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Abstract
Arbuscular mycorrhizal fungi form symbiotic associations with 80–90% of all known plants, allowing the fungi to acquire 
plant-synthesized carbon, and confer an increased capacity for nutrient uptake by plants, improving tolerance to abiotic and 
biotic stresses. We aimed at characterizing the mycorrhizal community in the rhizosphere of Neoglaziovia variegata (so-
called `caroa`) and Tripogonella spicata (so-called resurrection plant), using high-throughput sequencing of the partial 18S 
rRNA gene. Both plants are currently undergoing a bioprospecting program to find microbes with the potential of helping 
plants tolerate water stress. Sampling was carried out in the Caatinga biome, a neotropical dry forest, located in northeastern 
Brazil. Illumina MiSeq sequencing of 37 rhizosphere samples (19 for N. variegata and 18 for T. spicata) revealed a distinct 
mycorrhizal community between the studied plants. According to alpha diversity analyses, T. spicata showed the highest 
richness and diversity based on the Observed ASVs and the Shannon index, respectively. On the other hand, N. variegata 
showed higher modularity of the mycorrhizal network compared to T. spicata. The four most abundant genera found (higher 
than 10%) were Glomus, Gigaspora, Acaulospora, and Scutellospora, with Glomus being the most abundant in both plants. 
Nonetheless, Gigaspora, Diversispora, and Ambispora were found only in the rhizosphere of N. variegata, whilst Scutellos-
pora, Paraglomus, and Archaeospora were exclusive to the rhizosphere of T. spicata. Therefore, the community of arbuscular 
mycorrhizal fungi of the rhizosphere of each plant encompasses a unique composition, structure and modularity, which can 
differentially assist them in the hostile environment.

Keywords Environmental DNA sequencing · Tripogon spicatus · Mycorrhizal symbiosis · Glomeromycota · 
Mucoromycota · Glomeromycotina

Introduction

Caatinga, the Neotropical dry forests, also referred to as 
seasonally dry tropical forests (SDTFs), are one of the most 
threatened tropical forests in the world, with deforestation 
being the main threat, especially in Brazil, which comprises 
most of them [1–3]. SDTFs cover extensive areas from Mex-
ico in Central America to Argentina in South America and 
throughout the Caribbean [4].

The Brazilian Caatinga biome harbours the largest SDTFs, 
composed of a shrubland ecosystem that covers 844,453  km2 
and represents 10.1% of the Brazilian territory [5]. Accord-
ing to Teixeira et al. [6], only 1.3% of the Caatinga biome is 
protected, and conservation actions are urgently needed, as 
the Caatinga has unique biodiversity patterns. The evolution-
ary history confined to this biome converged to its unique-
ness, presenting plant species restricted to it [7]. Alongside, 
it is known that a host microbiome co-evolving with endemic 
species is able to help them survive in a harsh environment 
[8]. Therefore, the Caatinga biome is a screening hotspot for 
microbes that may be employed to mitigate abiotic stresses 
[9–12]. However, little is known about the diversity and com-
munity composition of arbuscular mycorrhizal fungi (AMF) 
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associated with plants in dry forests, especially terrestrial bro-
meliads and resurrection grass, as revealed by our mini-review 
(Supplementary Note and Tables S1 and S2).

The mycorrhizal symbiosis plays a key role in maintain-
ing plant growth and, compared to other known symbioses 
(e.g., nitrogen-fixing bacteria), it is the oldest, originated 
approximately 450 million years ago. AMF colonize about 
80–90% of all plant species, and only very few plant families 
cannot generate mycorrhiza in symbiosis with AMF, such 
as Brassicaceae, Chenopodiaceae, Cyperaceae and Jun-
caceae [13]. According to Spatafora et al. [14], AMF have 
been included in the phylum Mucoromycota and subphylum 
Glomeromycotina, while, for Tedersoo et al. [15], they have 
been included in a single phylum, the Glomeromycota, but 
this has been controversial for years and it still is [16].

In the root system of SDTFs, some investigations have 
shown the AMF associated with epiphytic bromeliads 
(belonging to the family Bromeliaceae), which is consid-
ered one of the most species-rich and ecologically important 
plant families in the neotropics [17–20]. However, there are 
no studies on AMF communities associated with the rhizo-
sphere of the terrestrial bromeliad Neoglaziovia variegata 
(Arruda) Mez, endemic to the Caatinga biome, only stud-
ies showing its gastroprotective, antibacterial and acaricidal 
potential [21–23]. Likewise, there are no studies investigat-
ing the AMF communities associated with the rhizosphere 
of Tripogonella spicata (Nees) P.M.Peterson & Romasch, 
the so-called resurrection plant. The term resurrection 
plant is due to its capacity to survive dehydration to an air-
dried state for months, losing most of its cellular water, and 
quickly resume normal physiological activities after rehydra-
tion [24–26]. In addition, other plant species from the fami-
lies Myrothamnaceae, Selaginellaceae, Velloziaceae, and 
Scrophulariaceae are equally known as resurrection plants 
[27]. Perhaps, the associated rhizosphere microbiota acts as 
the downstream agent modulating this upstream response.

Plant-associated AMF can be characterized using vari-
ous molecular marker regions, such as small subunit rRNA 
(SSU), large subunit rRNA (LSU), and internal transcribed 
spacer (ITS), with distinct primer combinations [28]. Nev-
ertheless, each marker region has its own set of advantages 
and drawbacks which must be considered when selecting a 
marker for a particular study [29, 30]. Among these mark-
ers, the SSU rRNA gene is one of the most widely used in 
studies related to mycorrhizal ecology [31–35].

Thus, this investigation has pioneered in revealing the 
arbuscular mycorrhizal fungi composition, structure, and 
modularity of the rhizosphere of N. variegata and T. spicata, 
using high-throughput sequencing of the partial 18S rRNA 
gene (SSU). Therefore, our study represents a significant 
contribution in the mycorrhizal ecology, especially in studies 
with terrestrial bromeliads and resurrection plants.

Materials and methods

Location site and characteristics

The investigation was conducted in the Caatinga biome in the 
State of Pernambuco located in northeastern Brazil (Fig. 1a 
and b). Rhizosphere sampling was carried out at the experi-
mental stations of Brazilian Agricultural Research Corpora-
tion (Embrapa Semi-arid; 9º 03′ 58" S, 40 º 19′ 14"W and 
8º 48′ 11.6''S, 40º 14′ 48.4''W), located in the State of Per-
nambuco, Brazil (Fig. 1c). The climate is BSwh' according 
to the Köppen–Geiger classification, with an annual average 
temperature of 26.3 °C and rainfall of 577 mm. The soil is 
classified as red–yellow Ultisol [36], corresponding to Argis-
solo Vermelho-Amarelo in the Brazilian Soil Classification 
System [37] (Fig. 1d). Both experimental stations share the 
same soil physical and chemical characteristics as shown in 
Table 1. More information about those sampling areas can be 
found in [10, 12, 38]. Moro et al. [39] and Moro et al. [40] 
presented detailed information about the phytogeographical 
patterns of the Caatinga biome.

Sampling of the rhizosphere

Forty-eight native plants were studied, among which 24 
rhizosphere samples were from N. variegata (Fig. 1e) and 
the other 24 rhizosphere samples from T. spicata (Fig. 1f) 
rhizosphere. Sampling was done in October 2018, in the 
late dry season. The rhizosphere soil was sampled accord-
ing to Batista et al. [41]. Briefly, plants were removed 
from the soil using a shovel, followed by manual agitation 
and considering the aggregates adhered to the roots as 
rhizosphere soil. The samples were stored at the Embrapa 
Semi-arid until shipment to the University of São Paulo, in 
the municipality of Piracicaba, in the State of São Paulo, 
Brazil (22º 42′ 35" S, 47º 38′ 05" W), where they were 
stored at − 80 °C prior to molecular analysis. We used 
composite rhizosphere samples for the physicochemical 
soil characterization (Table 1).

Soil rhizosphere DNA extraction

Samples of freeze-dried soil (400 mg) were used for DNA 
extraction with the PowerSoil DNA Isolation kit (QIA-
GEN Inc., Valencia, CA, USA), according to the manu-
facturer. DNA concentrations were determined using the 
Qubit quantification platform with Quant-iT dsDNA BR 
Assay Kit (Invitrogen, Carlsbad, CA, USA). DNA quality 
was verified by electrophoresis in 1% agarose gel using 
tris–acetate-EDTA buffer (1 × TAE), 5 µl extracted DNA 
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and 1 µl GelRed™ stained (0.5 µg  mL−1), followed by 
visualization on a UV transilluminator (DNR – Bio Imag-
ing Systems/MiniBis Pro).

Arbuscular mycorrhizal fungi sequencing and data 
analyses

Only 19 samples of N. variegata and 18 samples of T. 
spicata presented enough DNA concentration and qual-
ity for sequencing. Sequencing was carried out using the 
MiSeq platform (250 bp paired-end) provided by the NGS 
Soluções Genômicas Facility (Piracicaba, São Paulo, Bra-
zil), and libraries built using a 500-cycle V2 Sequencing 
kit. A nested PCR (polymerase chain reaction) was used to 
cover part of the 18S rRNA, a small subunit (SSU) ribo-
somal RNA gene [28]. For the first amplification step, the 
forward primer NS31 (5’-TTG GAG GGC AAG TCT GGT 
GCC-3’) [42] and the reverse primer AML2 (5’-GAA CCC 
AAA CAC TTT GGT TTCC-3’) [43] were used. Whilst for 
the second amplification step were used the forward primer 
AMV4. 5NF (5’- AAG CTC GTA GTT GAA TTT CG -3’) and 
the reverse primer AMDGR (5’- CCC AAC TAT CCC TAT 

TAA TCAT -3’) [44]. According to van Geel et al. [28], 
these primers are widely used in surveys of AMF com-
munities due to their higher complementary specificity 
(Fig. S1). Sequencing data were processed using QIIME2 
[45] classify-sklearn command with sequences aligned 
against virtual taxa (VTs) using the MaarjAM database 
[46] followed by performing basic local alignment search 
tool (BLAST) searches against NCBI’s non-redundant 
nucleotide database [47] of all amplicon sequence variants 
(ASVs) obtained, and then filtering the top 10 best hits. We 
provide both the classification obtained by MaarJAM with 
the best hit (Table S3) and a table containing the top 10 
hits for each ASVs (Table S4). Our approach was similar 
to that of Edlinger et al. [35], who also employed BLAST 
searches to enhance the classification obtained from the 
MaarjAM database. The workflow used in our investigation 
is depicted in Fig. 2. Briefly, raw reads were demultiplexed, 
quality-filtered, joined, and grouped within ASVs using 
DADA2 [48], followed by BLAST search against VT in the 
MaarjAM database. Subsequently, the taxonomic, diversity, 
and abundance analyses were performed. Sequences were 

Fig. 1  Location of the sampling area and distribution of the Caatinga 
biome in Brazil, a map of the State of Pernambuco in Brazil, show-
ing its municipalities, highlighting the municipalities where the sam-
pling was carried out, b map of Petrolina and Lagoa Grande munici-
palities and sampling points, c a common landscape of the Caatinga 

biome during late dry season showing some Mimosa tenuiflora trees, 
d sampled plant Neoglaziovia variegata (Arruda) Mez., a bromeliad 
so-called “caroa”, e sampled plant Tripogonella spicata (Nees) P.M. 
Peterson & Romasch., a grass so-called the resurrection plant, f 
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submitted to the NCBI and Sequence Read Archive (SRA) 
database with the BioProject PRJNA861682.

Alpha and beta diversity analyses were performed fol-
lowing Silva et al. [49]. Briefly, alpha diversity refers to 
organismal diversity within a sample, whereas beta diversity 
refers to organismal diversity between two or more sam-
ples [50]. The alpha diversity metrics used here were Shan-
non index (ASV diversity), Observed ASVs, Chao1 (ASV 
richness), and Faith’s phylogenetic diversity (Faith PD). 
Differences were detected by Wilcoxon signed rank test, a 
non-parametric test [51]. Changes in beta diversity between 
the sampled plants were tested using principal coordinate 
analysis (PCoA) with Bray–Curtis distances coupled with a 
permutational analysis of variance (PERMANOVA, 999 per-
mutations). We used a network analysis based on the New-
man-Girvan algorithm for determining edge betweenness 
to detect mycorrhizal communities in the rhizosphere of the 
sampled plant species. For this method, high-betweenness 
edges are removed sequentially (recalculating at each step) 
and the best partitioning of the network is selected [52]. We 
used RNAseq pipeline edgeR [53] and limma voom [54], 
available from the Bioconductor project [55], to investi-
gate differential abundances, revealing which mycorrhizal 
taxonomic groups were more or less predominant between 
sampled plants based on the log-fold changes (logFC). For 
these analyses, we considered the Benjamini–Hochberg false 
discovery rate correction (FDR < 0.10) [56].

For clarity, relative abundance considered the fraction of 
the taxa observed in the feature table relative to the sum of 
all taxa in the sample, and therefore varying between 0 and 
100%. Whilst differential abundance considered the abundant 
taxa between two or more environments (in our case the rhizo-
sphere of N.variegata and T. spicata) based on the log-fold 
changes [57]. Relative and differential taxonomic abundance 
results were presented at the order and genus level due to the 
wide use of the scientific community that investigates micro-
bial communities with amplicon sequencing [58].

Results

Overview of amplicon sequencing

The total number of 527,246 high quality mycorrhizal 
sequences was generated by Illumina Miseq sequenc-
ing, with an average of 14,249.89 sequences per sample 
(Table S5). The rarefaction curves showed an adequate 
sequencing depth (Fig. S2a). Mycorrhizal sequences were 
grouped into 175 ASV. Neoglaziovia variegata (Arruda) 
Mez and Tripogonella spicata (Nees) P.M.Peterson & 
Romasch shared only four mycorrhizal ASVs (i.e., about 
3%) (Fig. S2b).Ta
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Differential abundance analyses 
between mycorrhizal communities

Regardless of the taxa level, the mycorrhizal composition 
and the specific taxa abundance shifted between the two 
plant species (N. variegata and T. spicata).

At the order level for N. variegata, the mycorrhizal 
composition was summarized by the predominance of 

Glomerales (71%), Diversisporales (21%), and Archae-
osporales (8%), whilst for T. spicata the predominance 
was based on Glomerales (76%), Diversisporales (18%), 
and Paraglomerales (6%) (Fig. 3a). At the genus level 
for N. variegata, the mycorrhizal composition was com-
posed of Glomus (68%), Gigaspora (11%), Ambispora 
(8%), Diversispora (7%), Claroideoglomus (3%), Acaulo-
spora (2%), and Scutellospora (1%), while for T. spicata 

Fig. 2  Workflow of the pipeline used to analyse the AMF amplicon sequencing using nested PCR with NS31and AML2 as the first reaction and 
AMV4.5NF and AMDGR primers as the second round of PCR reactions
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the mycorrhizal composition was based on the presence 
of Glomus (73%), Acaulospora (16%), Paraglomus (6%), 
Claroideoglomus (3%), Scutellospora (1.5%), and Diver-
sispora (0.5%) (Fig. 3b).

Overall, for N. variegata, the most predominant orders 
were Glomerales, Diversisporales, and Archaeosporales, 
while for T. spicata the most predominant order was Para-
glomerales (Fig. 3c), according to the differential abun-
dance analysis. At the genus level, substantial predomi-
nance was detected in N. variegata for the genera Glomus, 
Claroideoglomus, and Gigaspora, and Ambispora. Equally, 
substantial predominance was observed in T. spicata for 
the genera Acaulospora, Scutellospora, Paraglomus, and 
Archaeospora. There was a lower predominance of Diver-
sispora in T. spicata, whereas in N. variegata this genus was 
the most predominant (Fig. 3d).

Alpha and beta diversity, and community detection

The alpha-diversity of the mycorrhizal community dif-
fered significantly according to the plants, with the highest 
Shannon diversity (p < 0.05), observed ASV (p < 0.01), 
Chao1 (p < 0.01), and Faith PD (p < 0.05) being found 

in the rhizosphere of T. spicata (Fig. 4). Likewise, beta-
diversity showed higher dissimilarities of the mycorrhi-
zal community between the plants based on Bray–Curtis 
distance, which was confirmed by the PERMANOVA 
(p < 0.001) (Fig. 5a, Table S6).

According to the algorithm to perform community 
detection based on edge betweenness (Newman-Gir-
van), we noticed a different pattern of sample clustering 
within the same plant, with the most pronounced differ-
entiation in N. variegata. Overall, four different mycor-
rhizal groups of ASVs were detected within N. varie-
gata, in which each one was composed of at least three 
samples. Higher modularity was found for N. variegata 
(0.240331), reflecting dense connections within groups 
of ASVs and sparse connections across communities 
(Fig. 5b). For T. spicata we observed a prevalence of 
only one group of ASV and lower modularity (0.005478) 
(Fig. 5c). In other words, the mycorrhizal community of 
the rhizosphere of T. spicata has strong similarity, clus-
tering in the same module class, while the rhizosphere 
of N. variegata comprises different mycorrhizal com-
munities strongly dissimilar to each other as evidenced 
by their distinct module classes.

Fig. 3  Community composition of arbuscular mycorrhizal fungi 
(AMF) in two plants sampled in the Caatinga biome based on the rel-
ative abundance of order, a and genus, b taxa. Differential abundance 
analysis considering order, c and genus, d taxa of the AMF com-
munity for the plants with the results expressed by log-fold changes 

(logFC). logFC was calculated by subtracting the base mean counts 
of log ratios of each microbial taxa present at Neoglaziovia variegata 
from microbial taxa present at Tripogonella spicata. Analysis was 
performed using the edgeR and limma voom packages available from 
the Bioconductor project in R environment
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Discussion

Unravelling the composition of the mycorrhizal commu-
nity associated with the rhizosphere of plants of hostile 
environments can be a step forward in field investigations 

of mycorrhizal ecology. Our investigation is the beginning 
of an ongoing project and, therefore, some limitations and 
future perspectives can be pointed out. Firstly, we must 
consider that the entire AMF community may not have 
been assessed due to limitations, when using the molecular 

Fig. 4  Alpha diversity indices considering the two plants sampled 
in the Caatinga biome, expressed by Shannon diversity, a observed 
ASV [amplicon sequence variant], b Chao1, c and Faith's phyloge-
netic diversity, d. Statistical differences are denoted as *(p < 0.05) and 

**(p < 0.01) by the Wilcoxon test. Heavy horizontal line within a box 
represents the median, the box represents the interquartile range, and 
whiskers indicate the variability outside the upper and lower quartiles
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approach, i.e., biases from DNA extraction to low accu-
racy of the DNA reference databases [29, 30, 59, 60]. For 
example, the use of small subunit rRNA may not provide 
sufficient variability to fully resolve AMF species, as it is 
a slow-evolving gene, although it is still appropriate for 
higher phylogenetic ranks [61–63]. Furthermore, the bio-
informatics pipeline used for analyzing the data can be sub-
ject to constant changes and improvements [31, 33, 46, 64, 
65], as efforts in the mycology field of AMF phylogeny and 
taxonomy continue to increase, leading to many discover-
ies or reassigning of new genera and species, especially in 
the most abundant families in soil such as Glomeracea [66, 
67]. Secondly, it is important to consider that precipitation 
and temperature regulate the composition and diversity of 
the AMF community [68–70]. Considering that our sam-
pling strategy was done at the end of the dry season, we 
might have different results for the rainy season.

Undoubtedly, these issues do not discredit our investiga-
tions or the role of arbuscular mycorrhizal fungi (AMF) in 
providing essential ecosystem services [71]. Even though 
some authors disbelieve the necessity of considering the 
mycorrhizal community for the plant health under harsh envi-
ronments or when managing crops in agriculture [72, 73], 
we firmly advocate that these ancient symbiotic groups are 
crucial for the soil–plant sustainability. We go further and 
argue that there are keystone taxa of AMF, which, combined 
with the physiological plant traits, are essential to help plants 
to overcome drought events. Notwithstanding, it is reassured 
that AMF is among the most ubiquitous plant mutualists that 
improve plant growth and yield by facilitating the uptake of 
phosphorus and water, besides other nutrients [74, 75].

In our investigation, the lack of information about the 
mycorrhizal ecology of the sampled plants was detected by 
our mini-review (Table S1 and Table S2), especially when 
they are considered as a host of microbes that can help crop 
plants to tolerate shortages of water in the soil. Overall, the 
AMF community found in the rhizosphere of N. variegata 
differs from the rhizosphere of T. spicata and this was reas-
sured by the difference in network modularity observed. 
Briefly, modularity is a measure of network structure, where 
high modularity indicates that the network has dense con-
nections within certain groups of nodes and sparse connec-
tions between the other groups [76].

Although the plants were sampled at two different sites, 
we observed that the soil chemical and physical characteri-
zation of both sites was similar, suggesting that the distinct 
mycorrhizal composition may be related to the host phylog-
eny rather than the sampled site (Table 1). Indeed, the two 
plants studied are not phylogenetically related and therefore 
may harbour a different AMF community and exploit their 
soil resources in different ways [77–79].

Although the AMF community differed between the 
rhizosphere of the plants species, more than 90% of the 
mycorrhizal community for both plants was composed of 
the order Glomerales and Diversisporales. Likewise, Leroy 
et al. [20], investigating the taxonomic and functional diver-
sity of root-associated fungi in bromeliads (none of them 
being N. variegata), found the order Glomerales to be domi-
nant, and Rhizophagus, Funneliformis and Glomus to be the 
main genera, while here for our bromeliad, the main genera 
found were Glomus, Gigaspora, Ambispora and Diversis-
pora. These taxonomic differences may be expected, since 

Fig. 5  Beta diversity expressed by principal coordinate analysis (PCoA) 
using Bray–Curtis distances, depicting mycorrhizal data from two plants 
sampled in the Caatinga biome, a. Network analysis for mycorrhizal 
community detection within N. variegata, b and T. spicata, c based on 

edge betweenness (Newman-Girvan). Each node represents the samples 
and colours represent the different mycorrhizal communities detected. 
Same colours between panels b and c represent similar mycorrhizal com-
munity
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life forms, nutritional modes and environmental traits drive 
the root fungal community structure in bromeliads.

On the other hand, we can also find similar results with a 
distinct host, although it is known that the partner specificity 
in mycorrhizal symbiosis occurs at the level of ecological 
groups, rather than at the species level [80]. For example, 
dos Passos et al. [79], evaluating the composition of the 
AMF community of soil samples from the rhizosphere of 
Mimosa tenuiflora (legume), found the order Glomerales to 
be dominant and argued that some taxa of this order are 
recognised for colonising plants first, allowing their estab-
lishment in diverse environments. Several studies using 
native plants of the Caatinga have shown similar results [70, 
81–84]. In addition, Davison et al. [32] have documented the 
worldwide predominance of Glomerales across a range of 
local environmental conditions and spatial configurations.

We observed that T. spicata, besides the highest diver-
sity indices and predominance of different taxa, presented 
a well-structured AMF group according to the algorithm 
for community detection (i.e., lower modularity), and we 
raised the following questions: (1) could this structuring 
(presence of only a dense ASV group) result in benefits for 
the plant? (2) could the predominant taxa observed here 
(Acaulospora, Scutellospora, Paraglomus, and Archaeos-
pora) play a crucial role in the desiccation tolerance trait 
of T. spicata?. Additionally, (3) could the structure of the 
AMF group observed in the network and the predominant 
taxa identified (Glomus, Claroideoglomus, Gigaspora, and 
Diversispora) contribute to the establishment of N. variegata 
in the harsh environment of the Caatinga biome?.

Indeed, there is evidence that certain species within the 
aforementioned genera can significantly impact a plant's 
response to abiotic stresses, such as saline stress and water 
shortage in the soil [85, 86]. This is due in part to their 
intrinsic stress-tolerant character and widespread geographi-
cal distribution, allowing them to adapt to adverse environ-
mental conditions [87–90]. For example, Oliveira-Filho 
et al. [86] demonstrated that inoculating Carica papaia 
L. plants with Scutellospora heterogama (now known as 
Dentiscutata heterogama), Gigaspora candida, and Acau-
lospora scrobiculata increased the plant's tolerance to salt 
by enhancing leaf hydration and reducing biomembrane 
damage, with inoculation of D. heterogama and G. candida 
standing out. This finding is particularly interesting given 
that many soils in the Caatinga biome, where the plants stud-
ied were sampled, have high salt content [91].

Furthermore, Moreira et al. [85] found that Coffea ara-
bica L. plants inoculated with Rhizophagus clarus, Clar-
oideoglomus etunicatum, and Dentiscutata heterogama 
exhibited increased tolerance to water stress of up to 40% of 
field capacity. This may be due to the ability of AMF to miti-
gate the effects of drought stress by enhancing water trans-
port, increasing the production of plant osmolytes, stomatal 

density, and gene expression related to plant hormones [90]. 
Other investigations have showed the positive effect of Acau-
lospora sp. on promoting the plant-growth response under 
water stress in soil, whilst little is known about how Para-
glomus sp. and Archaeospora sp. can overcome the negative 
effects of drought in plants [92, 93].

Comparing the plants, we noticed a different mycorrhizal 
predominance for N. variegata for the genera Claroideoglo-
mus (order Glomerales), Gigaspora (order Diversisporales), 
and Ambispora (order Archaeosporales). Among these genera, 
Claroideoglomus sp. has been the most studied in the Caat-
inga and has been shown to be promising to increase shoot 
dry weight of native plants due to its rapid establishment and 
symbiotic interactions with the host [68, 87]. Therefore, con-
sidering these results combined with the community detection 
algorithm for N. variegata, the C-R-S framework proposed by 
Chagnon et al. [87] fits very well. Briefly, it classifies AMF 
species into three functional groups, namely, competitor (C), 
ruderal (R), and stress tolerating (S). The aforementioned 
authors argued that species belonging to the genus Gigaspora 
sp. have competitive traits (higher soil hyphae density and 
stronger carbon-sink strength), and Claroideoglomus sp. have 
ruderal traits (higher growth rate and more efficient hyphae 
healing). Ambispora sp. appears to exhibit stress tolerating 
traits, such as low growth rate and long-lived mycelium [87, 
94]. However, this was not completely true for T. spicata, 
given the lower modularity and predominance of other taxa 
observed. As the first investigation to describe the mycorrhizal 
community of the rhizosphere of these plants, we argue that 
studies evaluating the mycorrhizal community in the plant 
roots are necessary to understand the benefits of the rhizos-
phere community in the plant performance.

Conclusions

We concluded that, although arbuscular mycorrhizal com-
munities found in the rhizosphere differ between N. varie-
gata and T. spicata, both of them have Glomus sp. as the 
most abundant genus. Furthermore, we argue that the genera 
Gigaspora, Diversispora, Ambispora, Scutellospora, Para-
glomus, and Archaeospora may be playing a key role for 
both plant species. Considering that the sampled sites shared 
the same soil chemical and physical traits, we concluded that 
the host species was the main driver for mycorrhizal diver-
sity, richness and modularity in the rhizosphere.
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