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Abstract: Despite the socioeconomic importance of erva-mate (Ilex paraguariensis) traditional agro-
forestry production for family agriculture in Southern Brazil, there has been no systematization of
forest management best practices aiming at long-term sustainability. Here, I present an analysis of
relevant forest characteristics that are combined with restoration and management best practices to
maintain not only sustainable traditional erva-mate production but also a healthy forest environment.
Additionally, I developed a framework that offers an easy tool to apply a focused analysis of general
forest attributes to help determine best practices for forest restoration, species diversification, and
overall sustainability and health of agroforestry systems. This study also demonstrates that the inte-
gration of knowledge and practices that small-scale farmers and traditional communities have been
developing for generations should be leveraged for more inclusive research and extension, especially
considering the threats family farming is facing due to the dominant paradigm of conventional,
one-size-fits-all agriculture.

Keywords: traditional ecological knowledge; forest management; natural regeneration; forest restoration;
agroforestry

1. Introduction

The production of erva-mate (Ilex paraguariensis A.St.-Hil.) in the Araucaria Forest
region is a traditional agroforestry system typical of Southern Brazil. The practices used in
the system have their roots in Guarani Indigenous culture that has continued and developed
for generations in Indigenous and traditional communities and on small-scale family
farms [1]. Because erva-mate is produced in a forest environment, farmers have protected
forests, creating a multi-use landscape where forest fragments are an important feature that
help to maintain ecosystem services and biodiversity corridors, but are also essential to
the maintenance of cultural and traditional agroecological practices [2,3]. Although there
is a general understanding of the need to maintain sustainable production in a healthy
forest, to date, there has been no systematization of forest management best practices
for shade-grown erva-mate agroforestry in Southern Brazil that considers different forest
attributes and aims at long-term sustainability.

Traditional erva-mate production is inherently a biodiverse system [4–6]. Silvicultural
practices used in these systems are not limited merely to erva-mate but include a deep
understanding of forest structure, tree species demography and diversity, and ecological
succession that farmers employ to sustainably manage the forest itself in the context of erva-
mate production [7]. Many of these technologies are based on traditional and Indigenous
knowledge and social and environmental innovation [8] that contribute to climate change
adaptation and mitigation [9].

In general, management practices ensure sustainable forest populations, especially
in younger forests that are typically comprised of tree species in their initial-to-midlife
stages. In some cases, when management activities repeatedly constrain adult population
renewal, remove an excessive number of trees, or focus on some species or sizes, forest
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degradation can take place. In fact, gradual forest degradation has been a strategy that
some farmers have used in order to increase erva-mate productivity. This shift is the result
of the development of ‘modernization’ strategies that are driven by agricultural research
and outreach institutions that see traditional systems as outdated and should be replaced
by yield-focused monoculture systems [3,10].

Moreover, strategies to maximize erva-mate productivity are based on full-sun condi-
tions that are at odds with environmental legislation that severely restricts most silvicultural
practices in forests on private land due to the well-known link between agricultural mod-
ernization and deforestation [11,12]. Farmers that use an agroforestry system developed
and adapted over generations now face pressure to abandon their cultural and ecological
knowledge for an input-intensive (pesticides, fertilizers, herbicides) productive system
that can only succeed through illicit practices. The move towards monoculture makes
agricultural ecosystems more vulnerable to climate change, which, in turn, threatens food
sovereignty, and is linked to biodiversity loss, soil degradation, and water and soil contam-
ination [13–16], all of which tend to disproportionately affect smallholder livelihoods, such
as traditional erva-mate farmers [15].

To counter such a conundrum, farmer-led initiatives to address a range of issues,
including sustainability, profitability, productivity, and legal restrictions on forest use are
necessary. Here, this study uses a comprehensive set of relevant ecological parameters to es-
tablish a framework for sustainable forest management in traditional erva-mate production,
offering a decision-making tool with practices and restoration strategies. Considering the
need to develop tools for a more complete assessment of the sustainability of traditionally
managed forests, this study aims to systematize a framework to (1) assess the ecological
state of the forest to be used and (2) indicate practices to maintain long-term forest structure,
diversity, and economical sustainability.

2. Materials and Methods

This study was carried out using a two-stage process. Initially, I proposed and tested
different restoration systems that include detailed silvicultural practices aiming at restoring
forest structure, diversity, and production. Secondly, I developed a decision-making
framework designed to provide farmers, forest managers, and environmental agencies with
a tool to choose ideal silvicultural practices based on the assessment of forest attributes that
are easy to understand and encompass key aspects of forest structure and diversity.

2.1. Testing Restoration Systems

The establishment of one or more restoration systems that include the necessary silvicul-
tural practices to ensure forest sustainability in the context of erva-mate agroforestry requires
the definition of a rationale of intervention that identifies and addresses underperforming
indicators. As such, instead of providing isolated silvicultural prescriptions to improve specific
indicators, I aimed at establishing a (small) number of general restoration strategies that could
be chosen by using the forest restoration framework previously mentioned.

Silvicultural prescriptions were based on the literature with a focus on studies conducted
in the region, especially those on traditional erva-mate agroforestry systems [3–5,17–24] and
the experience gathered through a long-term silvicultural field study implemented in the
Embrapa Research Station in Caçador (ERSC), Santa Catarina state, Brazil (26◦50′32.69′′

and 26◦52′36.73′′ S, 50◦54′51.69′′ and 51◦58′40.36′′ W; Figure 1a,b) [2,22,25–31]. Estab-
lished in 2007, the silvicultural studies in ERSC include approximately 20 ha that aim
at establishing strategies to control invasive bamboo species, restore forest canopy, man-
age forest regeneration, and increase species diversity in the context of sustainable forest
management. Covering an area of 1157 ha, the ERSC has forests at different successional
stages ranging from near-pristine conditions to young forests due to the historical selective
logging and clearcutting that occurred in the area until the 1990s [29]. The old-growth
forests in the ERSC are widely recognized as the region’s late successional stage, while
younger forests in previously clear-cut areas are characterized by the presence of pioneer
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tree species (mainly Mimosa scabrella Benth. And Piptocarpha angustifolia Dusén ex Malme)
with bamboos (predominantly Merostachys skvortzovii) dominating the understory [26].
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Figure 1. (a) Location of the Embrapa Research Station in Caçador (ERSC) within Brazil,
Santa Catarina state, the municipality of Caçador; (b) restoration experiments within the ERSC
(green polygon—ERSC boundary; red—restoration of non-forested areas; blue—restoration of de-
graded forests).

The existence of forest cover—a basic land use assessment—was considered as the
initial step in the process of defining forest management strategies. Continuing an area eval-
uation, the relevant indicators discussed below (Section 2.2) were arranged in a sequential
order where two alternatives are offered regarding the general state of each individual indi-
cator; the assessment continues until a management and/or restoration strategy is reached.

The restoration experiments in the ERSC were initially focused on restoring the re-
gion’s two main contrasting land cover states: forested and non-forested areas. Forested
areas are degraded forests that were subjected to historical logging and fire, which, in many
parts, led to the dominance of invasive bamboo species, causing stagnation in forest devel-
opment; in this forest type, forest management activities were carried out in 15 ha [27,30,31].
In contrast, non-forested areas were those that had been used for conventional agricul-
ture for at least 40 years. In the second year after the fields were abandoned, productive
restoration took place in 3.3 ha, while an area of 1.5 ha was left unmanaged as a control [28].

2.1.1. Restoration in Non-Forested Areas

The strategy for non-forested areas was based on the rationale that successful restora-
tion requires the initial establishment of a forest cover to create the necessary environ-
mental conditions for other species to thrive, thus facilitating forest succession. As such,
M. scabrella—the most common fast-growing pioneer tree typical of the region—was used
to rapidly form a forest canopy creating suitable conditions for erva-mate and other fo-
cus species. This would gradually lead to the recruitment of other tree species, and thus
increasing diversity and structural complexity.

The first activity in non-forested areas was to remove the shrub vegetation using
a rotary mower followed by soil decompaction using a winged subsoiler. After area
preparation, M. scabrella seedlings were planted with a 6 m space between rows and 1.5 m
within each row (approximately 1111 trees·ha−1). In the first three years all M. scabrella
trees had 50% of their branches pruned, i.e., lower branches were removed until the crown
was reduced to half of the tree’s total height. A systematic thinning at 50% was carried out
between years three and four, a procedure repeated at years five–six. Erva-mate seedlings
were planted at the end of year two as shade conditions were quickly improving; seedlings
were arranged in two rows placed between M. scabrella rows with a spacing of 1.5 m.
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A complete census of all M. scabrella trees was carried out at months 12, 24, 48, and
132 after planting, where all heights were measured with an 11 m collapsing ruler and
diameter at breast height (DBH) was measured with tree calipers. Additionally, all recruits
from natural regeneration were identified and measured for height (h > 30 cm) at month
60 (2017) and month 144 (2023). Recruits were found only under the M. scabrella canopy as
a consequence of seed dispersal by birds that used their branches for perching.

Finally, adjacent to the restoration area, we maintained a 1.5 ha unmanaged area to
serve as control. Because of the consistent lack of tree species recruitment, we decided to
carry out only visual counting of the species recruitment.

2.1.2. Restoration of Degraded Forests

Large-scale forest restoration in the ERSC started with the control of invasive bamboos
that dominate the forest structure. The first step was to mechanically remove bamboo cover
using a bulldozer with a raised blade or a brush cutter in terrain that impeded the use
of the mechanical removal; bamboo control continued until its population was reduced
to patches or completely removed, a process that usually takes at least two–three years.
The expectation was that bamboo removal would allow for the successful recruitment
of forest species (especially M. scabrella) that would guarantee the establishment of a
uniform forest canopy; diversification would be achieved by a gradual recruitment of
shade-tolerant species.

Initially, M. scabrella recruitment occurred at a very high density (>100,000 seedlings·ha−1)
and management was necessary. Thus, all seedlings were removed in 2–2.5 m wide rows,
with 1 m wide rows left for seedling development. The remaining individuals were then
reduced to about one plant each linear meter after reaching heights of about 1.5 m. Rows
were thinned again to one plant each two linear meters. Trees should be pruned at around
two and four meters by reducing 50% of their branches. Finally, as tree crowns started to
overlap, a new thinning was applied to reduce the density to one plant every four–five linear
meters, followed again by a pruning of 50% of the branches. Species of economic interest,
such as erva-mate and Paraná-pine (Araucaria angustifolia), were planted interspaced with
M. scabrella to guarantee the economic sustainability of the restoration and as a strategy
that could improve overall household income. Tree growth monitoring began 12 months
after implementation and was repeated at months 36, 84, and 108 (in 2015, 2017, 2021, and
2023, respectively), when all individuals of M. scabrella were measured in eleven plots of
100 m2 (25 m × 4 m) placed randomly throughout the area. Again, height was measured
with an 11 m collapsing ruler, and DBH with tree calipers (DBH ≥ 1 cm).

Forest gaps in the ERSC, resulting from natural processes, invasive species, or human
interference, were restored by incentivizing natural regeneration. Regeneration areas
(RA) were established, which are spaces in which seedlings are protected against any
activity that may damage recruits. Natural regeneration recruitment was monitored using
23 regeneration areas (RAs) of 1 m2; each RA had its corners marked with 1 m PVC pipes
with their ends painted in red. In each monitoring event (months 1, 5, 12, 32, 41, and 59),
every recruit was identified and measured for height; no management was carried out
inside each RA.

2.2. Developing a Forest Restoration Framework for Agroforestry

The definition of the most relevant attributes to be considered for assessing forest
sustainability in the context of traditional erva-mate production involved a review of the lit-
erature followed by discussions with farmers and technical personnel from environmental,
research, and extension agencies in order to gain a deeper understanding of their appli-
cability. Considering the abundant forest literature, studies focused on the sustainability
of forests managed in the context of small-scale farming were given preference as their
real-world understanding is essential to achieve realistic and applicable solutions. There
are a wide range of different methods, such as MESMIS [32,33], SAFA [34], Camino and
Müller [35], Sangalli et al. [17], Araújo et al. [36], among others, that assess the various
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aspects of sustainability of agroforestry or agricultural systems through environmental,
social, cultural, economic, political, ethical, and well-being indicators. As the focus of this
study is forest sustainability and the associated silvicultural practices, only the applicable
indicators were considered. Indicators were then consolidated where terms that reflect sim-
ilar attributes were combined, e.g., “species diversity”, “number of species of shrubs and
herbs”, and “diversity of species in the system” were all merged into “species diversity”.
The consolidated list of forest attributes are as follows:

(a) Invasive species—a common source of degradation in the Araucaria Forest, the dom-
inance of invasive native bamboos (especially Merostachys ssp., and Chusquea ssp.)
restrict forest development by limiting natural regeneration. Bamboos are able to
maintain dominant populations in the long-term [25] that ultimately leads to the
impoverishment of diversity and structural fragmentation [26,27]; they also create an
unsuitable environment for erva-mate production.

(b) Canopy cover—considered by farmers as a sustainability goal [17] but also a require-
ment to maintain quality production, as shade-grown erva-mate is considered a prime
product and is frequently rewarded with higher selling prices [37]. Thus, canopy cover
has environmental and financial implications that demand continuous monitoring
and planned interventions.

(c) Species diversity—high levels of species diversity is a universal attribute observed in
both local [17,36] and general assessments [32]. Although diversity can be evaluated
at different taxonomic levels for the fauna, flora, soil macro- and microflora, frequent
evaluations are restricted to tree diversity. The framework followed this practice as it
is considered an adequate surrogate for assessing overall diversity.

(d) Demography—demographic parameters, such as growth, survival, and reproductive
success, are influenced by age, size, and life stage of individuals within a popula-
tion [38]. In order to avoid local extinction, a species depends on the recruitment
of young plants that reach maturity in a process that includes seed production and
dispersion, germination, and establishment [39]. Thus, ideally, a population should
have individuals in all life stages in sufficient numbers to guarantee its stability; as
age is impractical to determine, size is frequently used as a surrogate in assessing a
plant population.

(e) Tree spatial distribution—complementary to demography, population dynamics is de-
pendent on successful pollination requiring individuals to have a spatial distribution
within a pollinator’s range and to be sufficiently large to maintain genetic diversity,
which, in turn, is a key factor in evolution, fitness, and ultimately, the survival of tree
species populations [40,41].

(f) Management practices—frequently the most important cause of forest degradation is
forest resource management, which includes the control of plant populations (favor-
ing or reducing) both in terms of their density (number of individuals) and spatial
distribution. Management practices might be linked to the direct use of resources
(e.g., firewood) or indirectly related (e.g., understory and canopy thinning to favor
erva-mate production or forage species growth) [3].

(g) Tree species longevity—although there are several species’ life-history traits that could
be used to assess an agroforestry system, life cycle is likely the most important. While
pioneer species are usually linked to a shorter lifespan, late successional species tend
to live longer. The proportion between short- and long-living trees (and their spatial
position) is a determinant factor for defining where and when management practices
should be applied to maintain a stable forest cover.

After the selection of indicators, they were hierarchically organized as a decision
tree that ultimately provides a general assessment of the forest attributes and leads to
recommended restoration systems to be implemented for long-term forest sustainability.
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3. Results and Discussion
3.1. Restoration Systems

In subtropical Southern Brazil, land use/land cover (LULC) has been mostly consol-
idated where forests and agriculture have been in place for several decades. Therefore,
restoration options for agricultural lands are limited due to the absence of soil seed banks
and litter cover, soil compaction, and nutrient depletion. In contrast, forests in their various
conservation status and successional stages tend to have environmental conditions that
facilitate any restoration effort. As such, different approaches were developed to consider
those opposing LULC characteristics and to differentiate the main forest degradation and
development statuses: (1) Productive Agroforestry Restoration (PAR) for non-forested
lands; (2) Accelerated Canopy Recovery (ACRE) for widespread degraded forests, and
Active Regeneration Management (ARM) for restricted forest degradation.

3.1.1. Productive Agroforestry Restoration (PAR)

Our experience in restoring degraded agricultural lands after abandonment showed
that natural soil recovery is a long-term process where the development of a forest cover
tends to take a decade or longer if pioneer species are not widely available. In our 3.3 ha
restoration plot where a common legume pioneer tree species (Mimosa scabrella) was planted,
a forest cover was created in around four years as trees reached heights of about 10 m
(Figure 2a) and crowns shaded the spaces between rows.
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Figure 2. (a) Mimosa scabrella average height (m) and DBH (cm) in Productive Agroforestry
Restoration—PAR after 12, 24, 48, and 132 months (2013, 2014, 2016, and 2023, respectively) af-
ter implementation in the Embrapa Research Station in Caçador (ERSC). Whiskers represent standard
deviation; (b) recruitment development (height—m) from natural regeneration in PAR after 60 and
144 months (2017 and 2023, respectively). X—refers to average; a circle refers to outliers.

M. scabrella growth was quite satisfactory as it reached an average height of 3 m after
planting, 6 m after 24 months, 10 m at 48 months, and around 17 m at 132 months when
trees were fully developed (Figure 2a). Complementarily, DBH also increased consistently
during the period, reaching an average of 22 cm after 11 years. The quick forest canopy
development created a suitable environment for the introduction of other species that can
provide a return on the investment needed to implement the restoration strategy. For that
purpose, we used erva-mate as it is the most important tree species in agroforestry in the
region with a consolidated market.

The quick establishment of a forest cover in the PAR area brought about changes that
not only attracted the avifauna responsible for tree seed dispersal but also created the
environmental conditions for a diverse recruitment of tree species. We observed 38 tree
species regenerating under the M. scabrella canopy just three years after planting [31].
Natural regeneration recruitment developed consistently, reaching an average height of
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1 m after five years and 2.4 m after 11 years (Figure 2b). This trend was also detected by
a general height distribution in which the first quartile and outliers also increased in the
period. Observed growth seems to be compatible with the expectation that recruits will
replace M. scabrella in the canopy in the next few years.

More importantly, as a shade-tolerant species, erva-mate takes advantage of an en-
vironment similar to a natural forest, which confers the characteristics of superior taste
and enables farmers to achieve the market value of erva-mate grown in natural stands.
Although a full financial analysis for this system has not been carried out, we confirmed that
PAR can quickly restore basic forest attributes (forest and soil cover, natural regeneration)
that can be combined with the production of erva-mate. Until erva-mate reaches maturity
for harvesting (five to seven years) maintenance is basically restricted to weed cutting
around seedlings. In comparison, the implementation of erva-mate systems in full-sun or
monoculture conditions requires significant inputs of fertilizers and pesticides to combat
the simplified environmental conditions. Thus, the investment required for small-scale
farmers is minimal, with the added benefits of potential product diversification and the
wide range of ecosystem services that a forested system provides.

In contrast to the PAR area, the number of tree species regenerating in the control
remained at low levels in all evaluations with the occurrence of only three pioneer species
(M. scabrella, Schinus terebinthifolia, and Solanum granulosoleprosum). During the 2012–2023
period, a 2–3 m tall dense shrubby vegetation dominated by Baccharis dracunculifolia and
B. uncinella (Asteraceae) developed initially, after which it deteriorated into a more open
shrub-herbaceous cover that has not evolved into a forest (Figures 3 and A1).
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3.1.2. Accelerated Canopy Recovery (ACRE)

The Accelerated Canopy Recovery (ACRE) restoration strategy was designed to
quickly restore degraded forest environmental conditions (temperature and humidity
levels) and to protect crop plants and natural regeneration from severe climate events
(frosts, droughts) by inducing the quick establishment of a forest cover that will gradually
be replaced by a more diverse canopy.

Similar to PAR, fast-growing pioneers should be given preference. In addition to
being common in the region, well-known, and with an established market, they are easily
adopted by farmers as they are consistent with their local ecological knowledge in terms of
management and there is a foreseeable economic return. Again, M. scabrella is a preferential
species because of its regional distribution, very fast growth rate, wide familiarity among
farmers, and most importantly, for the decades-long viability of seedbanks coupled with a
very prolific regeneration [28,42].

Initially in ACRE, M. scabrella regeneration was facilitated by cutting the herbaceous
vegetation that allows for direct sunlight to reach the soil, creating the temperature increase
necessary to break seed dormancy (Figure 4a). In our experience, most degraded forests
in the region have seed banks abundantly comprised of pioneer tree species, especially
M. scabrella. In the unlikelihood of the absence or insufficient natural pioneer tree regenera-
tion, sowing of M. scabrella seeds is advised (or even seedling planting). In the field, the
presence of adult trees is generally sufficient to indicate the occurrence of its seeds in the
seed bank. However, if no adult trees are present, a practical way to test its presence in the
seed bank is to create small patches (~1 m2) in which the vegetation is removed and the soil
surface is revolved—if seeds are present in the soil bank, regeneration should be visible
after a couple of weeks (Figure 4b).

During regeneration development, thinning is necessary to reduce recruitment density
to levels compatible with the growth of other species such as erva-mate. Through a
series of thinning carried out in the first five years, M. scabrella initial regeneration of up
to 400 seedlings·m−2 (equivalent to 4 million per hectare) should be reduced to about
300–400 trees·ha−1, which is similar to its natural adult population density. After thinning,
the remaining M. scabrella trees showed fast growth reaching an average height of 1.3 m
(±0.5 SD—standard deviation; Figures 4c and 5) at month 12, a sharp increase reaching
6.3 m (±1.6 SD) at month 36, 11 m (±1.7 SD) at month 84 (Figures 4d and 5), and finally
13.1 m (±2.8 SD) at month 108.

Interestingly, in the ACRE system, trees showed a slower growth rate, reaching an
average height of 1.3 m after 12 months, whereas in PAR, the height reached an average of
2.6 m. This trend continued: at month 24 in PAR tree height had reached 6.8 m, while in
ACRE tree height was lower, with an average of 6.3 m at 36 months. The slower growth in
height is likely a response to light conditions by the light-demanding pioneer M. scabrella
with ACRE occurring in a partially shaded degraded forest environment in contrast with
the growth-promoting full-sun conditions in PAR. Despite this difference in development,
trees in ACRE reached heights in three years that opened up the understory for erva-mate
production and diversification, and at year seven a stable new canopy was established.

Because M. scabrella is a short-lived species (<20-year life cycle) it is essential to take
steps to guarantee the development of a second generation of (longer-living) trees early
in the restoration process to ensure the continuation of a forest canopy in the future. This
can be achieved by facilitating natural regeneration, seedling planting, or a combination of
both. The use of both methods has the advantage of allowing for the introduction (planting)
of tree species with commercial value, such as medicinal (i.e., Monteverdia ilicifolia), edible
fruits (i.e., Eugenia uniflora, Campomanesia xanthocarpa, and other Myrtaceae), and nuts
(Araucaria angustifolia), combined with natural regeneration management for forest species
diversification using the ARM system (see next section) or any other method that facilitates
species recruitment.



Conservation 2023, 3 402

Conservation 2023, 3, FOR PEER REVIEW 9 
 

 

presence in the seed bank is to create small patches (~1 m2) in which the vegetation is 
removed and the soil surface is revolved—if seeds are present in the soil bank, regenera-
tion should be visible after a couple of weeks (Figure 4b). 

  
(a) (b) 

  
(c) (d) 

Figure 4. Degraded forest under restoration using the ACRE system: overview of regeneration of 
M. scabrella after six months since understory clearing (a); testing for M. scabrella regeneration using 
a small soil clearing (seedlings reached 30 cm in three weeks, confirming the potential for restoration 
using pioneer species regeneration) (b); M. scabrella regeneration reaching average height of 1.3 m 
12 months after restoration implementation (c); and after six years forest canopy was restored with 
erva-mate at full production accompanied by other trees species (e.g., Araucaria angustifolia) that 
were planted to increase diversity (d). M. scabrella can be identified by their smooth trunks. 

During regeneration development, thinning is necessary to reduce recruitment den-
sity to levels compatible with the growth of other species such as erva-mate. Through a 
series of thinning carried out in the first five years, M. scabrella initial regeneration of up 
to 400 seedlings.m−2 (equivalent to 4 million per hectare) should be reduced to about 300–
400 trees.ha−1, which is similar to its natural adult population density. After thinning, the 
remaining M. scabrella trees showed fast growth reaching an average height of 1.3 m (±0.5 
SD—standard deviation; Figures 4c and 5) at month 12, a sharp increase reaching 6.3 m 
(±1.6 SD) at month 36, 11 m (±1.7 SD) at month 84 (Figures 4d and 5), and finally 13.1 m 
(±2.8 SD) at month 108. 

Figure 4. Degraded forest under restoration using the ACRE system: overview of regeneration of
M. scabrella after six months since understory clearing (a); testing for M. scabrella regeneration using a
small soil clearing (seedlings reached 30 cm in three weeks, confirming the potential for restoration
using pioneer species regeneration) (b); M. scabrella regeneration reaching average height of 1.3 m
12 months after restoration implementation (c); and after six years forest canopy was restored with
erva-mate at full production accompanied by other trees species (e.g., Araucaria angustifolia) that were
planted to increase diversity (d). M. scabrella can be identified by their smooth trunks.

Conservation 2023, 3, FOR PEER REVIEW 10 
 

 

 
Figure 5. Mimosa scabrella growth dynamics (height and DBH) after 12, 36, 84, and 108 months (2015, 
2017, 2021, and 2023, respectively) as part of the strategy to create a quick forest canopy applied in 
the Accelerated Canopy Recovery (ACRE) restoration system. Whiskers represent standard devia-
tion. 

Interestingly, in the ACRE system, trees showed a slower growth rate, reaching an 
average height of 1.3 m after 12 months, whereas in PAR, the height reached an average 
of 2.6 m. This trend continued: at month 24 in PAR tree height had reached 6.8 m, while 
in ACRE tree height was lower, with an average of 6.3 m at 36 months. The slower growth 
in height is likely a response to light conditions by the light-demanding pioneer M. 
scabrella with ACRE occurring in a partially shaded degraded forest environment in con-
trast with the growth-promoting full-sun conditions in PAR. Despite this difference in de-
velopment, trees in ACRE reached heights in three years that opened up the understory 
for erva-mate production and diversification, and at year seven a stable new canopy was 
established. 

Because M. scabrella is a short-lived species (<20-year life cycle) it is essential to take 
steps to guarantee the development of a second generation of (longer-living) trees early 
in the restoration process to ensure the continuation of a forest canopy in the future. This 
can be achieved by facilitating natural regeneration, seedling planting, or a combination 
of both. The use of both methods has the advantage of allowing for the introduction 
(planting) of tree species with commercial value, such as medicinal (i.e., Monteverdia ilici-
folia), edible fruits (i.e., Eugenia uniflora, Campomanesia xanthocarpa, and other Myrtaceae), 
and nuts (Araucaria angustifolia), combined with natural regeneration management for for-
est species diversification using the ARM system (see next section) or any other method 
that facilitates species recruitment.  

Finally, the ACRE system can be easily combined with the cultivation of erva-mate, 
a native species that thrives in the forest understory. If planted, erva-mate is expected to 
start initial production at year three and reaches productive maturity at around year 
seven. The introduction of an economically a ractive species such as erva-mate in resto-
ration efforts is essential to gain buy-in from farmers as costs can be compensated and 
additional household income generated.  

3.1.3. Active Regeneration Management (ARM) 
Active Regeneration Management (ARM) is indicated to restore smaller forest gaps 

or degraded forests with a canopy that requires tree renewal due to an aging population 
and/or low species diversity. With a more focused strategy, ARM can also be used together 
with the larger-scale ACRE restoration system. In this case, ACRE focuses mainly on re-
storing the canopy in large gaps or degraded forests, while ARM complements the strat-
egy by implementing localized management that focuses on species diversification 
through gradual natural regeneration recruitment. 

Figure 5. Mimosa scabrella growth dynamics (height and DBH) after 12, 36, 84, and 108 months (2015,
2017, 2021, and 2023, respectively) as part of the strategy to create a quick forest canopy applied in the
Accelerated Canopy Recovery (ACRE) restoration system. Whiskers represent standard deviation.



Conservation 2023, 3 403

Finally, the ACRE system can be easily combined with the cultivation of erva-mate,
a native species that thrives in the forest understory. If planted, erva-mate is expected to
start initial production at year three and reaches productive maturity at around year seven.
The introduction of an economically attractive species such as erva-mate in restoration
efforts is essential to gain buy-in from farmers as costs can be compensated and additional
household income generated.

3.1.3. Active Regeneration Management (ARM)

Active Regeneration Management (ARM) is indicated to restore smaller forest gaps
or degraded forests with a canopy that requires tree renewal due to an aging population
and/or low species diversity. With a more focused strategy, ARM can also be used together
with the larger-scale ACRE restoration system. In this case, ACRE focuses mainly on
restoring the canopy in large gaps or degraded forests, while ARM complements the
strategy by implementing localized management that focuses on species diversification
through gradual natural regeneration recruitment.

ARM can be implemented through the installation of small 1 m2 regeneration areas
(RA) in which natural regeneration recruitment is protected against any interference,
especially weed cutting and animal grazing. If an aging population is detected, RAs
should be established throughout the forest to support forest renewal that provides for a
homogenous forest canopy; in such cases, RAs could be installed in a grid varying from
3–6 m apart, with wider distances and distribution indicated if other activities are present
(grazing, erva-mate). When forest gaps are present, RA can be established in a grid, spaced
about 3 m apart. A denser distribution of RAs is advisable as forest canopy recovery and
diversification can be combined enabling significant opportunities for the recruitment of
pioneer species and those with other life traits.

The implementation of ARM at the Embrapa Research Station in Caçador (ERSC) by
establishing 23 RAs produced a rapid response, with an average of three recruits after five
months (in six RAs no seedlings were found) (Figure 6). In the subsequent assessments
(at 12, 32, 41, and 59 months), 20 RAs (87%) showed recruitment with averages ranging
between 3.1 and 3.5 plants. The results indicate an intense recruitment potential, with the
results for the number of seedlings per hectare varying between 20.87 and 31.3.
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in designated regeneration areas (RAs) over a 59 month period as part of the Active Regeneration
Management (ARM) system.

The species diversity found in RAs varied between 10 and 14 species, with the high-
est value recorded at month 59. Species with different life traits were found, including
pioneers (e.g., Myrsine coriacea, M. scabrella, Baccharis oblongifolia, Jacaranda puberula, Pipto-
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carpha angustifolia, Vernonanthura discolor, Sapium glandulosum), intermediate successional
species (e.g., Ocotea puberula, Prunus brasiliensis, Ilex brevicuspis, Zanthoxylum rhoifolium,
Sebastiania brasiliensis, Symplocos uniflora), and late successional species (Ocotea porosa). In-
terestingly, O. porosa was the most abundant during the whole evaluation. As expected,
pioneer species showed a decrease in abundance over time while intermediate successional
species increased. The presence of species with different ecological strategies indicates that
environmental conditions—especially light—are not restrictive to any one species group.

In RAs, growth showed a constant increase in height over time where at month five
seedlings were 0.25 m tall on average, increasing to 0.40, 0.65, 0.95, and 1.1 m at months
12, 32, 41, and 59, respectively (Figure 7). As expected, pioneer species showed the fastest
growth, although other successional species showed a slower but constant growth.
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With the implementation of simple solutions, such as RAs that offer the necessary
conditions for germination and successful recruitment, the results clearly indicate that
the use of the ARM system contributes to gradual restoration, increasing the diversity
and structural complexity of forests with gaps and/or aging populations. Additional
practices are advisable as recruits grow within the RAs, such as thinning and pruning that
might be necessary depending on density and plant development. Although a diverse and
plentiful regeneration is desired, thinning might be necessary when dense regeneration of
one species is impeding the development of others, especially in the case of a large pioneer
recruitment population. In most cases, however, we observed that no silvicultural practices
are necessary apart from intermittent pruning to improve trunk form.

For convenience, we suggest marking the corners of RAs with 1 m poles with tips
painted in a bright color so they can be easily seen, thus avoiding interference. This kind of
marking is highly recommended as most forests in the region are actively managed, either
to collect firewood, animal husbandry, and/or erva-mate production. Regardless of the
marking system, protecting recruitment in RAs is necessary until seedlings reach heights
above 1.5 to 2 m so they can be easily identified and avoided during activities such as weed
cutting and erva-mate harvesting.

3.2. Forest Restoration Framework in the Context of Agroforestry

A framework for forest restoration in the context of agroforestry for Southern Brazil was
developed by creating a logic sequence based on relevant forest attributes in which a user is
given alternatives to assess each attribute; ultimately, the user is presented with a proposed
forest management system that aims to maximize all forest attributes. The main forest at-
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tributes considered were canopy cover, species diversity, demography, tree spatial distribution,
management practices, tree species longevity, invasive species, and diversification.

Strategically, the framework starts with a general land use/land cover assessment
(forest × no forest) that includes areas without forest cover as farmers that are interested in
establishing agroforestry systems can take advantage of the framework for forest restoration.
In this first stage, forest canopy, structure, and diversity are not yet relevant but only the
existence of some kind of forest cover (Figure 8). As non-forested areas will require an
extensive restoration strategy, the PAR system should be implemented (Section 3.1). On the
other hand, areas with any type of forest cover should be further evaluated following the
framework to determine best restoration practices.
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be implemented.

At this stage, forests are assessed for basic forest attributes including canopy cover,
diversity of species, and the age/size of trees. Forest cover is assessed in terms of having a
continuous canopy or being open or fragmented. In general, a continuous canopy has no
gaps, or gaps are infrequent and smaller than the size occupied by one or a few tree crowns.
An open canopy is considered as areas with very open forests in which tree crowns are
separated from each other or with gaps of varying sizes that are widely distributed. To
facilitate the decision-making process, a continuous canopy is considered when the space
between tree crowns is less than their own crown diameters, while an open canopy or large
forest gaps are considered if the gaps have an area of more than 500 m2, which is the space
occupied by approximately four large trees or up to 14 smaller trees, such as M. scabrella.
Thus, the presence of large gaps or an open canopy will require the implementation of
the ACRE system. In the case of a continuous canopy, the user is prompted with two
alternatives regarding diversity of species.

Considering that forests under agroforestry management in the region contain a rela-
tively large number of species (>30) that together represent most of the region’s biodiversity
(>120), they are likely to maintain high levels of diversity at the landscape level [6]. As such,
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tree diversity lower than 30 is considered low and should be improved using ARM. This
restoration system should help gradually increase overall forest diversity and contribute to
landscape biodiversity conservation.

Finally, if a continuous forest canopy with a high diversity is present, then the final
forest attribute to be evaluated is its demographic structure in terms of whether the tree
population is comprised of trees of different ages and, more importantly, that trees are
not concentrated in the adult/senile life stages. This attribute is especially important in
cases of pioneer dominance as they tend to have shorter life cycles that, if not managed,
could lead to forest degradation; M. scabrella for example, has a life expectancy of 15 to
20 years. As such, if a population has a structure comprised of trees of different ages (or
sizes), it is considered to be in optimal conservation status and only requires monitoring. In
contrast, if a population is mostly adult/senile (or large trees), the implementation of ARM
is necessary for long-term sustainability, as recruitment will introduce trees of different
ages allowing for the replacement of those that are senile.

It should be noted that the recommendation to use the ARM system for species
diversity restoration in low-diversity continuous canopy forests is different from continuous
canopy forests dominated by pioneer species, for which the ACRE system is initially
recommended. These distinct recommendations for managing natural regeneration and
canopy are because, in forests with low diversity and non-pioneer species, the canopy
tends to remain consistent for a long time, allowing species diversification and the gradual
replacement of individuals, which can occur using the ARM system. In this case, it does not
apply to situations in which large individuals are in the senile phase of their life cycles. On
the other hand, forests dominated by pioneer species tend to lose their canopy in the short
term, requiring more broadly applied actions to support the formation of a new canopy.

The development of a framework for sustainably managing erva-mate production
systems in a forest environment is a novel contribution to analyses of erva-mate as an
economic species. To date, the vast majority of studies on erva-mate have focused on
the species in monoculture systems and have ignored the important implications of erva-
mate as an element of agroforestry or forested ecosystems (see, for example, [42,43]). This
distinction is key as it is clear that to better understand how to develop, implement, and
manage erva-mate, we must consider the species as part of a functioning human-mediated
ecosystem that has important implications for forest sustainability in the long term, as well
as human health and well-being in local communities.

4. Conclusions

Here, I present a comprehensive analysis of relevant forest characteristics that are
combined with restoration and management best practices to maintain not only sustainable
traditional erva-mate production but also a healthy forest environment. Based on our
long-term community-based research, we provide evidence-based understanding on how
to implement solutions to maintain forest diversity and structure that is ideal for erva-mate
but can be applied more generally to other agroforestry systems. The framework presented
herein offers an easy tool that applies a focused analysis of general forest attributes to
help determine best practices for forest restoration, species diversification, and overall
sustainability and health of agroforestry systems.

Although this study is focused on erva-mate productive systems, the practices rec-
ommended can be adapted and applied to other contexts, especially agroforestry systems
under shade-grown conditions in tropical and subtropical forest ecosystems, such as cocoa,
coffee, rubber, juçara heart of palm (Euterpe edulis), and açaí (Euterpe oleracea). Despite
the differences among those systems, the proposed framework includes the most relevant
forest attributes to be considered for assessing forest sustainability. Future analyses should
include testing and adapting the forest attributes and restoration methods in different
agroforestry systems to develop general forest management principles for sustainable
agroforestry. It would also be interesting to test those principles in systems with a higher
diversity of products to understand their integration and impacts on management practices
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and overall sustainability. In that regard, our team has begun testing the above-described
restoration methods with a wider range of potential products that include fruits and medici-
nal plants with different life traits (e.g., shrubs and vines) aiming to improve their economic
return and maximize the use of the forest environment.

Even though the framework is an attempt to create a unified method to analyze forest
status and propose best practices, it is essential that the sustainability of agroforestry
systems include other aspects, such as human well-being, and economic and cultural
considerations, among others. As such, new tools are necessary that offer innovative
ways to integrate the different aspects of sustainability. Management practices carried
out on each farm are determinant factors in the success of forest restoration. Forests
with agroforestry systems like erva-mate production can have a negative impact on forest
conservation if forest renewal through recruitment is constantly suppressed, a situation
common in properties focused on maximizing production. However, in most traditional
agroforestry systems, forest attributes can be maintained at optimal levels despite animal
grazing, erva-mate harvesting, firewood collection, and fruit and nut gathering.

Conversely, the absence of management practices by humans does not necessarily
guarantee better forest conservation status. In Southern Brazil, as in many other countries
around the world, some forest fragments are stuck in a cycle of degradation because of the
dominance of native invasive bamboos [25–27,44–46]. Nevertheless, active management has
been shown to restore succession, increasing diversity levels and structural complexity [27].
In such situations, the presence of invasive species should be considered in terms of the
area affected in order to implement a larger-scale restoration such as ACRE or localized
action such as ARM.

These different points of view show that forest conservation and agroforestry are
sometimes seen as opposing strategies, with divergent rationales, creating controversial
practices and dialogue. In Brazil, forest management is often seen as incompatible with
conservation, yet the region with the most forest cover in Southern Brazil coincides precisely
with where traditional erva-mate agroforestry systems continue to be used. On the other
hand, erva-mate production per se does not guarantee long-term forest sustainability,
especially in the context of production maximization. One of the most important lessons
from this study was to understand the need to combine the traditional ecological knowledge
and interests of farmers with formal research to collaboratively create solutions that are
relevant to landowners (socially, culturally, and economically) while, in turn, increasing the
potential for implementation and success.

In many parts of the world, the knowledge and practices that small-scale farmers and
traditional communities have been developing for generations are under threat due to
the dominant paradigm of conventional, one-size-fits-all agriculture. Climate crises, food
insecurity, and displacement are affecting many communities despite calls from scientists to
transition towards more sustainable ways of living and to consider Indigenous Peoples’ and
Local Communities’ lands, territories, and traditional practices [47]. Traditional agriculture
can provide us with technological solutions that have been used for generations, but they
need to be valued and integrated into formal scientific and extension programs. In times
of global challenges, leveraging traditional knowledge for the conservation of forests and
biodiversity that also delivers human well-being is essential.
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Earth. 

Figure A1. Satellite imagery showing development dynamics of Productive Agroforestry System and
control plot in the ERSC prior to implementation: July 2011 (a); during implementation—November
2011 (b); August 2013 (c); February 2017 (d); June 2019 (e); and July 2021 (f). Source: Google Earth.
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