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A B S T R A C T   

Remote sensing (RS) in agriculture has been widely used for mapping soil, plant, and atmosphere attributes, as 
well as helping in the sustainable production of the crop by providing the possibility of application at variable 
rates and estimating the productivity of agricultural crops. In this way, proximal sensors used by RS help pro
ducers in decision-making to increase productivity. This research aims to identify the best feature importance 
ranking to the Random Forest Classifier to predict cotton yield and select which one best correlates with cotton 
yield. This work was developed in four commercial fields on a Newellton, LA, USA farm. We evaluated the cotton 
in different years as 2019, 2020, and 2021. The variables evaluated were: soil parameters, topographic indices, 
elevation derivatives, and orbital remote sensing. The soil sensor used was: GSSI Profiler EMP400 (soil elec
tromagnetic induction sensor) at a frequency of 15 kHz, and the RS data were collected from satellite images 
from Sentinel 2 (passive sensor) and active sensor from LiDAR (Light Detection and Ranging). For training (70%) 
and validation (30%) of dataset results, Spearman correlation was used between sensors and cotton yield data, 
machine learning (Random Forest Classifier and Regressor - RFC and RFR). The metric parameters were the 
coefficient of determination (R2), the Mean Absolute Error (MAE), and the Root Mean Square Error (RMSE). This 
study found that profiler, Sentinel-2 (blue, red, and green), TPI, LiDAR, and RTK elevation show the best cor
relations to predicting cotton yield.   

Abbreviation: RS, remote sensing; LA, Louisiana; LiDAR, Light Detection and Ranging; RFC, Random Forest Classifier; RFR, Random Forest Regressor; R2, co
efficient of determination; MAE, Mean Absolute Error; RMSE, Root Mean Square Error; LAI, leaf area index; TPI, Topographic Position Index; S2, Sentinel-2; ML, 
machine learning; WSS, Web Soil Survey; ShA, Sharkey clay; TeB, Tensas-Sharkey clays; DgB, Dundee-Goldman complex; DoA, Dowling clay; TnA, Tunica clay; CeA, 
Commerce silty clay loam; TeD, Tensas-Sharkey complex; TaA, Tensas clay; CEC, cation exchange capacity, B, boron; Ca, calcium; H, hydrogen; K, potassium; Mg, 
magnesium; Na, sodium; pH, soil pH; Cu, copper; Fe, iron; Mn, manganese; OM, organic matter; P, phosphorus; S, sulfur; Zn, zinc; TWI, Topographic Wetness Index; 
IDW, Inverse Distance Weighted; NIR, near-infrared; Colab, Google Colaboratory; VI, vegetation index; B2, Blue; B3, Green; B4, Red; B6, Rededge; B8, NIR; CM, 
confusion matrix; SR, Simple Ratio; NDVI, Normalized Dif-ference Vegeta-tion Index; NDRE, Normalized Difference Red Edge Index; NLI, Nonlinear Vegetation Index; 
NDWI, Normalized Dif-ference 860/1240 Normalized Dif-ference Water Index; DVI, Difference Vege-tation Index; BNDVI, Blue-Normalized Difference Vegetation 
Index; ISR, Inverse of the Simple Ratio; GNDVI, Green Normal-ized Difference Vegetation Index; RGBVI, Red Green Blue Vegetation Index; SAVI, Soil Adjusted 
Vegetation Index; CIRE, Chlorophyll Index-RedEdge; IPVI, Infrared Percent-age Vegetation Index; EVI, Ehanced Vegeta-tion Index; EVI 2, Ehanced Vegeta-tion Index 
2; yi, observed values; ŷi , estimated values; N, number of samples; yi, mean of the observed values; Orbital RS, satellite imageries; RTK elevation, Real-time kinematic 
positioning elevation; B, blue; R, red; G, green; NIR, near infrared; RE, red edge; CHIRPS, Climate Hazards Group InfraRed Precipitation with Stations; Hz, hertz. 
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Introduction 

The early determination of crop yields is essential information for 
crop field management. Crop yield forecasts are fundamental to national 
policy formulation involving food security and personal living standards 
[1,2]. Therefore, in recent years remote sensing-based techniques have 
become increasingly crucial for monitoring crop growth, such as 
biomass [3], leaf area index – LAI [4], chlorophyll content [4,5], and 
yield estimation [6]. 

Remote sensing (RS) technologies are gaining prominence due to the 
expanding availability of massive time-series datasets, such as the 
availability of satellite information and high-quality image resolutions 
(radiometric, spectral, spatial, temporal) [7]. In addition, it is increas
ingly common to monitor crop physiological characteristics with spec
tral reflectance and combined vegetation indices. In such a context, 
numerous studies have applied orbital remote sensing to provide a fast, 
profitable, cost-effective, and non-destructive way for yield estimation 
of various crops. 

Satellite imageries, orbital RS, allow users to monitor crops over 
large areas with image resolutions (spectral, spatial, radiometric, and 
temporal) [7,8]. The launch of the Sentinel-2 (S2) satellite allowed the 
collection of images with good frequency and medium spectral resolu
tion, and a passive sensor with multispectral bands, being widely used in 
agriculture because it provides free images with a revisit time of five 
days [9]. In addition, another RS technology that has been used in 
agriculture is LiDAR (Laser Imaging Detection and Ranging). LiDAR is 
an active sensor installed on vehicles such as airplanes or helicopters and 
is mainly used for plant height, biomass estimation [10], and pheno
typing [11]. However, other active sensors, such as proximal sensors, 
are used to make fertilizer maps, track the crop’s growth stages and 
biophysical characteristics (plant height, biomass, yield), and monitor 
the spatio-temporal variability of crops. 

Moreover, some studies compare the performance of active and 
passive sensors. The interaction between active and passive sensors was 
studied by many researchers with different objectives, such as crop 
yield, irrigation systems, detection of salinity on soil, etc. [12–14]. These 
studies used techniques for the fusion of satellite images and proximal 
sensor data to monitor irrigation scheduling and crop growth stage [15]. 

The author states that using both active and passive sensors allows ad
justments for incongruent data due to the limitations of each technology. 

Remote Sensing data can get extensive information, usually with a 
behavior that is not linear. Thus, the use of machine learning analysis 
demonstrates an excellent statistical analysis tool. Among the various 
ML, Random Forest is one of the most used to select important features 
[16]. In this study, we proposed to use Random Forest to choose the 
most informative variables on cotton yield prediction. 

To estimate the yield, we use the biophysical characteristics of the 
crop, proposing a new approach, combining different scenarios using 
soil parameters (soil physical properties and fertility, and data from 
WSS), topographic indices, and elevation derivatives, in addition to 
orbital remote sensing data (Sentinel-2 spectral bands and Vegetation 
indices) to predict cotton yield before harvesting. Our study was moti
vated to identify the best attribute and the importance ranking to the 
Random Forest Classifier to predict cotton yield and select which ones 
better correlate with the cotton yield. 

Materials and methods 

Study area 

The cotton yield work focused on four areas conducted on-farm in 
Newellton (32◦10′58.7″N, 91◦16′38.1″W), LA, USA. The study was 
realized in four fields and three different years (2019, 2020, and 2021). 
Information on the location of each field is in Fig. 1. 

Remote sensing collection was realized before the emergence of the 
cotton crop (Table 1) in 2019, 2020, and 2021 years. This study focused 
on the soil variability analysis days after sowing cotton crops. In this 
farm, we evaluated just cotton crop, on which sowing year per field was 
field #37 (2019), #54 (2020), #34 (2019 and 2021), and #60 (2020). 
Table 1 describes soil type, sowing and harvesting data, and satellite 
imagery data. 

The weather conditions focus on accumulative rainfall during 2019, 
2020, And 2021 years. According to this data, there was greater rain in 
2019 than in 2020 and 2021. However, comparing all the years of study, 
in 2020, the rain had a more uniform distribution (Fig. 2). The difference 
between wetter (2019) and drier (2020) years was 100.61 mm. The 

Fig. 1. Study area showing the experimental fields on a farm (Hardwick Planting Company) in Newellton, LA, USA.  
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average multi-year accumulative rainfall from 2019 to 2021 was around 
128.94 mm. We collected weather data using CHIRPS (Climate Hazards 
Group InfraRed Precipitation with Stations) data. The CHIRPS data was 
obtained using the Google Earth Engine platform (https://earthengine. 
google.com/). 

Datasets 

Datasets for this work were compound per six different scenarios 
(Fig. 3). They were:  

1 All inputs: soil analysis parameters (CEC, B, Ca, H, K, Mg, Na, pH, Cu, 
Fe, Mn, OM, P, S, and Zn), Web Soil Survey (WSS), RTK elevation, 
Orbital Remote Sensing, LiDAR, and profiler (GSSI Profiler EMP400 - 
soil electromagnetic induction sensor).  

2 Soil parameters ± elevation derivatives: soil analysis parameters (CEC, 
B, Ca, H, K, Mg, Na, pH, Cu, Fe, Mn, OM, P, S, and Zn) + RTK 
elevation (slope, TPI - Topographic position index, TWI - Topo
graphic Wetness Index), profiler, WSS (Web Soil Survey), and LiDAR.  

3 Proximal Soil Sensing: profiler and Orbital Remote Sensing.  
4 Remote Sensing: LiDAR and Orbital Remote Sensing.  
5 Remote Sensing: Orbital Remote Sensing (Vegetation Indices and 

Sentinel-2 bands)  
6 Remote Sensing: Orbital Remote Sensing (Sentinel-2 bands) 

Data collection and processing 

Fig. 4 shows that the methodology summary of this work was orga
nized using workflow. The data collection was organized and processed 
in three steps: 

1 Data collection: reported input we collected in the field as soil pa
rameters, elevation derivatives, orbital and proximal remote sensing, 
and cotton yield.  

2 Data processing: a Random Forest Classifier (RFC) and confusion 
matrix were used to select the five and fifteen inputs that have 
greater importance for estimating yield. After that, it was identified 

Table 1 
Description of soil type, sowing and harvesting date, and satellite imagery collection per field.  

Field ID# Soil Type* Area (ha) Sowing Date Harvesting date Satellite 
imagery date 

37 ShA 
TeB 
DgB 
DoA 

232.14 May 1st, 2019 Oct 8th, 2019 May 6th, 2019 

54 TeB 
ShA 
TnA 
CeA 

60.92 May 2nd, 2020 Oct 3rd, 2020 May 10th, 2020 

34 ShA 
TeB 
TeD 
TaA 

111.29 – Nov 1st, 2019 May 6th, 2019 

34 ShA 
TeB 
TeD 
TaA 

May 16th, 2021 Oct 18th, 2021 April 25th, 2021 

60 ShA 
TeB 

11.64 May 4th, 2020 Sept 19, 2020 April 30th, 2020  

* ShA: Sharkey clay, TeB: Tensas-Sharkey clays, DgB: Dundee-Goldman complex, DoA: Dowling clay, TnA: Tunica clay, 
CeA: Commerce silty clay loam, TeD: Tensas-Sharkey complex, TaA: Tensas clay. 

Fig. 2. Accumulative rainfall during 2019, 2020, and 2021, with emphasis on the crop planting period, for studies carried out in the Newellton, LA, USA.  
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which inputs presented the best correlation with yield using the 
Spearman coefficient correlation.  

3 Data Analysis: it was selected the linear regression and Random 
Forest Regressor (RFR) to compare with the ones obtained by metric 
parameters (R2- determination coefficient, RSME - Root Mean 
Square Error, and MAPE - Mean Absolute Percentage Error) with the 
best to work on for these variables. 

Soil parameters were generated from a soil fertility test, and this test 
was collected before the sowing date. WSS was acquired from the USDA 
webpage (https://websoilsurvey.nrcs.usda.gov/app/) [17], which pro
vides the U.S. soil classification. The sower machine obtained RTK GPS 
elevations with a high-precision dataset. Topographic indices such as 
TPI and TWI, slope, and aspect terrain were generated from RTK GPS 
elevations. 

The soil sensor was GSSI Profiler EMP400 (soil electromagnetic in
duction sensor) at 15 kHz. The profiler sensor collected the electrical 
conductivity of the soil, and about time collection was 1 Hz (1 cps). The 
remote sensing (RS) data was obtained from satellite images with 
Sentinel-2 (passive sensor) from the Copernicus Open Access Hub 
website (https://scihub.copernicus.eu/dhus/#/home), using the data
set from Sentinel-2 satellite missions. Another input used was LiDAR 
data acquired from Louisiana Statewide LiDAR - LSU Atlas (https://atlas 
.ga.lsu.edu/datasets/lidar2000/) [18], in which its database has 
high-resolution (5 m) elevation data from the state of Louisiana. The 
output was the cotton yield data, filtered by open-source software, 
MapFilter 2.0, with spatial dependence in 10 m and 25% variation of 
limits. After that, this output was processed and interpolated using In
verse Distance Weighting (IDW) in QGIS software. 

For processing the dataset, we used GIS open-source software QGIS. 

Fig. 3. Datasets were used with six different scenarios for this work.  

Fig. 4. Representation of the work-plan in steps used in this research.  
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All input, except for soil fertility, were created maps and interpolated by 
IDW (Inverse Distance Weighted) method, with a grid of 3 m. After that, 
a 3 × 3 m grid was created, and a point sampling tool was used to join 
these inputs. For soil fertility, a buffer was created for each center point 
from soil test analysis, on which each buffer had around 25 m. Finally, to 
join the fertility layer with the others, we used joined layer with all input 
layers in just one file using QGIS software. 

Remotely sensed data 

Sentinel-2 satellite constellation 
The Sentinel-2 (S2) imageries were collected 15 days after the sow

ing date, using just one imagery per the date on what was observed of 
spatial-temporal variability per field and date. In this research, Table 2 
shows the S2 bands used blue, green, red, red edge, and NIR (near- 
infrared). Google Colaboratory, called Google Colab, was used to 
download and process these satellite images using Python language code 
using the Google Colab website (https://colab.research.google.com). 
Besides the six S2 bands in Table 2, we used 15 vegetation indices (VI) to 
predict cotton yield (Table 3). Table 1 shows the period when S2 im
agery was selected, and the VI was calculated. 

Statistical analysis and modeling 

Accuracy evaluation model 
The Random Forest Classifier (RFC) was used to classify the best 

inputs in six scenarios to predict cotton yield. The hyperparameters used 
were ntree (300), mtry (8), proximaty (True), importance (True), and 
Type of random forest (Classification). The Random Forest Regressor 
(RFR) was used to select which scenario and variable best-predicted 
cotton yield. The hyperparameters for RFR were used GridSearch. 
Verbose (0), random state (0), and the criterion (squared_error) were the 
same for all scenarios, while the other hyperparameters in Table 4 show 
those in detail. In both models, RFC and Random Forest Regressor 
(RFR), the database used 70% train and 30% test. R and Python lan
guages were used to process data for RFC and RFR, respectively. In 
addition, for the running RFR, we used the best parameters you can see 
in detail in Supplementary Table S1. 

The extraction accuracy of prediction cotton yield was evaluated 
using three metrics parameters: the coefficient of determination (R2), 
root mean square error (RMSE), and mean absolute percentage error 
(MAPE). The Equations 1 - 3 for each metric parameter in below. In 
addition, it was calculated confusion matrix (CM), also processed in the 
R language code of RFC. The accuracy calculation from CM was Kappa 
coefficient and precision. 

RSME=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(yi − ŷi)
2

N

√

(1)  

R2 = 1 − −

∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − yi)

2 (2)  

MAPE =
1
N

∑N

i=1

|ŷi − yi|

yi
× 100 (3)  

Table 2 
Sentinel-2 spectral bands used in this research.  

Sentinel-2 
band number 

Band type Central 
wavelength 
(nm) 

Spatial 
resolution (m) 

Abbreviation 

B2 Blue 490 10 B 
B3 Green 560 10 G 
B4 Red 665 10 R 
B6 Red Edge 740 20 RE 
B8 Near- 

infrared 
842 10 NIR  

Table 3 
Vegetation Indices (VI) evaluated for the prediction cotton yield using machine learning.  

Vegetation Index Abbreviation Spectral Bands Equation using Sentinel-2 bands Source 

Simple Ratio SR NIR and Red B8
B4 [19] 

Normalized Difference Vegetation Index NDVI NIR and Red (B8 − B4)
(B8 + B4) [20] 

Normalized Difference Red Edge Index NDRE NIR and Rededge (B8 − B6)
(B8 + B6) [21] 

Nonlinear Vegetation Index NLI NIR and Red (B82 − B4)
(B82+B4)

[22] 

Normalized Difference 860/1240 Normalized Difference Water Index NDWI Green and NIR (B3 − B8)
(B3 + B8) [23] 

Difference Vegetation Index DVI Red and NIR B8 – B4 [24] 
Blue-Normalized Difference Vegetation Index BNDVI NIR and Blue (B8 − B2)

(B8 + B2) [25] 

Inverse of the Simple Ratio ISR Red and NIR B4
B8 [26] 

Green Normalized Difference Vegetation Index GNDVI NIR and Green (B8 − B3)
(B8 + B3) [21] 

Red Green Blue Vegetation Index RGBVI Green, Blue, and Red B32 − (B2 × B4)
B32 + (B2 × B4)

[27] 

Soil Adjusted Vegetation Index SAVI NIR and Red (B8 − B4)
(B8 + B4 + 1) × (1 + 1) [28] 

Chlorophyll Index-RedEdge CIRE NIR and Rededge B8
B6

− 1 [29] 
Infrared Percentage Vegetation Index IPVI NIR and Red B8

(B8 + B4) [30] 

Ehanced Vegetation Index EVI NIR, Red, and Blue 
2.5 ×

(B8 − B4)
(B8 + 6 x B4 − 7.5 x B2) + 1 [31] 

Ehanced Vegetation Index 2 EVI2 NIR and Red 
2.5 ×

(B8 − B4)
B8 + (2.4 × B4) + 1  [32] 

B2: Blue, B3: Green, B4: Red, B6: Rededge, and B8: NIR. 

F.M. Carneiro et al.                                                                                                                                                                                                                            

https://colab.research.google.com


Smart Agricultural Technology 5 (2023) 100292

6

yi and ŷi are the observed and estimated values, N is the number of 
samples, and yi is mean of the observed values. 

Results 

Importance variables for the cotton yield prediction using Random Forest 
Classifier 

The top 15 and 5 important features selected using RFC are in 
Table 4. These features include six scenarios in Fig. 3, i.e., all inputs; soil 
parameters and elevation derivatives; profiler and orbital RS; LiDAR and 
orbital RS; orbital RS (VI and S2 spectral bands); and S2 spectral bands. 

Fig. 5 shows the summary of feature importance by RFC, the Top 5 
variables that appear with more constancy among the six different 
scenarios. The most frequent variables that appear according to RFC 
were Red edge, NDRE, BNDVI, CIRE slope, red, aspect, LiDAR blue, TPI, 
profiler, TWI, nir, green, EVI, RTK elevation, and RGBVI. According to 
these results, the Spearman correlation coefficient was used to verify 
which variables best correlates for predicting cotton yield; Fig. 6 shows 
those. 

Fig. 6 shows, for cotton yield prediction, according to results from 
Fig. 5, the inputs strongly correlated with the profiler, wherein profiler 
and yield are inversely proportional. Fig. 6 shows, for cotton yield 
prediction, according to results from Fig. 5, the inputs strongly corre
lated with the profiler, wherein profiler and yield are inversely pro
portional. Inputs with a moderate correlation with yield were: blue, 
green, red, TPI, RTK elevation, and LiDAR. In topographic indices cor
relation with yield data, we observed that the TPI has a more excellent 
correlation with the output than TWI. 

Table 5 shows the confusion matrix for classifying the accuracy of the 
Top 15 and 5 feature importance by RFC. The overview of the results 
was that LiDAR, profiler, and Orbital RS data got greater accuracy values 
than soil and RTK elevation variables. We can use a small dataset to 
predict cotton yield using these inputs because the difference between 
the Top 5 and Top 15 has a few different values. For example, using 
orbital imagery and LiDAR data for the Top 5 was 0.80, and the Top 15 
was 0.82. In this case, it is easier for the farmers to apply this method
ology by using some inputs such as Top 5. They can obtain this data-free 
imagery and elevation high-resolution from LiDAR. In addition, Table 5 
shows that the accuracy has improved from 0.75 to 0.90 for a few fields, 
and kappa also improved from 0.69 to 0.87. However, we focused on 
this work is reducing the number of inputs to be collected to make it 
easier for the farmers and for them to apply the methodology proposed 
in this work, maintaining the same quality, so we opted for five inputs. 

Accuracy assessment for cotton yield prediction 

RSME, R2, and MAPE values show, in Table 6, that the best inputs 
classification using RFR were soil parameter and elevation derivatives, 
LiDAR, profiler, and orbital RS. In the overview for comparison between 
variables, the Top 5 got results more excellent than the Top 15 for the 
prediction of cotton yield. Using all inputs is unnecessary, and we 
observed that when using a few variables (Top 5) to get great results. It 
also allows farmers to adopt the accessible collection of these variables. 
In complement, in Table 6 RMSE value for the top 15 features is low 
compared to the Top 5. Therefore, we recommend using five inputs to 
predict productivity, not requiring many variables, facilitating data 
collection for producers, and making decision-making more practical. 

Table 4 
Importance values of top 5 and 15 ranked variables for the yield prediction using Random Forest Classifier.  

Field (year) Top 5 – Importance inputs to estimate yield Top 15 – Importance inputs to estimate yield 
All inputs 

37 (2019) TPI, aspect, slope, NDRE, and CIRE Aspect, CIRE, slope, EVI, Elevation, profiler, NDWI, and IPVI 
54 (2020) Profiler, LiDAR, NDRE, aspect, and slope Aspect, LiDAR, slope, profiler, NDRE, TWI, CIRE, RGBVI, SR, NDVI, elevation, IPVI, ISR, green, and red 
34 (2019) TPI, RGBVI, CIRE, slope, and TWI Slope, TWI, TPI, RGBVI, CIRE, aspect, NDRE, elevation, NLI, profiler, LiDAR, NIR, P, Fe, and DVI 
34 (2021) Aspect, TPI, slope, NDRE, and TWI Aspect, slope, TPI, NDRE, TWI, GNDVI, NDWI, BNDVI, LiDAR, elevation, NLI, RGBVI, NIR, profiler, and CIRE 
60 (2020) Profiler, LiDAR, elevation, TPI, and RGBVI Elevation, LiDAR, profiler, TPI, RGBVI, BNDVI, CIRE, NDWI, red, slope, NIR, TWI, NLI, and NDRE 
Soil parameters and elevation derivatives 
37 (2019) Profiler, TPI, aspect, slope, and TWI Aspect, slope, profiler, LiDAR, BS_Mg, K, B, and PH 
54 (2020) Profiler, LiDAR, TPI, aspect, and slope aSpect, slope, profiler, LiDAR, TPI, elevation, TWI, K, Mg, Fe, Zn, BS, Mg, P, and S 
34 (2019) Elevation, TPI, slope, aspect, and TWI TPI, slope, aspect, TWWI, elevation, profiler, LiDAR, Na, Ca, Fe, P, pH, K, OM, and S 
34 (2021) Elevation, TPI, slope, aspect, and TWI Aspect, slope, TPI, TWI, elevation, LiDAR, profiler, Mn, BS_K, P, S, BS_Ca, BS_MG, NA, and BS_H 
60 (2020) Profiler, elevation, LiDAR, slope, and aspect Profiler, LiDAR, elevation, aspect, slope, TWI, pH, WSS, B, Zn, K, OM, P, and CEC 
Proximal soil sensing (profiler, VI, and bands) 
37 (2019) Red edge, profiler, BNDVI, NDRE, and CIRE Profiler, red edge, CIRE, BNDVI, NDRE, RGBVI, EVI, NDWI, GNDVI, blue, NIR, NLI, red, greem, and IPVI 
54 (2020) Profiler, blue, EVI, CIRE, and NDRE Profiler, NDRE, CIRE, EVI, blue, BNDVI, RGBVI, red edge, green, SR, ISR, NDVI, IPVI, red, and EVI2 
34 (2019) Profiler, NDWI, red edge, RGBVI, and CIRE Profiler, RGBVI, red edge, NDWI, CIRE, GNDVI, NDRE, BNDVI, greeen, NIR, blue, red, NLI, EVI, and EVI2 
34 (2021) Profiler, red edge, BNDVI, NDRE, and CIRE Profiler, CIRE, NDRE, BNDVI, red edge, GNDVI, SAVI, RGBVI, NDWI, red, NLI, DVI, EVI, NIR, and EVI2 
60 (2020) Red edge, profiler, RGBVI, CIRE, and NDRE Profiler, red edge, NDRE, CIRE, RGBVI, BNDVI, EVI, NDWI, GNDVI, DVI, NLI, EVI2, red, SAVI, and ISR 
Remote Sensing (LiDAR, VI, and bands) 
37 (2019) LiDAR, BNDVI, CIRE, EVI, and red edge LiDAR, BNDVI, red edge, EVI, CIRE, NDWI, GNDVI, NDRE, NIR, blue, RGBVI, red, green, NLI, and SAVI 
54 (2020) LiDAR, EVI, vblue, CIRE, and NDRE LiDAR, NDRE, CIRE, blue, EVI, BNDVI, RGBVI, red edge, green, NDVI, ISR, IPVI, NDWI, SR, and GNDVI 
34 (2019) LiDAR, red edge, BNDVI, NIR, and RGBVI LiDAR, RGBVI, red edge, BNDVI, NIR, NLI, NDWI, CIRE, GNDVI, NDRE, red, green, EVI, blue, and DVI 
34 (2021) LiDAR, red edge, BNDVI, NDRE, and CIRE LiDAR, CIRE, NDRE, BNDVI, reds edge, GNDVI, red, NDWI, RGBVI, SAVI, NLI, EVI, EVI2, DVI, and NIR 
60 (2020) Red edge, LiDAR, BNDVI, CIRE, and NDRE LiDAR, BNDVI, red edge, CIRE, NDRE, RGBVI, EVI, GNDVI, red, NDWI, EVI2, NLI, DVI, SAVI, and SR 
Remote Sensing (VI and bands) 
37 (2019) Red edge, BNDVI, CIRE, NDWI, RGBVI Red edge, RGBVI, BNDVI, CIRE, NDWI, NDRE, GNDVI, EVI, NIR, blue, NLI, green, red, SR, and DVI 
54 (2020) Blue, EVI, BNDVI, NDRE, and CIRE BNDVI, NDRE, CIRE, EVI, blue, RGBVI, red edge, GNDVI, SR, NDWI, IPVI, ISR, NDVI, red, and green 
34 (2019) BNDVI, red edge, red, NDRE, and CIRE BNDVI, red edge, NDRE, CIRE, red, RGBVI, NDWI, GNDVI, SAVI, EVI, NLI, EVI2, DVI, NIR, and blue 
34 (2021) Red, red edge, BNDVI, CIRE, and NDRE BNDVI, red edge, NDRE, CIRE, red, RGBVI, NDWI, GNDVI, SAVI, EVI, NLI, EVI2, DVI, NIR, and blue 
60 (2020) Red edge, RGBVI, BNDVI, CIRE, and NDRE NDRE, BNDVI, red edge, CIRE, RGBVI, EVI, GNDVI, red, NDWI, NLI, SAVI, EVI2. DVI, ISR, and NIR 
Remote Sensing (bands) 
37 (2019) Red edge, blue, NIR, red, and green — 
54 (2020) Blue, red, green, red edge, and NIR — 
34 (2019) Red edge, blue, red, NIR, and green — 
34 (2021) Red, red edge, green, NIR, and blue — 
60 (2020) Red, red edge, NIR, blue, and green —  
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Discussion 

This work verified the best input variables related to soil parameters, 
elevation derivatives, topographic indices, and proximal and orbital 
remote sensing (VI and Sentinel-2 spectral bands) data for predicting 
cotton yield. Most studies have used crop parameters (e.g., soil type, 
plant, date, rainfall, fertilizer, seed variety, etc.) [33]. This work differs 
from others by using soil variables to predict cotton yield. Furthermore, 
the input variables as a profiler, S2 spectral bands (blue, red, and green), 
TPI, LiDAR, and RTK elevation had the best correlations with yield for 
the prediction of cotton yield. 

According to RFC features importance, the best inputs to predict 
yield were orbital RS (red edge, NDRE, BNDVI, CIRE, red, blue, green, 
EVI, and RGBVI), soil parameters (slope, aspect, TPI, and TWI), RTK 

elevation, profiler, and LiDAR (Fig. 5). Using the Spearman correlation 
coefficient, the best correlation variable to predict cotton yield was a 
profiler, orbital RS (blue, red, and green), TPI, LiDAR, and RTK elevation 
(Fig. 6). In addition, S2 spectral bands were better than VI for correlation 
with yield. In the same way, Wang et al. [34] observed. They evaluated 
hail damage in cotton and predicted crop yield using RS, wherein the 
model prediction model of yield reduction due to hail damage was better 
for spectral than VI. 

Orbital RS has been provided to monitor crops during growth state, 
collecting data over large agricultural areas with high and moderate 
resolution can be obtained with weekly and daily temporal resolution 
[35], for example, 16, 5, 1 day Landsat-8, Sentinel-2, and Planet Scope 
constellations, respectively. 

Cotton yield prediction helped farmers make decision support tools 

Fig. 5. Summary of feature importance by Random Forest Classifier, the Top 5 variables that appear with more constancy among six different scenarios.  

Fig. 6. Spearman coefficient correlation from the Top 5 variables appears more consistent among six different scenarios.  
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using RS and machine learning to do this more accurately and before the 
harvesting date. Traditional techniques demand destructive samples and 
high costs over large areas because they need more labor to collect 
samples [8]. While using RS tools, you can collect data over large areas 
and do not need destructive samples. 

Topographic indices such as TPI and TWI help generate management 
zones [36] and predict crop yield more accurately [37]. In this way, how 
observed in these works that TPI had more outstanding results among these 
indices evaluated than TWI for having a more excellent correlation with 
cotton yield. These topographic indices were generated using RTK eleva
tion available in the sower and harvesting machine during this operation. 

LiDAR is used to monitor plant height [10] and can be used to esti
mate biomass and yield. For the cotton crop, the variable plant height is 
an essential variable that allows knowing when applying desiccant at the 
right time that this variable can be collected from LiDAR. 

Conclusions 

Through brainstorming, we established the maximum value of 15 
inputs, and the Random Forest Classifier (RFC) method allowed us to do 
this. We observed that the results of the models were promising. How
ever, we focused on reducing the number of inputs to be collected to 
make it easier for the farmers and for them to apply the methodology 
proposed in this work, maintaining the same quality, so we opted for five 
inputs. We could work with various amplitudes within our dataset. 
However, at that moment, we believed these established limits were 
enough to reach our proposed objective. 

This study used different scenarios to select the best inputs to predict 
cotton yield. RFC is a potential tool for identifying the best feature 
importance as an excellent filter and working with a large dataset. 
Spearman’s coefficient correlation demonstrates an excellent statistical 
analysis for nonlinear relationships. 

Table 5 
Confusion matrix for classification accuracy of different scenarios using Random Forest Classifier for selection of Top 5 and Top 15 
for prediction cotton yield.  

Inputs* Field/ 
year 

Top 5 Top 15 
Overall Accuracy Kappa Overall Accuracy Kappa 

All inputs 37 
2019 

0.72 0.65 0.80 0.74 
Soil 0.68 0.60 0.78 0.72 
Profiler +

Orbital RS 
0.76 0.70 0.78 0.73 

LiDAR +
Orbital RS 

0.75 0.69 0.90 0.87 

Orbital RS 
(VI + S2 bands) 

0.76 0.70 0.76 0.70 

Orbital RS 
(S2 bands) 

0.76 0.70 —- —- 

All inputs 54 
2020 

0.79 0.73 0.84 0.80 
Soil 0.79 0.73 0.82 1.0 
Profiler +

Orbital RS 
0.78 0.72 0.82 0.78 

LiDAR +
Orbital RS 

0.80 0.75 0.82 0.78 

Orbital RS 
(VI + S2 bands) 

0.80 0.75 0.80 0.75 

Orbital RS 
(S2 bands) 

0.80 0.75 —- —- 

All inputs 34 
2019 

0.72 0.65 0.80 0.74 
Soil 0.68 0.60 0.78 0.72 
Profiler +

Orbital RS 
0.76 0.70 0.78 0.73 

LiDAR +
Orbital RS 

0.75 0.69 0.90 0.87 

Orbital RS 
(VI + S2 bands) 

0.76 0.70 0.76 0.70 

Orbital RS 
(S2 bands) 

0.76 0.70 —- —- 

All inputs 34 
2021 

0.59 0.49 0.82 0.77 
Soil 0.67 0.59 0.79 0.73 
Profiler +

Orbital RS 
0.76 0.70 0.78 0.73 

LiDAR +
Orbital RS 

0.75 0.69 0.78 0.72 

Orbital RS 
(VI + S2 bands) 

0.76 0.70 0.76 0.70 

Orbital RS 
(S2 bands) 

0.76 0.70 —- —- 

All inputs 60 
2020 

0.72 0.65 0.72 0.65 
Soil 0.71 0.64 0.70 0.62 
Profiler +

Orbital RS 
0.68 0.60 0.70 0.63 

LiDAR +
Orbital RS 

0.67 0.58 0.69 0.61 

Orbital RS 
(VI + S2 bands) 

0.67 0.58 0.67 0.58 

Orbital RS 
(S2 bands) 

0.67 0.58 —- —-  

* RS: Remote Sensing; S2: Sentinel-2 spectral bands; VI: vegetation Indice, Soil: Soil parameters and elevation derivatives. 
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The inputs evaluated that demonstrated more excellent results to 
predict cotton yield was profiler, Sentinel-2 (blue, red, and green), TPI, 
LiDAR, and RTK elevation, which show good correlations to predict 
cotton yield. In this way, a farmer to collect this data need orbital im
agery, can use free satellite imagery, RTK elevation from a sowing ma
chine or LiDAR sensor, and generates topographic indices (TWI and TPI) 
from RTK elevation, and profiler from the electrical conductivity of the 
soil sensor. 
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Table 6 
Metrics parameters (RSME, R2, and MAPE) evaluation of different scenarios for predicting cotton yield.   

Field/ 
year 

Top 5 Top 15 
R2 RSME MAPE R2 RSME MAPE 

All inputs 37 
2019 

42.08 0.15 5.67 71.60 0.15 3.83 
Soil 54.78 0.13 4.87 78.22 0.09 3.30 
Profiler +

Orbital RS 
55.10 0.13 4.94 54.43 0.13 5.04 

LiDAR +
Orbital RS 

63.21 0.12 4.42 63.50 0.12 4.41 

Orbital RS 
(VI + S2 bands) 

53.12 0.13 5.05 54.40 0.13 5.08 

Orbital RS 
(S2 bands) 

52.47 0.13 5.16 —- —- —- 

All inputs 54 
2020 

77.26 0.17 4.33 80.84 0.16 4.01 
Soil 78.87 0.12 4.23 88.09 0.13 3.43 
Profiler +

Orbital RS 
67.58 0.21 5.48 76.03 0.13 4.61 

LiDAR +
Orbital RS 

71.76 0.19 4.98 73.11 0.19 4.87 

Orbital RS 
(VI + S2 bands) 

56.81 0.24 6.54 65.59 0.16 5.71 

Orbital RS 
(S2 bands) 

55.26 0.24 6.63 —- —- —- 

All inputs 34 
2019 

45.82 0.14 5.61 72.88 0.10 4.02 
Soil 62.06 0.12 4.74 76.64 0.09 3.68 
Profiler +

Orbital RS 
66.58 0.11 4.48 71.94 0.10 4.06 

LiDAR +
Orbital RS 

66.76 0.11 4.41 70.00 0.11 4.19 

Orbital RS 
(VI + S2 bands) 

51.13 0.14 5.24 56.71 0.13 4.96 

Orbital RS 
(S2 bands) 

55.80 0.13 4.98 —- —- —- 

All inputs 34 
2021 

32.07 0.20 7.31 64.06 0.15 5.44 
Soil 76.07 0.12 4.49 51.00 0.17 4.49 
Profiler +

Orbital RS 
51.75 0.17 6.24 62.18 0.15 5.46 

LiDAR +
Orbital RS 

52.21 0.17 6.16 64.41 0.14 5.22 

Orbital RS 
(VI + S2 bands) 

50.93 0.17 6.25 55.94 0.16 5.86 

Orbital RS 
(S2 bands) 

51.78 0.17 6.22 —- —- —- 

All inputs 60 
2020 

82.78 0.17 5.65 86.22 0.15 5.12 
Soil 81.90 0.17 5.77 84.25 0.16 5.38 
Profiler +

Orbital RS 
79.30 0.19 6.37 81.94 0.17 5.87 

LiDAR +
Orbital RS 

78.83 0.20 6.75 79.00 0.18 6.22 

Orbital RS 
(VI + S2 bands) 

76.06 0.20 6.72 79.00 0.19 6.22 

Orbital RS 
(S2 bands) 

73.57 0.21 7.11 —- —- —- 

*RS: Remote Sensing; S2: Sentinel-2 spectral bands; VI: vegetation indices, Soil: Soil parameters and elevation derivatives 
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