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Abstract: Spodoptera frugiperda (fall armyworm) is one of the most important maize pests in the
world and the baculovirus Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV), a natural
pathogen of this pest, has been used as a biopesticide for its control. At present, in vivo strategies at
the commercial scale are employed by multiplying the virus in the host insect in biofactory facilities;
however, in vitro large-scale production is an interesting alternative to overcome the limitations of
baculoviruses massal production. This study aimed to develop the process of the SfMNPV in vitro
production by evaluating the effects of different multiplicities of infection (MOI) and nutritional
supplements, morphological and molecular analysis of the infection on the growth of Sf9 cells and
virus production. The Bioreactor Stirred Tank Reactor (STR) approach with glutamine-supplemented
Sf-900 III serum free culture medium, combined with the MOI of 1.0, showed the best viral production
performance, with a specific productivity above 300 occlusion bodies (OBs)/cell and volumetric
productivity of 9.0 × 1011 OBs/L.

Keywords: SfMNPV; Spodoptera frugiperda; in vitro production; fall armyworm; baculovirus; biological
control; bioreactor

1. Introduction

The fall armyworm (FAW) Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae)
is native to the tropical regions of the Western Hemisphere, from the United States to
Argentina [1]. It is a cosmopolitan polyphagous noctuid and considered the most impor-
tant insect pest in maize crops worldwide, with recently reported occurrences in Africa
and Asia continents, causing significant damage at all stages of plant development [2–4].
This pest has been mainly controlled with chemical pesticides or genetically modified
maize, raising environmental concerns and generating resistant biotypes [1,5,6]. In this
context, baculoviruses have been considered as an alternative for the control of FAW. The
Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV), genus Alphabaculovirus, family
Baculoviridae, is pathogenic to FAW. Some isolates of Spodoptera frugiperda multiple nucleopoly-
hedrovirus (SfMNPV), genus Alphabaculovirus, family Baculoviridae, have been successfully
used as biopesticides for the control of this pest in many countries [7–10]. The production
of SfMNPV for use as a commercial biopesticide is obtained by infecting healthy larvae
but it has some disadvantages [11,12]. However, baculovirus multiplication in cell culture
has the potential to overcome these limitations during large-scale production [13]. The
SF-21 and Sf9 cell lines support the wild SfMNPV isolates’ replication both in suspension
and in static culture [14,15]. One of the downsides of the serial passage of virus in insect
cell culture is the occurrence of Few-Polyhedra (FP) mutants that produce low yields of
occlusion bodies (OBs), which have an advantageous rate of virus replication [16] but show
a low virulence of SfMNPV produced in SF-21 cells [17]. At the laboratory scale, the in vitro
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production of SfMNPV is considered commercially viable when it reaches 300 Occlusion
Bodies (OBs)/cell [13]. Therefore, this work aimed to scale up the in vitro production of
SfMNPV, optimizing cell growth and viral inoculum parameters and comparing the OBs
production with different MOIs to increase the final benefit–cost ration.

2. Materials and Methods
2.1. Cell Line, Virus, and Medium

Spodoptera frugiperda Sf9 cell line (ATCC code 12659-017) stock was maintained at
28 ◦C in Sf-900 III insect cell culture medium (Life Technologies, Carlsbad, CA, USA)
in 0.5 L Schott bottles under 130 rpm agitation speed in an orbital shaker (Innova
4000, New Brunswick Scientific, Edison, NJ, USA). The virus isolate used in this study,
SfMNPV-19, was obtained from S. frugiperda [18] and was kindly provided by Dr.
Fernando Hercos Valicente (Embrapa Milho e Sorgo). This isolate is deposited in the
Embrapa Invertebrate Virus Collection (CVI), in Brasilia, Brazil. (CVI code BRM5023).
The virus stock suspension of 4.65 × 106 pfu/mL was previously obtained from static
culture [15]. All cell cultures used Sf-900™ III Serum Free Medium (Gibco, Waltham,
MA, USA).

2.2. Evaluation of Culture Media Supplementation for Sf9 Cells Growth

The cells were grown in a Bioreactor Stirred Tank Reactor (STR) BioFlo 110 (New
Brunswick Scientific) with a working volume of 1.0 L. The following parameters were
adopted: temperature 28 ◦C, Dissolved Oxygen (DO) 30% of air saturation, agitation
80 rpm, aeration flowrate 200 mL/min, and initial cell concentration 5 × 105 cells/mL.
A batch without supplementation (Run 1) and a batch with glutamine supplementation
(Run 2) were used. In the supplemented batch, glutamine (Merck) was added to the culture
medium at a proportion of 1.0 g/L at the end of the exponential growth phase. Cell cultures
were monitored for growth and metabolic activity parameters.

2.3. Effect of Multiplicity of Infection (MOI) on SfMNPV In Vitro Production

The influence of two different multiplicities of infection (MOIs) in the SfMNPV pro-
duction was investigated in bioreactor BioFlo 110 (New Brunswick Scientific) or Biostat B
(Sartorius, Göttingen, Germany), with the previously described parameters. The culture
medium was supplemented with glutamine 1.0 g/L at the beginning of cell growth. The
viral inoculum was tittered by the serial dilution method [19] and the medium tissue culture
infectious dose (TCID50) value was calculated according to [20]. The virus infection was
carried out when the cells reached the concentration of 3.5 × 106 cells/mL. One batch was
implemented with an MOI of 0.1 (Run 3), and another batch with an MOI of 1.0 (Run 4).
Cell growth was monitored for metabolic activity and viral infection parameters for 11 days
in the batch with MOI 0.1 and 17 days in the batch with MOI 1.0.

2.4. Analysis of Growth, Nutrients and Metabolites

Each bioreactor batch typically collected samples twice a day for cells, glucose, glu-
tamine, glutamate, lactate, and ammonium quantification. The cells were counted in
a Neubauer chamber under phase-contrast microscopy at 200×. The viable cells were
quantified with 0.4% Trypan blue (Sigma-Aldrich, San Luis, MO, USA). The samples were
centrifuged at 3000× g for 3 min. The supernatant was collected and processed in the
biochemistry analyzer YSI 2700 Select (Yellow Springs Instruments) according to the manu-
facturer’s instructions, except for ammonium quantification. In this case, the supernatant
was quantified by colorimetric kit Genese (BioAssay Systems, Hayward, CA, USA) accord-
ing to the manufacturer’s instructions, with readings carried out in a spectrophotometer
(OD 340 nm) using SoftMax Pro 6.4 (Molecular Devices, San Jose, CA, USA) software.
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2.5. Morphological Analysis of the Infection

SfMNPV OBs were obtained from the bioreactor samples centrifuged, as described
above. Pelleted cells were dissolved with SDS 1% for 1 h at 28 ◦C. The OBs were counted in
a Neubauer chamber under phase-contrast microscopy at a 400× magnification. Transmis-
sion Electron Microscopy of SfMNPV-infected cells was performed at 7 days post infection
(dpi) with the bioreactor batch sample without culture medium supplementation to con-
firm the quality of the produced OBs. The samples were prepared according to [21]. The
cell pellet was washed in phosphate-buffered saline (PBS) and immersed in a fixer (2.5%
glutaraldehyde in 0.1 M sodium cacodylate, pH 7.3) at 4 ◦C overnight. Secondary fixation
was carried out for 1 h with 1% osmium tetroxide. After fixation, the cells were dehydrated
through an ascending acetone series, followed by a sequence of acetone: Spurr resin (3:1,
2:1, 1:1, and 5 mL of Spurr). Samples were kept in Spurr at 37 ◦C for 72 h. Ultrathin sections
obtained with a Leica ultramicrotome using a diamond knife were stained with 2% uranyl
acetate and visualized at the Zeiss TEM 109 electron microscope.

2.6. PCR Analysis

Bioreactor samples inoculated with MOI 0.1 (Run 3) were submitted to PCR analysis
and sequencing to verify possible modifications in genes related to OB formation and
structural nucleocapsid and envelope proteins. The OBs obtained from 0, 3, 5, and 7 dpi
were dissolved in an alkaline solution and used for DNA extraction with DNeasy Blood &
Tissue (Qiagen, Hilden, Germany), following the manufacturer’s instructions. The DNA
was quantified with a low-DNA-mass ladder (Invitrogen, Waltham, MA, USA) in 0.8%
agarose gel electrophoresis. SfMNPV-19 OBs obtained from larvae were extracted together.
Specific primers were designed based on the SfMNPV-19 sequence [22] for polh, protf, fp25k,
pp34, and p10 genes (Table 1).

Table 1. Sequences of specific primers designed Spodoptera frugiperda multiple nucleopolyhedrovirus
(SfMNPV) genes, based on a complete sequence of SfMNPV-19 (GenBank accession code EU258200.1).

Gene Primer Name Primer Sequence (5′-3′)

polh polhFw_Sf_2013
polhRv_Sf_2013

(AATGTATACTCGTTACAGCTATAACCCA)
(GTGGTATGGTTTATTAGTACGCGGG)

protf fproteinFw2_Sf_2013
fproteinRv2_Sf_2013

(GCCGAACGTAAGTTGTTGTT)
(CATACACAGATCCATTAACATTTACA)

fp25k 25kfpFw_Sf_2013
25kfpRv_Sf_2013

(CATAAACTAACATGACGACTGCCACTG)
(CGTTTATCGCGTTGCGCACTCATC)

pp34 pp34Fw_Sf_2013
pp34Rv_Sf_2013

(GTTACAATATAATGTCGTTGATTAC)
(CTTGGATAATCCTTTGATTG)

p10 p10Fw_Sf_2013
p10Rv_Sf_2013

(CGCATTCGATTAGACGGACC)
(GGCCACGATACAGAATTACGC)

PCR was performed using GoTaq Flexi DNA Polymerase (Promega). The reaction for
each gene was made with 1× PCR buffer, 0.4 mM dNTPs, 0.2 µM of primer pair, 2.0 mM
MgCl2, 1.25 U Go Taq Flexi DNA polymerase, 1 µL DNA and RNAse-free water up to
50 µL. PCR was performed with an initial denaturation step at 95 ◦C, 5 min; then, 35 cycles
of denaturation (95 ◦C, 30 s), annealing (50–64 ◦C, 1 min), and elongation (72 ◦C, 1 and a
half minutes) and a final step of elongation occurred for 10 min. The PCR products were
subjected to electrophoresis in 0.8% agarose gel [23]. The PCR products of 7 dpi samples
were purified with a QIAquick gel extraction kit (Qiagen) according to the manufacturer’s
instructions and sent for Sanger sequencing at Macrogen (Korea). The sequences were
compared to the SfMNPV-19 sequence from GenBank (taxid accession number 10455) using
ClustalW in the MEGA X program [24].
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2.7. Quantitative Real-Time PCR (qPCR)

Samples from bioreactor inoculated with MOI 0.1 and MOI 1.0 were submitted to
qPCR analysis to compare the viral DNA quantification to OBs quantification. The OBs
obtained from 3 and 7 dpi (MOI 0.1) or at 3, 7, 11 and 14 dpi (MOI 1.0) were dissolved in an
alkaline solution and used to extract DNA with DNeasy Blood & Tissue (Qiagen), following
the manufacturer’s instructions. The DNA was quantified with a low-DNA-mass ladder
(Invitrogen) in 0.8% agarose gel electrophoresis. SfMNPV-6nd OBs obtained from larvae
were extracted and serially diluted for absolute quantification. The qPCR for SfMNPV with
specific primers for the sf32 gene was carried out in a Rotor gene 5plex HRM platform
(Qiagen), according to [17].

3. Results
3.1. Evaluation of Culture Media Supplementation for Sf9 Cells Growth

Run 1 was conducted to establish a metabolic reference for Sf-9 growth cultivation;
hence, the metabolic analysis shows cell concentration peaks as glutamine is deployed
(Figure 1). With this in mind, a new bioreactor run was designed to supplement glu-
tamine as the growth reaches the exponential phase (Run 2, Figure 2). The comparison
of metabolic analysis (Figures 1 and 2) in the bioreactor batches with and without glu-
tamine supplementation showed no clear effect of supplementation in the final values
of viable cell concentration. The average final value of glutamine after supplementation
was 0.48 g/L. This value is close to the glutamine concentration before supplemen-
tation. However, the substrate consumption rate was higher after supplementation,
indicating nutritional necessity. Furthermore, without supplementation, after reaching
glutamine depletion at the highest cell concentration, it seems to lead to a subsequent
glutamine production and glucose consumption increase (Figure 1). With supplemen-
tation, this pattern is not observed, implying that the glutamine rate consumption may
be more controlled and the growth may be less dependent on glucose (Figure 2). The
other metabolic parameters (lactate, glutamate, and ammonium) presented a similar
profile in both supplemented and non-supplemented culture media.

3.2. Effect of Viral Inoculum on SfMNPV Production

In order to verify MOI’s influence on SfMNPV production, two different values (0.1
and 1.0) were tested in bioreactor with glutamine supplementation (Run 3 and Run 4,
respectively). Cell concentration peaked after about 2.5 dpi as the cell viability dropped
and infection progressed (Figures 3 and 4). Run 4 was carried out for longer, but it is
clear that, after about 10 dpi, cell infection was saturated even with the percentage of cell
infection reaching around 30% (Figure 4). Additionally, this batch was used to test the viral
DNA quantification through q-PCR, which showed a consistent correlation with other viral
parameters (Figure 4).

In comparison, even though the maximum viable cell concentration and percentage
of infected cells were similar in both experiments, the batch with a higher MOI presented
with better viral yields (Table 2).

3.3. Quantitative PCR Standardization

To check the accuracy of qPCR quantification as a predictor for virus OBs production,
the qPCR quantification of viral DNA was performed at 3, 7, 11 and 14 dpi in the bioreactor
inoculated with MOI 1.0 (Run 4). The values were compared to optical microscopy OBs’
quantification at the same times post-infection (Figure 5). The curve in viral DNA presented
a fast-growing rate from 3 to 11 dpi, and then stabilized it until 14 dpi. A similar pattern
was observed for the curve of OBs/mL, as well as for the curve in the percentage of cells
with OBs, indicating the accuracy of qPCR quantification and the best time for the viral
production quantification.
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Figure 1. Kinetics of Run 1: Sf9 cell growth and metabolic analysis of glucose, lactate, glutamine,
glutamate, and ammonium in STR bioreactor without glutamine supplementation. Samples were
collected daily for cell-counting, expressed as viable cells ×106/mL. Glucose, glutamine, and lactate
were quantified and expressed as g/L.

Pathogens 2023, 12, x FOR PEER REVIEW 5 of 14 
 

 

Figure 1. Kinetics of Run 1: Sf9 cell growth and metabolic analysis of glucose, lactate, glutamine, 
glutamate, and ammonium in STR bioreactor without glutamine supplementation. Samples were 
collected daily for cell-counting, expressed as viable cells ×106/mL. Glucose, glutamine, and lactate 
were quantified and expressed as g/L. 

 
Figure 2. Kinetics of Run 2: Sf9 cell growth and metabolic analysis of glucose, lactate, glutamine, 
glutamate, and ammonium in STR bioreactor with glutamine supplementation at the end of the 
exponential growth phase. Samples were collected daily for cell-counting, expressed as viable cells 
×106/mL. Glucose, glutamine, and lactate were quantified and expressed as g/L. The time axis was 
shifted to adjust the growth lag phase between runs. 

3.2. Effect of Viral Inoculum on SfMNPV Production 
In order to verify MOI’s influence on SfMNPV production, two different values (0.1 

and 1.0) were tested in bioreactor with glutamine supplementation (Run 3 and Run 4, 
respectively). Cell concentration peaked after about 2.5 dpi as the cell viability dropped 
and infection progressed (Figures 3 and 4). Run 4 was carried out for longer, but it is clear 
that, after about 10 dpi, cell infection was saturated even with the percentage of cell infec-
tion reaching around 30% (Figure 4). Additionally, this batch was used to test the viral 
DNA quantification through q-PCR, which showed a consistent correlation with other vi-
ral parameters (Figure 4). 

In comparison, even though the maximum viable cell concentration and percentage 
of infected cells were similar in both experiments, the batch with a higher MOI presented 
with better viral yields (Table 2). 

Figure 2. Kinetics of Run 2: Sf9 cell growth and metabolic analysis of glucose, lactate, glutamine,
glutamate, and ammonium in STR bioreactor with glutamine supplementation at the end of the
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×106/mL. Glucose, glutamine, and lactate were quantified and expressed as g/L. The time axis was
shifted to adjust the growth lag phase between runs.
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Figure 3. Kinetics of Run 3: Sf9 cell growing in glutamine–supplemented bioreactor and infected
with SfMNPV-19 at day 3.9 (MOI 0.1). Samples were collected for cell-counting, expressed as viable
cells/mL, and viability (%). OBs were counted and expressed as OBs/mL. Cells with OBs were
expressed as % of infected cells. The time axis was shifted to adjust the lag growth phase between
runs. The vertical line represents infection time.
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Figure 4. Kinetics of Run 4: Sf9 cell growth in glutamine-supplemented bioreactor and infected
with SfMNPV-19 at day 3.8 (MOI 1.0). Samples were collected for cell-counting, expressed as viable
cells/mL, and viability (%). OBs were counted and expressed as OBs/mL. Cells with OBs were
expressed as % of infected cells. Viral DNA concentrations were expressed in ng/mL. The vertical
line represents infection time.
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Table 2. Maximal viable cell and SfMNPV (OB) concentrations in Sf9 cell cultures using two multi-
plicities of infection (MOI). Percentage of viable cells that were infected, relation between OB and
infected cells and concentration of viral DNA at 7dpi in these runs.

Run MOI
Maximum Viable

Cell Concentration
(×106 cell/mL)

Maximum SfMNPV
Concentrations
(×106 OBs/mL)

(×107)

Percentage of
Infected Cells

(%)

OBs/
Infected

Cell

Viral
DNA

(ng/mL)

3 0.1 6.2 6.5 30.0 30.4 2.03
4 1.0 6.2 90.0 32.0 339 8.72

3.4. Effect of SfMNPV Infection on Cell Metabolic Activities

The cell metabolic analysis of infected cells at 7 dpi (Table 3) revealed a higher glucose
consumption by cells infected with MOI 1.0, evidencing an increase in cell consumption
after the more efficient viral infection. Glutamine production was also higher in the cells
inoculated with MOI 1.0 and, as a consequence, ammonium production was higher (Table 2
and Figure 4). Lactate metabolism was similar between MOIs, indicating that there was
no shortness of oxygen [25]. On the other hand, the kinetics profile of glucose, lactate,
glutamate, glutamine, and ammonium by non-infected and infected cells for 12 days
was similar.

Table 3. Consumption or production rates of glucose, lactate, glutamate, glutamine, and ammonium
by Sf9 cells infected with different multiplicities of infection (MOI) at 7 dpi.

Cell Metabolic Parameter Cell Consumption/Production Rate (nmol/106 cel/h)

MOI 0.1 (Run 3) MOI 1.0 (Run 4)

Glucose 25.8 115.5
Lactate 0.9 1.7

Glutamine 9.8 12.3
Glutamate 2.7 1.5

Ammonium 0.9 13.4

3.5. Sequencing Analysis of SfMNPV Produced in Bioreactor

The analysis of agarose gel electrophoresis of PCR fragments revealed that all the sam-
ples had the expected gene size (754 bp—polh, 1217 bp—prot f, 625 bp—fp25k, 1063 bp—pp34,
495 bp—p10), indicating that bioreactor production with MOI 0.1 did not cause selection
for defective viruses in these essential structural genes. The nucleotide sequences of these
samples did not present any mutation or indel that induced amino acid changes compared
to the sequence of the wild SfMNPV-19 isolate.

3.6. Morphological Analysis of SfMNPV Production

The optical microscopy from 0 to 7 dpi in all bioreactor batches with SfMNPV revealed
the progress of infection over time, with an increasing number of cells presenting typical
baculoviruses infection symptoms, such as cell hypertrophy, cell lysis, and dark nuclei
(Figure 5). Ultrastructural analysis of the infected Sf9 cells showed, as expected, cell nuclei
hypertrophy and the production of many OBs compared to non-infected cells (control)
(Figure 6). Other typical baculovirus-induced effects, such as the formation of virogenic
stroma, nucleocapsids and virions, were also observed. No undesirable effects, such as few
polyhedra in the cell nuclei or OB presenting aberrant polyhedra, were observed.
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Figure 6. Electron micrographs of mock-infected Sf9 cells with 8000× magnification (A) and cells
infected with SfMNPV-19 in STR bioreactor (B–D) at 7 dpi with 12,000×, 20,000× and 30,000×
magnification, respectively. SEM performed with high voltage (HV) of 50,000 kV, horizontal field
width (HFW) of 3.4 µm (B), 2.1 µm (C) and 1.4 µm (D).

4. Discussion

At present, the production of SfMNPV for use as a commercial biopesticide is achieved
by infecting healthy larvae [11]. This technique for mass production has disadvantages,
such as the increased cost of the viral products due to the intensive labor required, canni-
balistic larval behavior and contamination problems [12]. Baculovirus production in cell
culture is an alternative to overcome such difficulties [13]. In vitro virus production in a
bioreactor offers the possibility of achieving greater control of the process, with higher
quality and greater volume in a smaller space/infrastructure.

There are several studies focused on the bioreactor culture of baculoviruses aim-
ing to achieve recombinant protein production [26–29], although only a few studies
have been conducted regarding the in vitro production of baculoviruses for pest con-
trol [30–32]. Advances were achieved in the selection of suitable cell lines for high OBs
production [15,33]. However, there are still challenges to be overcome in the scale-up
process for large-scale in vitro production. Several factors have been shown to affect
the volumetric and specific polyhedra production in the Sf9 suspension culture infected
with baculovirus. The initial cell seeding, MOI, and glucose consumption in infected
cells are among the factors that were studied for AgMNPV infection in these cells [31].
For SfMNPV, studies of the kinetics of the infection in Sf9 growth were performed in
suspension culture [14]. To our knowledge, the present study is the first to be carried
out in a bioreactor for SfMNPV production.
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We conducted preliminary studies with a combination of Sf9 cells, culture medium
SF900 III and a SfMNPV isolate (named 19) that indicated the best initial cell seeding and
the need for glutamine supplementation. The supplementation appeared to be necessary
due to the coincidence between the end of the log phase of cell growth and the depletion of
glutamine in the culture medium. The supplementation did not seem to impact the final
cell density; however, it may play a more complex role in infected and non-infected cell
metabolism. The accumulation of metabolic subproducts such as lactate and ammonium
is closely related to oxygen and glutamine consumption [34]. Nevertheless, glutamine
supplementation did not cause an excess of these toxic subproducts. The Sf9 cells’ efficiency
in canalizing glucose to oxidation in the TCA cycle was noted, in addition to their ability to
prevent the exaggerated formation of lactate [27,29]. On the other hand, the ammonium
detoxication by the GS/GDH/GOGAT-recycling mechanism did not occur efficiently and
caused the accumulation of glutamate, though nontoxic [35]. Finally, there are literature
reports stating that the density effect directly affects viral production through a loss in
metabolic efficiency dependent on the cell density of the culture and, consequently, greatly
affects the stage of infection and viral production [36]. Low viral productivity at a high
cell density has been observed, in conjunction with nutrient depletion and in controlled
bioreactor cultures [25]. Thus, a better understanding of metabolic mechanisms can be very
important to improve the rate of infection.

The ability to incorporate nutrients to sustain the viral division process was shown
to be maintained without a reduction in consumption and general metabolism; that is,
a specific metabolic adaptation occurs, and thus the specific consumption of glucose
increases [37]. The intensification of post-infection metabolism is also supported by [38],
who conducted a study of the metabolic flowchart and demonstrated that metabolism in
Sf-9 cells is even more efficient via TCA after and during the viral infection process. In this
study, an increase in the efficiency of glucose use for biosynthesis and post-infection energy
production was observed.

The increase in the MOI for 1.0 (Run 4) resulted in a higher volumetric and specific pro-
duction of SfMNPV, which resulted in a higher glucose consumption and, as a consequence,
an increase in the lactate production by cells, but this did not reach critical values. The
authors of [31] also observed an increase in glucose consumption and lactate production in
Sf9 cells infected with AgMNPV, but did not observe any effects on glutamine consumption.
They also observed a higher specific production with an increase in MOI of 0.1 to 1.0,
although the volumetric production was lower.

The best approach observed in this work was achieved with the bioreactor using
MOI 1.0, which resulted in a volumetric production of 9.0 × 108 OBs/mL and a specific
production of 340 OBs/cell.

Another concern regarding the in vitro production of baculoviruses is the virulence
loss of the produced virions, since the presence of few polyhedra mutants, aberrant OBs
morphology, few virions inside OBs and defective interfering genotypes has been re-
ported [16,31,34,39]. The ultrastructural analysis and genetic analysis of several genes,
performed for SfMNPV produced in the bioreactor, revealed OBs and virions without
signals of critical modifications. However, the low virulence observed for OBs from static
culture for this same isolate in another study [17] indicates the need for further work with
bioassays and the complete genome sequencing of the isolates obtained from bioreactors.

Quantification by qPCR method, as performed in this work, was revealed to be a
useful tool. It allowed for the prediction of OB values in suspension and, more importantly,
the technique could help to compare different production batches with more accuracy, as
well as preventing the intrinsic error caused by different people counting in the Neubauer
chamber. Another advantage of the method is the possibility of quantification of the
budded virus in the suspensions in conjunction with OBs, similar to the quantifications
performed by [17].
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5. Conclusions

Based on the presented results, we can conclude that the main factor of the infection
process is to achieve a balance between an efficient MOI and the risk of generating mutants.
Higher MOIs are more predictable, reproducible, and more adjustable through time of
infection (TOI) [40], while lower MOIs tend to prevent mutant formation. The MOI of
1.0, despite presenting a similar percentage of cell infection as the MOI of 0.1, resulted
in a specific productivity that was 10 times higher. This optimization enables high-scale
production since it reached the minimum amount recommended by [13] for commercial
production. A bioreactor with 300 L capacity, operating 20 times per year, with an average
production of 1012 OBs/L, could produce enough virus to be applied to 60 thousand
ha/year. Consequently, the in vitro-produced SfMNPV has the potential to protect the
maize and other crops infested by fall armyworms. It is essential, however, that the
produced OBs have a similar virulence to those obtained from larvae (in vivo). Further
studies on the optimization process and evaluation of insect mortality (bioassays) by viruses
produced in a bioreactor must be encouraged.
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