depth), under native forest conditions with the aim
of preventing the probable influence of soil use and management on the physical-hydric
properties of Oxisols. Physical analyses such as saturated hydraulic conductivity (Ksat),
soil bulk density (ρ), and porosity (β) were determined (ten replicates) by collecting ten
undisturbed soil samples in cylinders of dimensions of (0.07 m × 0.075 m) using an Uhland
soil sampler. For the determination of SWRCs, five undisturbed soil samples for each
matric potential were collected in cylinders with dimensions of (0.05 m × 0.05 m) using
a type Uhland soil sampler, totalizing 50 samples for each soil. For µCT scanning, the
samples were collected in blocks using plastic containers to support them and maintain the
soil structure. The structural morphology of the soils was characterized in the field during
the soil sampling. Disturbed soil samples were also collected (five replicates) to conduct
the particle size analysis, along with the particle density (ρs), chemical, and mineralogical
analyses [21].

2.2. Soil Characterization

Soil particle size distribution was first determined by pre-treatment with HCl 0.01 mol L−1

to remove poorly crystallized iron/aluminum oxides because these forms affect the degree
of soil microaggregation and interfere with the efficiency of soil dispersion [29,30]. Next,
the samples were dispersed chemically with a solution of 0.1 mol L−1 NaOH and physically
shaken for 16 h. Sand fractions were separated by sieving, and silt and clay fractions were
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quantified by pipette method [31,32]. The water-dispersible clay was done by the same
method, without the use of chemical dispersant. The degree of flocculation (DF) of the soil
was calculated by the equation: DF = [clay-water dispersible clay)/clay]100. Soil specific
surface area (SSA) was determined with the BET method (Brunauer-Emmett-Teller) [33].
Soil bulk density (ρ) was determined by the volumetric ring method [34], soil particle den-
sity (ρs) was determined by helium gas pycnometer [35], soil porosity (β) was calculated by
equation: β = 1 − (ρ/ρs), and saturated hydraulic conductivity (Ksat) was determined in
steady-state conditions by applying the Darcy–Buckingham equation with the support of a
constant-head permeameter [36].

Mineralogical analysis was performed in the clay fraction after treatment to remove
organic matter with a solution of 12% NaClO. The main minerals that composed the clay
fraction of studied Oxisols were goethite, hematite, gibbsite, kaolinite, and vermiculite
with Hydroxyl-Al (VHE) [21]. Goethite and hematite were quantified by the diffuse
reflectance spectroscopy (DRS) technique, and from that, the relation of the amount of
Fe2O3 (determined by citrate-bicarbonate-dithionite—CBD), which obtained the crystalline
and poorly forms of oxides. The amplitudes of spectrum bands from 420 to 450 nm and from
530 to 580 nm were related to goethite and hematite, respectively. The Hm/(Hm + Gt) ratio
was calculated with that information [32,37–39]. Kaolinite and gibbsite were quantified
by differential thermal analysis (DTA) in a clay fraction without iron oxides that were
removed with CBD solution. The peaks between 240 and 256 ◦C and 503 and 517 ◦C
were associated with gibbsite and kaolinite [39]. X-ray diffraction (XRD) was done in
natural clay without soil organic carbon (SOC) and iron oxides to qualitatively identify the
kaolinite and gibbsite minerals. To identify the peaks of probable 2:1 mineral in P3, the
clay fraction was saturated with MgCl2 and solvated with ethylene glycol [40] because the
subtropical conditions of pedogenesis of this Oxisol may favor the formation of 2:1 mineral.
The samples were scanned with a diffractometer ranging from 3◦ to 65◦ (2θ) [41]. The
following chemical analyses [32] were done: pH (in H2O and KCl 1 mol L−1), soil organic
carbon (SOC), and Fe2O3/Al2O3 (OAA—ammonium oxalate acid and CBD methods).
Detailed information about the physical, chemical, and mineralogical analyses is presented
by Pessoa and Libardi [13] and Pessoa et al. [21].

2.3. Soil Water Retention Curves

Soil water retention curves were determined using Haine’s funnels (ψm of −2, −4,
−6, and −8 kPa) and Richard’s pressure chambers (ψm of −10, −30, −100, −300, −500,
and −1500 kPa) [36]. Each ψm was determined using five different undisturbed samples
(n = 5), totaling 50 samples for each SWRC. The use of a separate set of samples at each
potential was to avoid intense wetting/drying cycles, maintain the hydraulic contact of
the soil sample with the porous plate in each potential, and also to avoid the possibility of
opening of pores/fissures, especially in P3, which presents the VHE mineral. The time for
hydraulic equilibrium of soil samples at each matric potential to be reached varied from
two days to one month [13]. The experimental data was fitted to Equation (1) used by van
Genuchten [24]:

θ = θr +
(θs − θr)[

1+(α|ψm|)n]m (1)

where θ is the volumetric soil water content (m3 m−3); ψm is the matric potential (m); θs and
θr are the saturation and residual soil water content, respectively (m3 m−3); α (m−1), m and
n are empirical parameters. The parameters α, m, and n were estimated from Equation (1)
considering the restriction m = 1 − (1/n). θs and θr were also estimated from Equation (1)
fitting. For the study of frequency of pores, Equation (2) was obtained from differentiating
Equation (1) with applying the capillary theory:

dθ

dlog(d)
=

θs − θr

θs
mn(A)n d−n[1 + (A)nd−n]

−m−1 (2)
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where A = 4σα/ρwg; σ is the water surface tension (0.07194 N m−1); ρw is the water density
(c. 1000 kg m−3); g the acceleration of gravity (c. 9.81 m·s−2); and d (m) is the equivalent
pore diameter. In this study, available water content (AWC) was considered as the difference
between the field capacity (FC; correspondent to ψm −10 kPa) and the permanent wilting
point (PWP; correspondent to ψm −1500 kPa). More details about equations and procedures
performed for the SWRC evaluations are presented by Pessoa and Libardi [13].

2.4. X-ray Computed Microtomography (µCT) Scanning and 3D Image Analysis

For the scanning step, soil blocks collected with the support of plastic containers
(0.45 m × 0.22 m) were air-dried, separated into small pieces. In sequence, subsamples
(0.020 m × 0.010 m) were prepared. The scanning was performed in 4–6 replicates using
a SkyScan 1172 (Bruker microCT®, Kontich, Belgium) at an energy of 100 keV. To harden
the beam, a filter with Al + Cu was used and adjustment in the camera was done with
the objective of obtaining a voxel size of c. 9 µm. The projections were done in steps of
0.2◦ from 0 to 180◦, totalizing c. 940 projections with an average time of c. 2 h/image
acquisition. The software NRecon® (Bruker microCT®, Kontich, Belgium) was used for the
reconstruction of 3D images [42].

The software’s ImageJ® and ToolIP® (Tool for Image Processing) were used to perform
3D image analysis. The MAVI® (Modular Algorithms for Volume Images, Fraunhofer
ITWM, Kaiserslautern, Germany) toolbox is implemented in ToolIP® to solve numerous
features on 3D images. Initially, a region of interest covering most parts of the sample
was selected (600 to 800 voxels in each direction). The images were filtered with a non-
local-means filter with the aim of reducing noise of the image before segmentation. Otsu’s
algorithm [43] was used to threshold (separation of the porous space and the solid matrix).
In sequence, the following parameters from the pore space were obtained: total resolved
pore volume (TRPV), volume of the biggest pore (where biggest means the most volumi-
nous pore), pore size distribution (PSD) by hydraulic diameter (which was calculated on
the basis of the local maximal inscribed ball fitting into each pore region), Euler number
(EN) of the biggest connected pore (ENbigpore), ENtotal (EN normalized by the volume of
sample), and surface density (SurfDens) [21,44,45].

2.5. Data Analysis

The Kolmogorov–Smirnov test was applied to confirm hypotheses of normality. The
data were analyzed from 95% confidence intervals. The confidence intervals were used
to compare the soil water content obtained from SWRCs, parameters from SWRCs (e.g.,
FC, PWP, and AWC), and 3D image analysis parameters (e.g., TRPV, PSD, Euler num-
ber, and SurfDens). The efficiency of the equation fitting to SWRCs was tested by the
coefficient of determination (R2) and the root-mean-square error (RMSE). The Pearson’s
correlations (α = 0.05) were used to link SWRCs parameters, 3D image analysis parameters,
and physical, chemical, and mineralogical attributes. Additionally, a principal component
analysis (PCA) to represent the components with higher weight was done by a graphical
type BIPLOT. Statistical analyses were done with the support of the software’s Origin®

and OriginPro®.

3. Results
3.1. Soil Characterization

The texture of the three Oxisols was clayey and the structural morphology was:
(i) very small granular in P1, (ii) subangular block types very small/granular in P2, and
(iii) subangular block types large/moderate in P3. The degree of flocculation varied from
68.50 to 99.65% and bulk density ρ presented low values (0.89–1.03 kg dm−3), β varied
from 0.66 to 0.68 m3 m−3, and Ksat were higher in P1 (219.81 ± 0.05 mm h−1) and P2
(188.7 ± 0.1 mm−1) compared to P3 (20.2 ± 0.3 mm h−1) (Table 1). The chemical compo-
sition indicates low pHH2O (4.18–5.30), a positive ∆pH in P2, and a low predominance of
exchange bases (Ca2+, Mg2+, and K+), which influences the presence of Al3+ and potential
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acidity (Table S1—Supplementary Material). The mineralogy was composed by kaolinite,
goethite, hematite, and gibbsite. In P3, peaks of 2:1 mineral (vermiculite with Hydroxyl-Al)
were observed (Table S2—Supplementary Material). The highest kaolinite amount was
found in P2 (370.37 g kg−1), gibbsite in P1 (285.56 g kg−1), goethite in P3 (72.68 g kg−1),
and hematite in P2 (132.52 g kg−1). The forms of Fe2O3 extracted with CBD were higher
than that extracted with OAA. Fe2O3 was found in higher amount mainly in red Oxisols
(P1 and P2), and Al2O3 in P3; SOC was higher in P3 (16.96 g kg−1) (Table S1) [21].

Table 1. Physical characterization of the P1—Rhodic Haplustox, P2—Anionic Acrustox, and P3—
Typic Hapludox [21].

Physical Attributes Unit Soils

P1 P2 P3
Clay g kg−1 674.74 727.49 768.65
Silt g kg−1 159.01 167.69 183.10
Very coarse sand g kg−1 8.54 3.45 4.85
Coarse sand g kg−1 13.88 5.04 4.34
Medium sand g kg−1 35.59 21.45 7.66
Fine sand g kg−1 69.11 54.51 16.34
Very fine sand g kg−1 39.12 20.37 15.06
Water dispersible clay g kg−1 2.86 2.55 242.15
Degree of flocculation % 99.58 99.65 68.50
Bulk density (ρ) kg dm−3 1.03 ± 0.02 0.98 ± 0.02 0.89 ± 0.02
Particle density (ρs) kg dm−3 3.05 ± 0.01 3.04 ± 0.01 2.59 ± 0.04
Porosity (β) m3 m−3 0.66 ± 0.01 0.68 ± 0.01 0.66 ± 0.01
Saturated hydraulic conductivity—Ksat mm h−1 219.81 ± 0.05 188.7 ± 0.1 20.2 ± 0.3
Specific surface area—SSA m2 g−1 36 ± 6 41 ± 4 60 ± 3

Mean values were compared with their respective 95% confidence intervals.

3.2. Soil Water Retention Curves

The R2 values among soils varied from 0.981–0.992, and those of RMSE were lower
than 5.59× 10−4, thus showing a good fit to SWRC data. The soil water content at saturation
θs varied between 0.657–0.681 m3 m−3 and θr between 0.271–0.366 m3 m−3 (Table 2). The
soil water retention curves showed a tendency of higher water content in P1 > P2 > P3 for
ψm = −2 kPa, the inverse for ψm ≤ −10 kPa, that is, P3 > P2 > P1. It is very important to
highlight the higher water content observed in P3 with values that are practically the same
as the matric potential values from −30 to −1500 kPa (Figure 1a). The curves of the f (log
d) function obtained from Equation (2) showed that the diameter of maximum frequency
(dmax) was 87 µm in P1, 134 µm in P2, and 175µm in P3 (Figure 1b). For the field capacity,
P3 > P2 = P1, the permanent wilting point was higher in P3, and available water content
was very small in P3 compared to P1 and P2 (Figure 1c).

Table 2. Parameters of Equation (1) (θs, θr, α, n, m), R2, RMSE, and rmax, for SWRCs [13].

Soils θs θr α n m R2 RMSE dmax

m3 m−3 kPa−1 µm
P1 0.665 0.271 0.406 2.027 0.507 0.992 2.72 × 10−4 87 ± 2
P2 0.681 0.317 0.640 1.993 0.498 0.979 5.59 × 10−4 134 ± 11
P3 0.657 0.366 0.778 2.235 0.553 0.981 2.86 × 10−4 175 ± 18

θs and θr (saturation and residual soil water contents); α, n and m (empirical parameters of the Equation (1)); R2

(coefficient of determination); RMSE (root mean square error); dmax (most frequent pore diameter).

3.3. 3D Image Analysis Parameters

In Figure 2, the sequence of original microtomographic images, the region of interest
for processing and the binarized (i.e., segmented) image for each soil is shown. The
total resolved pore volume followed the order P3 (18.57%) > P2 (17.25%) > P1 (15.28%)
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(Figure 3a). The percentage of the volume of the biggest pore followed a trend of P2
(93.74%) > P1 (88.45%) > P3 (83.76%) (Figure 3b). The pore size distribution presented the
highest percentage and differences (p < 0.05) in the 20–100 µm size class: P2 and P1 had
porosities of 12.20% and 11.87% in this size class, and P3 had a porosity of 7.12%. For the
100–300 µm size class, there was a difference between P1 (2.50% porosity) and P2 (4.36%
porosity) (Figure 3c).
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Figure 1. (a) Soil water retention curves. (b) Curves of diameter frequency/logarithm of diameter
(f ) as a function of logarithm of diameter (log d) from SWRCs; (c) and field capacity (FC), perma-
nent wilting point (PWP), and available water content (AWC) of Rhodic Haplustox (P1), Anionic
Acrustox (P2), and Typic Hapludox (P3). Mean values were used to compare their respective 95%
confidence intervals.

Because of the high standard deviation for P1 and P2 concerning the values of the
Euler Number for the total sample (ENtotal) (Figure 3d), no differences were detected among
soils for this parameter. However, differences were detected for EN of the biggest pore
(ENbigpore), the more negative values being found for P1 and P2 relative to P3; thus, the
biggest pore in P1 and P2 presented better connectivity (Figure 3e). The pore surface density
(SurfDens), which represents the ratio of pore surface to pore volume, was significantly
higher in P1 and P2 than in P3 (Figure 3f).

3.4. Correlations of 3D Image Analysis Parameters, Soil Attributes and Principal Component
Analysis (PCA)

Table S3 shows the Pearson’s matrix of correlation between PSD and parameters
from 3D image analysis, FC, PWP, Ksat, SOC, clay content, SSA, Gt, Hm, Gb, and K. The
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correlations, when significant, were very high (≥|0.99|). Significant positive correlations
were found between pores of 20–100 µm vs. hematite; pores of 500–700 µm vs. FC,
PWP, and ENbigpore; FC vs. PWP, and ENbigpore; Ksat vs. SurfDens. On the other hand,
significant negative correlations were found for pores 20–100 µm pores vs ENbigpore; pores
of 500–700 µm vs. Ksat; FC vs. Ksat; PWP vs. Ksat and SurfDens; SurfDens vs. SSA, and finally,
Gt vs. K.

The results of the PCA analysis showed that 100% of the variation from the original
data is explained for PC1 and PC2, whose values were 70.28% and 29.72%, respectively
(Table S4). Thus, considering PC1 and PC2, most parts of the variables in PC1 had similar
weights (>|0.25|). In PC2, the variables and pores of 100–300 µm, >700 µm, ENtotal, Gt,
and K presented the highest weight (>|0.37|) (Table S4). The BIPLOT evidence correlations
between variables and the tendency to formation of different groups. i.e., P1 was character-
ized by higher amounts of Gb, higher values for SurfDens, and lower values for ENtotal. The
variables Ksat and pores of 20–100 µm showed similar behavior and concentered between
P1 and P2 in BIPLOT (Figure 4). P2 had higher amounts of Hm and K, while P3 was the
soil with more discrepancy in relation to soil attributes, evidenced visually by BIPLOT. P3
had higher amounts of soil organic carbon, specific surface area, and clay, as well as higher
values of ENbigpore, field capacity and permanent wilting point, and predominance of pores
of 500–700 µm and 300–500 µm (Figure 4).
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Figure 4. BIPLOT representing the variables pore size distribution (20–100, 100–300, 300–500, 500–700,
>700 µm); FC: field capacity (−10 kPa); PWP: permanent wilting point (−1500 kPa); Ksat: saturated
hydraulic conductivity; ENtotal: Euler number for total sample or Euler density; ENbigpore: Euler num-
ber for the biggest pore connected; SurfDens: surface density; SOC: soil organic carbon; SSA: specific
surface area; Clay: the amount of clay fraction; Gt: goethite; Hm: hematite; Gb: gibbsite; K: kaolinite
for Rhodic Haplustox (P1), Anionic Acrustox (P2), and Typic Hapludox (P3).
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4. Discussion

SWRCs showed a discrepancy in θ for lower ψm (i.e., −100 to −1500 kPa) (Figure 1a).
The shape of SWRCs from ψm −2 kPa to −10 kPa was similar among Oxisols. However,
the decrease of matric potential resulted in higher permanent wilting point for P3 and,
consequently, a decrease in the available water content (Figure 1a,c). It is important to
highlight that the soil texture is of the same class (>600g kg−1 of clay) (Table 1). However,
soil aggregation, morphology, and aggregate size distribution were different in the studied
soils [13,21].

The frequency of pores obtained from the SWRCs evidenced the predominance of
the macropore class (>80 µm) in the Oxisols, according to the classification adapted from
Brewer [46]. The maximum frequency of pores of a higher diameter was found in P3
(175.34 µm) and a frequency of pores with a smaller diameter was detected in P1 (86.74 µm)
(Figure 1b). The smaller size of the more frequent pore diameter in P1 (Figure 1b) is related
to the presence of interaggregate pores formed in typical microgranular structure in this
Oxisol (Table S2). A similar trend was observed for the pore size distribution obtained by
3D image analysis (Figure 3c), in which a higher percentage of pore volume was found in
the 20–100 µm diameter class, mainly in P1 and P2. The lower size limit of the macropores
in this study was the diameter of 80 µm. Therefore, the pore size distribution obtained from
SWRCs and 3D image analysis showed a predominance of macropores for the three Oxisols
(Figure 3c). It is worth noting that all Oxisols presented a frequency for the macropore
classes; however, the proportion between the different pore classes was also relevant in the
physical-hydric behavior of the studied soils. In a previous study, it was shown that there is
a strong influence on mesoporosity (<80 µm) [13]. The main differences were found for P1
and P2, which were the soils that presented the highest proportion of pores in the mesopore
class in comparison to P3. The higher degree of microaggregation observed, mainly in
P1, was strongly correlated with the lower hematite/goethite ratio and higher amounts of
gibbsite in this Oxisol compared to P2 and P3 [21]. However, the structural morphology
present in P2 also favors the formation of interaggregate pores, which influences the
formation of relevant proportions of mesopores.

Significant differences for the pore size distribution were mainly found in the 20–100 µm
size class. P1 and P2 had a higher percentage of pore volume in this size class compared
to P3. The same behavior of the pore size distribution was observed for the Ksat; that is,
Ksat was lower for P3 relative to P1 and P2 (Table 1). A negative correlation was observed
for pores of 20–100 µm vs. ENbigpore (r = −0.99*), indicating an inverse behavior for these
variables. Thus, when the porosity associated with pores in this size class increases, the
ENbigpore becomes more negative, and therefore, the connectivity also increases [26,47].
In this way, the tendency of more negative ENbigpore found in P1 and P2 suggests more
redundant connections and less isolated pores, which is in line with a higher Ksat and the
behavior of the SWRCs [16]. Other negative correlations were observed for the porosity
associated with pores of 500–700 µm diameters vs. Ksat (r = −0.99*) and FC vs. Ksat
(r = −0.99*). Note that the percentage of pore volumes with a larger size (500–700 µm
diameter), considered conductive pores, did not favor the increase of Ksat. This highlights
the importance of observing other attributes related to pore space, such as connectivity
and pore space geometry, to understand the physical-hydric properties [48]. Thus, a
well-connected pore space can improve transport processes within the pore network of
Oxisols [45].

Field capacity was also negatively correlated with Ksat, and it is very important to
understand this behavior because even though P3 retained a high amount of-water in the
FC, Ksat was low. This behavior gets worse as the soil reaches low matric potentials (e.g.,
PWP), when the water is strongly retained by the soil matrix.

With respect to the frequency of pore size, it is important to note the shift of the
peaks of the diameter frequency curves per unit of diameter logarithm (Figure 1b). There
is a tendency for P1 to shift to the left (range of smaller pores, e.g., mesopores) and for
P2 to show an intermediate peak between P1 and P3. This behavior is related to the



Agriculture 2023, 13, 28 11 of 14

type of structural morphology of the studied soils. P1 presents a microgranular structure
(aggregates < 250 µm), P2 presents an intermediate between microgranular and very small
subangular blocks, and P3 presents large subangular blocks (aggregates > 250 µm) [21].
Therefore, the predominant structural morphology in each soil was decisive in the shape of
the SWRCs, water retention, and conduction properties [13]. The type of microgranular
structure often promotes rapid water drainage, giving the soil a physical-hydric behavior
of sandy soil, even when they have a high clay content [49,50]. The pores that influence
the rapid drainage of water under these conditions are mainly the interaggregate pores or
structural pores [2,51]. The formation of structural pores in highly weathered soils is mainly
a result of the amount of iron (Fe) and aluminum (Al) oxides present in the clay fraction.
The Fe and Al oxides help in the cementation of the aggregates and disarrangement of the
adjustment face-to-face of kaolinite plates, and interfere in the formation of the block-like
or microgranular structure [3,4,8].

Soil P3 presented the highest soil water content and a lower AWC (c. 0.05 m3 m−3).
This behavior may be associated with the following factors: (i) the interactions between (e.g.,
soil organic carbon, kaolinite, vermiculite with Hydroxy-Al between the layers—VHE) and
goethite, hematite, and gibbsite (Table S1—Supplementary Material); mutually contributed
to increasing of SSA, ultramicroporosity, cryptoporosity and soil water content for lower
matric potentials [52–55]; (ii) subangular block structure, that promotes lower drainage
of water in SWRC and Ksat compared to soil P1, which presents a typical microgranular
structure (P1) [49,56]; (iii) connectivity of the biggest pore (ENbigpore); P3 presented an
expressive percentage of pores with a larger size from µCT and a frequency of larger
size pores from SWRC; however, the ENbigpore in P3 was significantly different, with
more positive values indicating lower connectivity compared to more negative values of
ENbigpore found for P1 and P2 [16,45].

In a previous study, better connectivity (ENtotal) of the pore space and of the biggest
pore (ENbigpore) were found for P1 and P2 compared to P3 [21]. However, a spatial resolu-
tion used was c. 17 µm, obtained for samples of 20 mm × 20 mm sizes [21]. In this study,
the resolution used was c. 9 µm, but no differences were found for ENtotal. Our results were
similar to those observed by Ferreira et al. [57], who found a soil porous space, in which
the part of volume was occupied by dominant and better-connected pores (e.g., negative
EN values) and also with a large amount of disconnected residual pores (e.g., positive EN
values). Thus, the increase of resolution in the present study did not necessarily indicate an
increase in connectivity of pore space (more negative EN values) as would be theoretically
expected. The more negative values found for ENbigpore were crucial to understanding
the water behavior of the studied soils. These soils present practically the same porosity
(0.66–0.68 m3 m−3) and textural class. Therefore, the differences related to physical-hydric
properties were mainly explained by the type of soil structure and pore morphology. The
3D image-based parameters, particularly the connectivity, enabled a deeper comprehension
of traditional SWRCs.

5. Conclusions

The main differences among the SWRCs of the three studied Oxisols were related to
structure morphology, which modified the characteristics of the pore space. The frequency
of pores obtained from SWRCs indicated the predominance of macropore size class (diame-
ter > 80 µm). P3 (Typic Hapludox) had a higher field capacity and at the permanent wilting
point, and consequently lower available water content relative to P1 (Rhodic Haplustox)
and P2 (Anionic Acrudox).

From µCT image analyses, pore size distribution was concentrated in the pore diameter
class of 20–100 µm with P1 and P2 having the highest percentages. For the Euler number
(connectivity of pore space), there were no differences when comparing values for the total
sample (ENtotal); however, differences were found for EN related to the biggest pore of
each sample (ENbigpore). P1 and P2 showed more negative values of ENbigpore or, in other
words, better-connected pore space compared to P3.
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The parameter ENbigpore was decisive for understanding the water behavior of the
studied soils. The better-connected porous space in P1 and P2 increased the saturated
hydraulic conductivity (Ksat) and modified the shape of SWRCs. It was possible to under-
stand physical-hydric properties from the knowledge of the morphology of structure and
pore space. The connectivity from 3D image analyses was important for comprehending
the behavior of SWRCs and Ksat.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/agriculture13010028/s1, Table S1: Chemical and mineralogical char-
acterization of the Oxisols; Table S2: Additional information about the general description of the
Oxisols and the Bw horizons studied; Table S3: Pearson’s correlation matrix for pore size distribution,
parameters from 3D image analysis, and physical, chemical, and mineralogical attributes; Table S4:
Results of eigenvalues and eigenvectors extracted from the principal components analysis (PCA).
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