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Abstract
Obtaining resistance cultivars for leaf miner and leaf rust are the main important strategy of Brazil’s national coffee breeding 
program. The narrow genetic basis, and founder effect consequences, lead to challenges in quantifying and detecting genetic 
diversity for these traits. Biotechnology tools allied with classical breeding strategies are powerful in detecting variability and 
deploying a precision selection. The selection based on the genetic merit of an individual obtained from thousands of single 
nucleotide polymorphism effects is known as genomic selection. The ordinal scale principally makes the resistance evaluation 
of the leaf rust and leaf miner of the score, categorizing the phenotypes following the discrete (ordinal) distribution. Hence, 
this distribution can be better analyzed by threshold models. Our goals were to optimize genomic prediction models for 
coffee resistance to leaf rust and leaf miner via threshold models and compare pedigree and genomic relationship matrices 
to underlying prediction models. We have observed that the genomic model with the genomic relationship matrix performed 
better for all scenarios. For the traits with at least five degrees of scores, the threshold models performed better, whereas for 
a trait with ten degrees of scores, we see no advantage to using a threshold model for genomic prediction.
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Introduction

The coffee breeding programs in Brazil aim to aggregate 
value to the final product and reduce the costs of production, 
especially by selecting resistant cultivars to the main 
coffee pests and diseases in the country: coffee leaf miner 
(Leucoptera coffeella Guérin-Ménéville) and coffee leaf 

rust (Hemileia vastatrix Berk. et Br.) (Zambolim 2016; 
Dantas et al. 2021). Breeding methods such as pedigree and 
backcrossing have been used to transfer leaf rust and leaf 
miner resistance alleles from diploid species like Coffea 
canephora (Fazuoli et al. 2018b, a), C. liberica (Fazuoli 
et al. 2019), and C. racemosa (Carvalho 1988; Mendonça 
et al. 2016) to tetraploid C. arabica cultivars.

Arabica coffee (Coffea arabica) is the only allotetraploid 
species of the gender Coffea, with a well-described, narrow 
genetic basis (Lashermes et  al. 2009). Traditionally, 
phenotypic selection coupled with a long testing phase 
has been performed, ultimately resulting in low rates of 
genetic gain. However, molecular markers allied to classical 
breeding can speed up selection and increase these rates. 
To this end, genomic selection (GS), which stands for the 
prediction of the genomic breeding values using the effect of 
hundreds to thousands of single-nucleotide polymorphisms 
(SNPs) distributed across the genome (Meuwissen et al. 
2001), has been used with success in different animal and 
vegetal species. In coffee, recent studies proved its potential 
for other agronomical traits (Ferrão et al. 2017, 2019; Sousa 
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et al. 2019), although investigations addressing pests and 
diseases predictions are lacking.

The sources of resistance to coffee leaf miner from 
crosses between C. racemosa and C. arabica credited the 
resistance to two different genes (Guerreiro-Filho et al. 1999). 
Afterward, a differential gene expression study revealed 
a complex response between plant and insect resistance 
interaction, suggesting a pool of four main genes with an 
active metabolic pathway (Cardoso et al. 2014). Furthermore, 
coffee leaf rust resistance is achieved by a range of genes 
that can be annulated by virulence genes of the pathogen in 
whole or in part (Bettencourt and Rodrigues 1988). Finally, 
some interspecific crosses (C. arabica x C. canephora) 
were performed to access the incomplete resistance of H. 
vastatrix in C. arabica, which produced hybrids such as 
Icatu with a quantitative response of resistance (Zambolim 
2016). Furthermore, the lower genomic heritability found for 
leaf miner resistance and leaf rust resistance (0.30 and 0.31 
respectively) reflects the complexity of the genetic control as 
demonstrated in the study conducted by Sousa et al. (2019).

The evaluation of traits such as leaf rust (Eskes and 
Toma-Braghini 1981) and leaf miner (Guerreiro Filho 
et al. 1999) are mainly obtained by an ordinal degree of 
a visual score, which categorizes the phenotypes and the 
data set collected by using a discrete (ordinal) distribution. 
Theoretically, GS models have first proposed for quantitative 
traits with a normal (Gaussian) distribution (Meuwissen 
et al. 2001). Nevertheless, categorical response traits do 
not usually follow the assumption of normally distributed 
phenotypes.

The phenotyping is carried by the practitioner, who cat-
egorizes the observed data by a degree of a score, which 
does not necessarily represent the actual scale of the bio-
logical event. Data transformations are used to facilitate 
the statistical analysis of categorical traits (also known as 
threshold traits), although scaling the data can lead to the 
following complications: (i) the variance changes differently 
relative to the population mean changes, (ii) the selection 
response comes to be symmetric in negative and positive 
directions bringing bias in the selection response, and (iii) 
the non-additive effects are strongly affected by the scale 
transformation (Falconer and Mackay 1960). In this sense, 
threshold mixed models have been applied to analyze the 
categorical traits by presupposing an underlying continuous 
distribution of phenotypes that design a normal distribu-
tion liability, a consistent approach to obtaining accurate 
and better-predicted results (Gianola 1982; Mrode 2014).

The expansion of threshold models has been proposed 
to be used in GS models. (Kizilkaya et al. 2011) expanded 
the Bayes C methodology for keratoconjunctivitis (caused 
by Moraxella bovis bacterial) with a degree of score evalu-
ation in beef cattle. Wang et al. (2013) expanded the Bayes-
ian GS models for threshold models originating Bayes-TA, 

Bayes-TB, and Bayes-TCpi with simulated data. Kizilkaya 
et al. (2014) reported a simulation study comparing pre-
dictions performed via Bayes-Cpi and Bayes-TCpi for cat-
egorical and ordinal data, concluding that threshold models 
performed better in a genomic prediction context for small 
training sets. Finally, Montesinos-López et al. (2015) pro-
posed the threshold genomic best linear unbiased predictor 
(TGBLUP) with genotype-by-environment (GE) interaction 
to evaluate maize lines for cercosporiosis (caused by Cercos-
pora zea-maydis) by the ordinal categorical degree of score. 
Overall, these studies represent a significant advance in GS 
research associated with non-Gaussian responses.

Frequently, perennial crops are evaluated across several 
years, and the interaction between genotypes-by-years can 
be regarded in the model. Typically, C. arabica genotypes 
are tested in multiple trials for three or four consecutive 
harvests to capture spatial and temporal variations 
(Guerreiro Filho et al. 2018). The extension of GBLUP to 
accommodate genotype-by-environment (GE) interactions 
under a Gaussian process, but using covariance functions 
based on genetic similarities, was initially proposed by 
Jarquín et al. (2014) Herein, we propose to use the flexibility 
of the TGBLUP to include GE interaction effects, but in 
the context of categorical responses. Thus, the objectives 
of this study are to (i) optimize genomic prediction models 
for coffee resistance to leaf rust and leaf miner via threshold 
models; and (ii) contrast pedigree prediction and genomic 
relationship prediction for implementation of genomic 
selection in a coffee breeding program.

Material and methods

Plant material and phenotyping

The plant material used in this study consisted of 596 
arabica coffee plants which come from nine progenies, five 
from self-pollination, and four from open pollination, with 
a single check (Catuaí Vermelho IAC 99) (Table S1). These 
progenies were obtained from a breeding program started in 
the seventies from an interspecific biparental cross between 
species of C. arabica (cultivar Blue Mountain, 2n = 4x = 44) 
where the geographical origin is Ethiopia, and C. racemosa 
(cultivar IAC1195, 2n = 2x = 22) with geographical origin in 
Mozambique, both from the African continent (Davis et al. 
2006) (Supplementary Figure S1). The racemosa coffee 
introduced resistance genes to leaf miner in the population. 
During the crossing generations, an arabica cultivar resistant 
to the leaf rust race two was included in the genealogy, 
specifically with the plant H4782-7–882 (Icatu Vermelho) 
(Supplementary Figure S1). The population was tested 
following a randomized complete block design (RCBD), 
nine replications, and evaluated in the 2011 and 2012 field 

11   Page 2 of 10 Tree Genetics & Genomes (2023) 19:11



1 3

seasons, considering one plant per plot. The selection unit 
was the coffee tree. The experiment was conducted at the 
Agronomic Institute of Campinas, at the Experimental 
Center “Santa Elisa,” Brazil, SP (22°51′S, 47°04′W). The 
evaluations of resistance were:

 (i) Leaf miner (Leucoptera coffeella) reaction was evalu-
ated in conditions of natural infestation of the insect 
on the field in periods of high incidence. The first 
evaluation (LM1) was carried out in April/May and 
the second in September/October (LM2). Since these 
evaluation periods were held during distinct plant 
phenology stages, we considered these evaluations 
as two different traits. The evaluations were visually 
performed using an ordinal scale of 1 to 5 based on 
attack severity, where 1 to 0–10% leaf attack; 2 to 
11–25% leaf attack; 3 to 26–50% leaf attack; 4 to 
51–75% leaf attack; and 5 to 76–100% leaf attack 
(Guerreiro Filho et al. 1999). Plants classified with 
1 were considered resistant.

 (ii) Leaf rust reaction type (LR1) was evaluated in the 
natural infestation conditions for leaf rust (Hemileia 
vastatrix) on the field. The month of disease infestation 
was June/July. The ordinal visual scale of score ranged 
from 1 to 5, where 1 = plants without lesions; 2 = few 
chlorotic lesions without spores and without defoliation; 
3 = few pustules with spores and low defoliation; 
4 = generalized pustules with spores and defoliation; 
and 5 = generalized pustules with many spores and 
marked defoliation (Eskes and Toma-Braghini 1981). 
Plants classified 1 and 2 were considered resistant and 
others, susceptible to coffee leaf rust.

 (iii) Leaf rust lesion density (LR2) was evaluated in the 
same reaction type conditions but considering the 
whole plant’s aspect. The visual ordinal scale of 
score ranged from 1 to 10, where 1 = Absence of 
sporulating lesions; confirmation necessary by push-
ing aside branches of the lower canopy and more 
detailed observation of the branches inside the shrub; 
2 = Presence of one diseased branch at first look on 
any side of the shrub. Pushing aside of lower canopy 
branches may be necessary for confirmation. On 
detailed observation, more than one diseased branch 
may be found; 3 to 9 = These values represent a grad-
ual increase in the number of diseased branches per 
tree, seen at first look. Value 8 corresponds with an 
average attack on susceptible coffee cultivars in Bra-
zil at harvest time; 10 = This scale value indicates the 
maximum of disease incidence, corresponding to the 
level of disease of the very susceptible Harar coffee 
type in Brazil at harvest time. Normally, susceptible 
cultivars may drop leaves before reaching this level. 
Therefore, an S value associated with intensive leaf 

shedding should be scored as a 10, than 50% of all 
lesions (Eskes and Toma-Braghini 1981).

The Pearson’s correlation between the score scale from 
each evaluated trait was calculated with the function pair.
panels from psych (Revelle 2015) R package, which gen-
erated the histograms and linear regression plots of all 
combinations.

Genotyping

All 596 coffee plants were genotyped using DNA from 
young healthy leaves. The DNA extraction was performed 
following the CTAB protocol (Doyle and Doyle 1987). 
Genotyping-by-sequencing (GBS) was performed using an 
Illumina-HiSeq 2500 with 48 pooled genotypes per lane. 
The sequenced libraries were built following the proto-
col proposed by (Elshire et al. 2011), with DNA samples 
digested using the Pst1 enzyme. The arabica coffee refer-
ence genome (assembly Cara_1.0) was used to align the 
reads (assembly Cara_1.0—https://www.ncbi.nlm.nih.gov/
genome/?term=txid13443[orgn]) with bowtie two aligner 
(Langmead and Salzberg 2012). The single-nucleotide 
polymorphism (SNP) calling was performed in FreeBayes 
software (Garrison and Marth 2012) as diploid species, con-
sidering a diploid-like meiotic behavior of arabica coffee. 
A total of 120,617 genetic variants were called. Missing 
data were imputed using the default settings implemented 
in the Beagle 5.0 software (Browning et al. 2018). Loci 
were filtered by applying the following criteria: maintaining 
only biallelic markers, removing sites with a minor allelic 
frequency (MAF) lower than 5%, keeping markers with a 
call rate of at least 80%, and using the VCFtools software 
(Danecek et al. 2011). Also, the linkage disequilibrium prun-
ing of markers with pairwise correlation ( r2 ) higher than 
0.99. The final molecular marker matrix obtained with 4666 
SNPs was used in a genomic prediction analysis.

Regression models applied to genomic prediction

In this study, we compare different kernels as a relationship 
matrix. First, we use the numerator relationship matrix (A) 
composed of the (Wright 1917) coefficient of relationship 
between genotypes, as proposed by Henderson (1976), 
known as the pedigree relationship matrix, with squared 
dimension of number of evaluated genotypes. Second, the 
genomic relationship matrix (G), with the same dimension 
of the A matrix, was computed following the formula: 
G =

Z�Z

2
∑

pk(1−pk)
 , where pk is the allele frequency (VanRaden 

2008). The kernels were computed using the AGHmatrix R 
package (Amadeu et al. 2016).
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We compared the predictive performance consider-
ing the scenarios: (i) pedigree relationship matrix (A) 
or genomic relationship matrix (G); and (ii) predictive 
models fitted assuming a normal (gaussian) distribution 
for the response variables or assuming an ordinal dis-
tribution (threshold models). The models followed the 
single-step approach, where predictions are performed 
by using a linear mixed model as ABLUP with pedigree 
matrix (A), and GBLUP with the genomic relationship 
matrix (G) (Misztal et al. 2009). The genomic estimated 
breeding values (GEBV) considering a Gaussian distri-
bution for the response variable was obtained following 
the model:

where yijk is the phenotypic scale of score for each trait, 
� is the overall mean, bk is the fixed effect of kth block, 
hj is the fixed effect of the jth year, gi is the random effect 
of genotypes with gi ∼ N(0,G0�

2

a
) where G0 is either a 

pedigree matrix (A) or a genomic relationship matrix 
(G), ghij is the random effect of the interaction between 
genotypes and years, with ghij ∼ N(0, IJxJ

H
⊗ G0𝜎

2

t
) , and eijk 

is the random effect of the residual, with eijk ∼ N(0, I�2

e
) , 

and �2

a
, �2

t
, �2

e
 are the variance components of the respective 

effects.
For responses with a non-gaussian distribution, we 

used a threshold (cumulative probit) model. Results were 
compared to traditional gaussian models. In this context, 
threshold models can be applied for categorical scale data 
and described as the distribution definition, the linear 
predictor, and the link function (Montesinos-López et al. 
2015).

Distribution

The distribution for the observed response variable follows (
yCijk|b, h, g

)
∼ Multinomial(Nijk,�Cijk) ,  where Nijk  is 

the sample size of observations, �Cijk is the probability of 
occurrence of each class by observation with 

∑
�Cijk = 1 , C 

is the observed categories number, b is the fixed effect of the 
block, h is the fixed effect of years, and another distribution 
of the models is g with g ∼ N(0,G0) , where G0 is the 
variance–covariance matrix of the effect of the genotype.

Linear predictor

�Cijk = �C + xT
ijk
b + xT

ijk
h + zT

ijk
g + zT

ijk
gh , where �Cijk is the Cth 

link for the fixed and random effects combination, �C is the 
intercept (threshold) for the Cth link, and xT

ijk
 and zT

ijk
 are the 

incidence vector corresponding to fixed and random effects, 
respectively. To fully specify the model, a total of C − 1 link 
function is required.

(1)yijk = � + bk + hj + gi + ghij + eijk

Link function

The cumulative distribution function of a standard normal 
distribution (probit link) was used as �(C−1)ijk = �−1(�(C−1)ijk) , 
which produces the area under the theoretical Gaussian 
slope. This link function is normally used when the data set 
is classified in more than one category.

The theory behind threshold models supposes a theo-
retical normal distribution under the process to scale an 
observed category. It produces a normal distribution vari-
able called “liabilities,” with �ijk ∼ N(0, 1) (Gianola 1982). 
An expansion of GBLUP was proposed by called threshold 
genomic best linear unbiased predictor (TGBLUP), which 
implies the same flexibility of the traditional GBLUP to use 
genetic kernels and expand for interaction effects kernels 
in the model (Montesinos-López et al. 2015). In this con-
text, we suggested the single-step TGBLUP as the following 
latent variable model:

where lijk is the “liability” or the latent variable with the 
distribution of the corresponding random effects that give 
the observed categorical phenotypes given a probit link 
function, bk is the fixed effect of kth block, hj is the fixed 
effect of the jth year, gi is the random effect of genotypes 
with gi ∼ N(0,G0�

2

a
) where G0 is the pedigree matrix A 

or the genomic relationship matrix G, ghij is the random 
effect of the interaction between genotypes and years, with 
ghij ∼ N(0, IJxJ

H
⊗ G0𝜎

2

t
) , and eijk is the random effect of the 

residual, with eijk ∼ N(0, I�2

e
) , and �2

a
, �2

t
, �2

e
 are the vari-

ance components of the respective effects with �2

e
 fixed to 

one, to correspond to the unobservable latent variable. All 
Bayesian models and genetic parameters were fitted in the 
BGLR package in R (Pérez and de Los Campos 2014), with 
the number of iterations of 30,000, burn-in of 1000, and a 
thin of 10. The data set used in this study is available in the 
Mendeley Data repository (Carvalho et al. 2020).

Predictive ability evaluation

The validation was performed using the typical random 
repeated sample method, in which the data set was randomly 
split into two parts, 70% for training and 30% for testing. 
This procedure was replicated fifty times. We accessed the 
predictive abilities by measuring the Pearson’s Product 
Moment correlation r̂(̂yy) between the predicted estimated 
breeding value ( ̂yi ) of the testing population and the corre-
sponding phenotypic value ( yi ) for genotypes. Goodness-of-
fitness was measured considering the deviance information 
criterion (DIC), which is the Akaike information criterion 
(AIC) in a Bayesian model selection context (Spiegelhalter 

(2)lijk = bk + hj + gi + ghij + eijk
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et al. 2002). The model with lower DIC is preferred, which 
means better adjustment. The DIC was estimated for the 
tested models using the A or G matrix for gaussian or ordinal 
distributions. The reliability was measured following the 
equation: r2 = 1 −

(SE)2

�2
g

 ; where SE is the average standard 

error from each predicted value and �2

g
 is the genetic additive 

variance (Isik et al. 2017).

Results

Phenotypic data, correlation, adjusted model, 
and reliability

The phenotypic data were visually evaluated in field trials 
(Fig. 1). The frequency of scores is around the middle of 
the scale for each trait. LR2 was assessed on a score scale 

with ten levels, the double of levels compared with other 
traits with a segregation behavior divided between the ordi-
nal scale scores. The raw data are separated by progenies, 
and the frequency of the score scale is shown for each trait 
(Supplementary Figure S2). The progeny one is the check 
(Catuaí Vermelho IAC 99), with scores concentrated in 
high scale levels. We can see a clear segregation pattern 
in the other progenies, with most of the scores grouped in 
the middle of the scale. Progenies 2, 5, and 8 have a small 
frequency of low levels for LM1 (Supplementary Figure S2 
A and B). For LR1, just the progenies 2 and 7 did not show 
plants with low scores, but any progenies have the lowest 
score 1 (Supplementary Figure S2 C). For the LR2, the only 
progeny showing the lowest score on the scale is progeny 5 
(Supplementary Figure S2 D).

The pairwise correlations were positive and statis-
tically significant (p value < 0.05) (Fig. 2). The scale 
of scores related to leaf miners presented a medium 

Fig. 1  The frequency distribution degree of a score of raw phenotypic data for A leaf miner—LM1, B leaf miner—LM2, C leaf rust—LR1, and 
D leaf rust—LR2
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correlation (0.42), while the scores related to leaf rust 
showed a higher correlation (0.63). On the other hand, 
the leaf miner and leaf rust resistance showed a low 
correlation with each other, ranging from 0.17 to 0.29 
(Fig. 2). The linear regression of data between pairs of 
traits present at the bottom of the diagonal shows a no 
linearity relation between traits (Fig. 2), just for LR1 and 
LR2 has slight linearity relation.

The model adjustment for the gaussian and threshold 
model was compared. Based on the DIC, we also compared 
the mixed models using pedigree and genomic information 
(Table 1). Comparing the A and G matrix, DIC is slightly 
lower for models with the G matrix, suggesting a better 
goodness-of-fit statistic. The comparisons between models 

under different distribution assumptions showed a lower 
DIC value for the ordinal distribution for LM1, LM2, and 
LR1. For LR2, the traditional gaussian model had a lower 
DIC and hence a better goodness-of-fit statistic.

Similarly, different models’ reliability was measured, 
comparing the kernels A and G (Table 2). Contrasting A 
and G kernels, the reliability was higher for the A than the 
G kernel. Looking at the distributions, the Gaussian had 
higher reliability than the Ordinal. Therefore, reliabilities 
ranged from 0.58 to 0.79 for LM1, 0.29 to 0.68 for LM2, 
0.57 to 0.82 for LR1. For the LR2, the better results for 
reliability were for Gaussian distribution with 0.88 and 
0.90 for G and A kernels, respectively.

Fig. 2  The correlation between traits: leaf miner—LM1, leaf miner—
LM2, leaf rust—LR1, and leaf rust—LR2, with histogram distribu-
tion on diagonal, linear relation in the bottom of the matrix, and the 

Pearson correlation in the top of the matrix where the asterisks indi-
cate the level of significance equal to 0.1%

Table 1  Deviance information criterium (DIC) measured for LM1—
leaf miner 1, LM2—leaf miner 2, LR1—leaf rust 1, and LR2—leaf 
rust 2, in the models of ordinal distribution and Gaussian distribution 
with A (pedigree matrix), G (genomic relationship matrix) matrix

DIC Gaussian Ordinal

A G A G

LM1 2203.37 2138.75 1904.53 1864.41
LM2 2516.15 2406.21 2424.23 2296.68
LR1 1969.35 1956.89 1739.13 1720.07
LR2 3628.01 3623.29 4718.05 4659.71

Table 2  Reliability measured for LM1—leaf miner 1, LM2—leaf 
miner 2, LR1—leaf rust 1, and LR2—leaf rust 2, in the models of 
ordinal distribution and Gaussian distribution with A (pedigree 
matrix), G (genomic relationship matrix) matrix

r
2 Gaussian Ordinal

A G A G

LM1 0.79 0.74 0.65 0.58
LM2 0.68 0.63 0.29 0.31
LR1 0.82 0.79 0.59 0.57
LR2 0.90 0.88  − 0.60  − 0.31
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Single‑step predictive ability

The pedigree relationship matrix (A) and the genomic 
relationship matrix (G) were represented by a heatmap of 
all genotypes, divided between progenies (Supplementary 
Figure  S3). Almost the same number of genotypes 
represented each progeny. In the pedigree heatmap 
(Supplementary Figure S3 A), the progenies 6, 7, 8, 9, 
and 10 are closest to each other, even though they came 
from different plants of self-pollination (Supplementary 
Figure S1). The progeny 8 was the most endogamic, which 
was obtained from a two-generation of self-pollination. 
Progenies 8 and 4 have a slight correlation as the progenies 
6 and 3. It occurs because progenies 4 and 3 were open 
pollination from the plants, which originated progenies 
8 and 6 from self-pollination, respectively. Progeny 2 is 
the most unrelated compared with others. Considering the 
genomic relationship heatmap (Supplementary Figure S3 
B) is possible to see a slightly closer pattern from the 
pedigree heatmap with other resolution. We can see that 
the progenies are more related than as shown in the pedigree 
heatmap.

The best resolution of the genomic matrix in defining 
the realized pedigree impacted the predictive performance. 
The predicting ability for all tested scenarios ranged from 
0.15 to 0.71 (Fig. 3). We observed that predictive abilities 
computed using genomic information (G matrix) were 
higher for all traits than the pedigree matrix (A matrix). 
Considering the G matrix, for LM1, the ordinal models 
have a slightly better predictive ability than Gaussian 
models with a value of 0.57. Considering the LM2 and 
LR1, the differences considering the distributions do not 

appear considering two numbers of decimal points, with 
values of 0.46 and 0.62 for the G matrix, respectively. 
Finally, for LR2, the gaussian models presented a better 
predictive ability than the ordinal distribution (Fig. 3).

Discussions

Coffee breeding programs addressing resistance to pests 
and diseases are based on introducing a new genetic source 
of resistance into the breeding routine. To this end, the 
main approach to monitor genetic progress is evaluating 
the agronomic traits using field trials and visual ordinal 
scales. This kind of evaluation is useful and practical for 
the field, facilitating the evaluator’s work. Even though 
the degree of score facilities measurements, the response 
variable does not follow the traditional assumption of 
normality (Gaussian distribution), rendering traditional 
mixed model methods (as the GBLUP model) statistically 
not appropriate. Such properties as selection invariance 
and the ability to maximize the probability of correct 
pairwise ranking do not hold categorical traits considering 
best linear unbiased predictor (BLUP) (Fernando et al. 
1983), which can be expanded to GBLUP. Despite the non-
normality of the data set, a biological event of resistance 
to have an implicit normal distribution, which can be 
evaluated with threshold models as proposed by (Gianola 
1982). Considering the model’s predictive ability, we 
compare the GBLUP and TGBLUP with the A and G 
matrix for all categorical resistance traits, fitting the model 
(Montesinos-López et al. 2015).

Fig. 3  Predictive ability divided 
by tested scenarios: A: pedigree 
matrix, G: genomic relation-
ship matrix, Gaussian: models 
of normal (gaussian) distribu-
tion, Ordinal: models of ordinal 
distributions. The error bar 
indicates the standard deviation 
from the mean

Page 7 of 10    11Tree Genetics & Genomes (2023) 19:11



1 3

Phenotypic data and estimation of genetic 
parameters

We observed that the frequency of each class of visual 
score is associated with the segregation pattern observed 
in the breeding population (Fig. 1). Specifically, the pattern 
revealed a low number of plants resistant to LM1, LM2, 
and LR2. For LR1, for example, no resistant plants were 
observed, and few plants presented the degree of score two 
(moderately resistant). The frequency of scores divided 
by progenies for each trait shows the resistance difference 
between progenies (Supplementary Figure S2). For LM1, 
the bests progenies with resistance score one is numbers 2, 
5, and 8. Regarding the LM2, no progenies are represented 
in the degree of score one, which means no full resistant 
plants for this trait, but 5, 8, and 9 are the bests progenies 
with scores two (medium resistance).

The traits of leaf miner resistance were evaluated during 
two different periods of the year, LM1 during April/May 
and LM2 during September/October. Both periods were 
considered the infestation peak in coffee species (Souza 
et al. 1998). In the first evaluation, almost all plants were in 
fruiting maturation, while in the second most of the plants 
were in the flowering stage (Meireles et al. 2009). Between 
LM1 and LM2, the resistance signal captured by the degree 
of score can be related not just to the phenology stages but 
the infestation peak of the leaf miner, which corroborates 
with the medium correlation of the traits (Fig. 3). The leaf 
rust traits signal, captured by the degree of a score, follows 
almost the same pattern between them, which corroborates 
the high values of the correlation of LR1 and LR2 (Fig. 3).

We observed important differences in the estima-
tion of reliability values regarding the different modeling 
approaches tested in this study. For LM1, LM2, and LR1 
traits, in which the degree of scores ranges from 0 to 4 and 
presents a better DIC for the ordinal models, the gaussian 
models resulted in higher values of reliability. Reliability 
measures how distant the true value is from the estimated 
value, with values close to 1 means high proximity. Also, 
reliability has close relation with accuracy (Mrode 2014). 
For example, the accuracy values previously reported by 
Sousa et al. (2019) for leaf miner and leaf rust resistance 
are close to the values reported in this study considering 
the ordinal data. This comparison reveals that the gaussian 
models might inflate the reliability values, unless for the 
LR2, which has a score ranging from 0 to 9.

Single‑step genomic prediction

The predictive ability follows the same pattern for all traits, 
with higher predictive ability of models with the G matrix 
than with the A matrix. Similar results were also reported by 
Clark et al. (2012) when using a deep pedigree and a shallow 

pedigree compared with the genomic relationship matrix. 
The differences in predictive ability observed between mod-
els with A and G corroborates the identifiable differences 
between heatmaps (Supplementary Figure S3), i.e., the 
information captured by the A matrix is not the same as for 
the G matrix. Additionally, the ability to capture the Men-
delian sampling by the G matrix seems to play an important 
role determining its higher predictive ability compared to A 
matrix, even when deep pedigrees are utilized.

Comparisons between the Gaussian and threshold mod-
els for LM1 revealed a slightly better prediction for ordinal 
distribution. Otherwise, for LM2 and LR1, both distribu-
tion models showed similar values. The LR2 trait performed 
better for Gaussian distribution. The predictive ability for 
leaf rust and leaf miner was higher (0.26 and 0.18, respec-
tively) than as Sousa et al. (2019) found in arabica coffee. 
Ferrão et al. (2019) found 0.50 on average of predictive 
ability for leaf rust in robusta coffee, considering different 
environments and populations with varying maturation peri-
ods, corroborates our results. Such as simulated by Wang 
et al. (2013), traits with categorical, ordinal data fit better 
in threshold models than considering a Gaussian model. 
The same authors discuss the advantage of the threshold 
models, which accordingly, more levels of scale score (more 
than eight), the similar is the predictive ability between the 
threshold models and the Gaussian models; these results cor-
roborate our results. Even though our predictive ability is 
the same for the Gaussian and threshold models considering 
LM2 and LR1, the model fitness and the reliability results 
are more reasonable when considering the threshold models 
than the Gaussian models. Finally, traits with a non-normal 
distribution can be better evaluated using generalized linear 
mixed models with an adequate distribution, which follow 
the statistical assumptions and perform reliable results.

Conclusions

Genomic prediction for leaf miner and leaf rust in which 
the resistance is evaluated considering the degree of a 
score, threshold models are a reliable approach that must 
be considered when the score scale follows at least five 
levels. However, for those traits with ten levels in a degree 
of a score, Gaussian distribution models perform as well 
as the threshold ones. Moreover, models with genomic 
relationships perform better than pedigree, even with a deep 
pedigree.
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