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Introduction
Digital technologies have advanced incredibly fast, and its recent development has stimulated the 
acquisition of large volumes of different types of data, from the most varied sources. In agriculture, along 
its value generation chain, this data can include: a) omics data (genomics, proteomics, transcriptomics 
and metabolomics); b) acquired physicochemical attributes with spatiotemporal location through 
sensors; c) aerial and satellite images with spatiotemporal location; d) socioeconomic data; among others.

Similar to the data from more traditional sources, the use of this large data volume is analyzed through 
models and algorithms capable of extracting useful information for the decision-making process. This 
can occur in the development of a new biotechnological asset, land use monitoring, or in the control 
of a production process. Thus, scientific computing is understood as a collection of techniques, tools, 
and theories that encompass mathematics, statistics, physics, and computing. It also covers specific 
knowledge of certain sub-areas, such as applied statistics, econometrics, applied mathematics, 
computational intelligence, scientific visualization and biometrics. These will continue to be central in the 
development of new agricultural technologies, now in the context of the emerging Digital Agriculture. 
In recent decades, scientific computing has been identified as the third pillar of scientific research, along 
with experimentation and theory (Souza et al., 2017).

In the following sections, we present examples of applications that use scientific computation 
algorithms and techniques for the solution of problems in the agricultural sector. Section 2 presents two 
applications. They are based on the observation of a large raw dataset in order to recognize embedded 
patterns and derive knowledge and actions from such patterns to be used by an Expert System. Section 3 
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presents three applications based on the construction of mathematical and statistical models. These can 
carry out predictions and analyses from simulation scenarios in order to assist public decision-making. 
Through these different applications, it is possible to see that scientific computing is a research area that 
is eminently transversal to others.

Artificial intelligence
Artificial Intelligence is a broad area that began in the second half of the 1940s, when an artificial neural 
network was conceived, and which described how human neurons should learn to perform calculations. 
This area has undergone many modifications and has intersected with other disciplines, especially 
statistical modeling and various pattern recognition methods. These intersections compose a group of 
techniques known as intelligent systems, which are based on machine learning.

A machine learning model is supported by previously observed data coming from either databases, 
experiments, images, or texts. Data has attributes, which need to be described for each observation. 
For example, if we collect data from a pasture at different locations on the property, we will have the 
same attributes for each data collection, such as: location, grass type, date, pasture status (degraded, 
non-degraded, in degradation), geographic location, percentage of soil cover, soil type, pasture height, 
etc. With these attributes and the data collected, a classification model of the pasture’s status can be built. 
If the observed data were texts, the attributes could be the words in the texts; if they were images, the 
attributes could be such images divided into very small pieces, or pixels, and could consider, for example, 
the color of each pixel.

Items “Automatic Soil Classification” and “ SiBCS-based Expert System” present, respectively, examples 
of automatic soil classification and exploration of information in texts, making use of different artificial 
intelligence techniques.

Automatic soil classification
To classify a soil profile, the Brazilian Soil Classification System (SiBCS) considers a wide range of 
morphological, physical, chemical, and mineralogical attributes in addition to environmental aspects 
such as climate, vegetation, relief, parent material, hydric conditions, external characteristics and soil-
landscape relationships (Santos et al., 2013).

To assist in this laborious process, Embrapa Digital Agriculture and Embrapa Soils designed two 
intelligent tools for automatic soil classification. The first is an Expert System that uses the SiBCs rules for 
soil classification. The second is aWeb system (SoloClass) for soil profile classification through a committee 
of intelligent solutions based on machine learning algorithms. These smart tools were developed within 
the scope of the project “Use of smart mobile devices in the classification of Brazilian soils – SmartSolos”, 
led by Embrapa Soils. Both tools are presented in the following subsections.

SiBCS-based expert system

The SiBCS rules-based expert system simulates the reasoning of a domain expert when performing the 
classification of soil profiles. Thus, it can be used to classify soil profiles not yet classified and to validate 
previously classified profiles (Vaz et al., 2018). 
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Vaz et al. (2019a) used the expert system to analyze soil data provided by IBGE. They showed that this is 
an important tool for the curation of Brazilian soil data, as it allows it to be executed more efficiently and 
with fewer errors, benefiting soil governance in Brazil.

The advantages of making the expert system available through an API and the importance of this tool 
to facilitate soil data curation, while guiding a more adequate data recording, were also shown in Vaz 
et al. (2019b). Figure 1 shows that by making the expert system available through the API, the user can 
obtain the soil profile classifications from the expert system and compare them with previously known 
classifications. Thus, possible errors in soil data can be analyzed and corrected, making it a powerful tool 
for improving the quality of soil data in Brazil.

Figure 1. Soil profile classification analysis.
Source: Vaz et al. (2019b).

The great challenge of this system is codifying all SiBCS rules to treat its first four categorical levels. The 
classification taxonomy has more than a thousand classes between the first and fourth categorical level. 
In addition, the rules are quite complex, so joint work and great effort by computer and soil scientists are 
essential to make viable the development of such a system.

Although a specific application is being developed by Embrapa to use this soil classification API, partner 
institutions can also use it to create new solutions that rely on soil classification, provided their data is 
coded in accordance with the standards established by the system.

Regarding Brazilian soil data standards, there are different initiatives that seek to organize them. However, 
none of them has been consolidated as a standard, nor do they meet the needs of the expert system 
developed. As such, many observations could be made in relation to organizing these data in Brazil 
throughout this work. It is common, for example, to observe data redundancy in different fields, absence 
of fields necessary for recording important soil information for classification, and data representations 
that make difficult computational processing and data retrieval. The next step of this work is, therefore, 
to consolidate a series of recommendations for the structuring of Brazilian soil data in order to simplify 
computational manipulation, ensure higher quality of stored data, and facilitate the creation of new 
solutions that depend on them.

Future research is on the possibility of automating other processes that are normally time consuming or 
greatly increase the uncertainty of the data collected in the field. For example, color, texture, soil layer 
boundaries and other attributes are determined in a subjective way, according to personal interpretations 
made during fieldwork. The collection of this type of information can be facilitated and automated 
through computational tools that extract characteristics from images taken in the field.
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Intelligent soil classification system 
A promising alternative for automatic soil classification is the combination of machine learning (ML) 
algorithms with attribute selection methods. ML algorithms operate by building a model obtained from 
training samples to make data-driven predictions. Such data contain soil profile observations previously 
classified by pedologists. On the other hand, the attribute selection methods aim to find a subset of 
relevant variables related to the target task. It makes the learning process more efficient by simplifying 
the operating cost of the models, enabling to better understand the obtained results (Guyon; Elisseff, 
2003).

SoloClass is an intelligent system developed for classifying soil profiles. This system allows a user to 
input a set of variables from one or more soil profiles, and then receives the classification of each profile 
according to SiBCS with a probability associated to the predicted class.

Five classes of ML algorithms were used for intelligent soil classification: a) symbolic: decision trees; b) 
based on instances: k-NN or k nearest neighbors; c) statistical learning: Support Vector Machines (SVM); 
d) bootstrap aggregation: Random Forest; and e) connectionism: Deep Neural Networks. All these 
algorithms were trained for the four categorical 
levels (orders, suborders, large groups, and 
subgroups) adopted by SiBCS.

The architecture of the SoloClass system is 
based on a classifiers committee, as shown in 
Figure 2.

Upon receiving a set of unclassified soil 
profiles, with different numbers of horizons, the 
user can select one or more classifiers that have 
been trained from a pre-classified database by 
pedologists (induction process). Subsequently, 
the system triggers the selected classifiers 
and stores the results presented individually. At the end of the deduction process, the classification 
committee (Figure 2) assigns the classification result to the soil profile by vote, that is, the classification 
associated with the profile is the one that obtained the highest frequency or majority vote.

This classifier committee-based architecture has some advantages such as: a) increase in the predictive 
power of the system due to the use of several classifiers adjusted to the data and combined for this 
purpose; b) reduction of variance and bias when compared to using only one machine learning method; 
c) extensible architecture, that is, other classifiers can be added.

The main benefits of the SoloClass system are: a) assisting national soil survey projects and programs, 
such as Pronasolos (Polidoro et al., 2016), acting as a facilitating tool in soil classification work; b) 
facilitate the understanding of soil classification for farmers, students, teachers, extension workers, and 
researchers; c) minimize possible human errors during the soil classification activity.

As it is a Web System, SoloClass1 can be accessed through mobile devices or personal computers, without 
any operating system restrictions. This helps to expand access and the inclusion of a greater number of 
users. SoloClass has a responsive interface, that is, it can be characterized by the visual adaptation of a page 
or interface to any device on which it is viewed, without the need of a specific versions for each model.

1	 Available at: www.soloclass.cnptia.embrapa.br

Figure 2. SoloClass 
architecture based on a 
classifiers committee.
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Text mining in technical-scientific publications
The human learning process is based on observations, pattern formation, hypotheses, and inferences 
from these observations. Nowadays, there are plenty of observations, specifically, an excessive volume of 
data, both in databases and in published textual format. Data mining uses statistical analysis processes, in 
which algorithms are implemented in computer programs that can handle a large volume of data to find 
patterns and help formatting hypotheses and models that allow describing these patterns.

Text mining (TM) is a specialization of the data mining process. The main difference between the two 
processes is that, whereas conventional data mining works exclusively with structured data (pre-
organized in databases or some representation, such as a spreadsheet), text mining inherently deals 
with unstructured data. Therefore, in TM, the first challenge is to structure the data with their respective 
attributes, based on the texts, so that data mining algorithms can be used.

The structuring of texts depends on the problem addressed. For example, if we want to know or relate 
which types of agricultural technologies are linked to the use of water in Brazilian agriculture, we can 
delimit a set of technical-scientific publications on the topic and extract this information. In this case, 
one option is the use of linguistic tools that allow identifying the vocabulary of interest (for example: 
irrigation, harvesting, water resources, pivot, etc.) and delimiting and disambiguating geographic 
locations (such as: São Francisco River, São Francisco Church, São Francisco City, etc.) in the texts.

Similar to this, in the methodology proposed by Moura et al. (2017), there is a semi-automated step-
by-step process, which used software tools specifically developed for this purpose, and contained the 
following steps: 1) delimitation of publications of interest; 2) extraction and disambiguation of toponyms 
with the TopExtract tool (Takemura et al., 2013); 3) formatting a dictionary of terms of interest, manually 
performed by domain experts; 4) use of the ExtracTrans tool (Transaction Extraction tool) to: a) extract 
terms from texts by similarity and synonymy; b) creation of the transactions present in the texts (all 
the words of interest that appeared in the text); and c) elimination of redundant data, which does not 
contribute to the results; 5) pattern extraction, using machine learning algorithms, such as association 
rules, or even placing the results in an Excel spreadsheet or other similar software. For example, in Moura 
et al. (2017), 40 association rules were found for the Northeast region, among which:

If technologyClass = agricultural engineering & culture = grapes & cultureClass = 
fruit & region = NE  technology = irrigation.

Another application of very specific interest was to describe which quantitative and scientific com-
puting methods were cited in Embrapa’s scientific publications. We searched among those considered of 
the highest level, and according to the Qualis CAPES indicator (A1, A2, B1 and B2), between the years 2000 
and 2018. Embrapa has its own cataloging system for its publications and technologies (Embrapa, 2020) 
where the metadata´s keywords are audited. This in itself indicates its very high quality. However, two ma-
jor problems are present for the study: a) the large number of publications in this interval, approximately 
22,000 articles; and b) the fact that the keywords in the articles cover agricultural terms, and not necessarily 
quantitative methods and scientific computation terms. In other words, the keywords of interest in this 
data analysis were not part of the conventional keyword repertoire of these articles and, therefore, could 
not be located only by search results, let alone by reading each of the 22,000, which would be a very 
extensive task. 
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Thus, the methodology by Moura et al. (2017) was adapted as follows: 1) the articles of interest were 
already selected; 2) the geolocation process was not necessary and instead, a process was created to do-
wnload the articles and convert them to plain text; 3) the domain specialists, in quantitative methods and 
scientific computation organized the necessary dictionary of terms for the area; 4) a tool was adapted (from 
ExtracTrans tool) to extract the words of interest from the text collection by similarity, and subsequently, 
put the data in a spreadsheet; and 5) from the data sheets in Excel format, the techniques of crossing 
dynamic tables, aggregation of data from other sources, grouping, selection, and filters were applied to 
facilitate the data exploration in different views.

Some exploratory applications on a large volume of texts make use of a process similar to that used 
by search engines, such as Google, Yahoo, etc. The textual collection is indexed, in which each text (data) 
corresponds to a row of a table and each word (attribute) to a column, it is not always necessary to know 
the language in which the text is written, much less if there are dependencies between words. In each 
cell, the frequency of a word in the text, or some derived measure, is placed. Therefore, as this table has an 
exaggerated number of columns and many cells with zero value, we try to reduce the number of columns, 
selecting the most statistically significant words or word compositions.

There are many techniques to reduce the number of columns in a table, all of which depend on 
what one wants to answer in relation to the collection of texts. To format a collection of texts in a table 
like this, we have the I-PreProc tool (Pereira; Moura, 2015). A common application for this formatting is to 
group texts with similar content so that they must correspond to specific topics, that is, subdivided into 
more related subjects, as carried out in the Compilation and Retrieval of Technical-scientific Information 
and Induction to Knowledge (CRITIC@) project. This initiative, developed by Embrapa, also uses other tools 
such as the previously mentioned TopExtract application.

In Figure 3 on the left, it is possible to see that based on a search expression in the publications data-
base, the search results are organized hierarchically into documents groups from where statistically signifi-
cant terms found in the group are considered “topics”. In the middle, there is the distribution of accumulated 
frequencies for the group over time. These are represented by “Tractor, Effect, Term, Difference, Applied, Leaf, 
Pruning”. To the right, the locations mentioned in these documents. This result of data exploration gives us 
clues as to: a) how these documents could be organized according to groups; b) what the topics or set of 
keywords of this group would be, for example “tractor, pruning, pruning applied to the leafs”, that is, what 
an expert in the area considers most important in the presented result; and c) geographic location, more 
specifically, where these groups appear most significantly.

Figure 3. Example of a CRITIC@ project result. 

As seen in the cited applications, text-mining processes, whatever the techniques, help the exploration 
and identification of information in a large volume of texts.
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Mathematical and statistical modeling
Mathematical modeling is an even broader area than Artificial Intelligence. It uses a small framework of 
mathematical solutions, the same occurring with statistical modeling. The general idea for the modeling 
process is the simplified interpretation of a phenomenon, which is then described in mathematical 
language. Subsequently, it allows simulations to be carried out in a computer. Thus, the users of the 
model are positioned as experimenters in the real world, and based on the results of several computer 
simulations, they can understand details of the phenomenon in situations not experienced in practice. 
In agricultural research, for example, mathematical and statistical models are essential to complement 
biological experiments, allowing the study of disease dynamics in the field from computer simulations, 
that is, without environmental impact and with a great economy of resources. As an example, item 
“Modelagem da dinâmica de dispersão do HLB do citros“ presents a simulation model for analyzing the 
intra-orchard dispersion of the disease known as citrus HLB.

In order to understand the difference between mathematical and statistical models, it can be considered 
a simple example, such as the mathematical equation that represents a straight line in a Cartesian plane 
(x, y), given by: 

y = a + bx

In which a is the slope of this line and b the factor that correlates each value of x to exactly a value of 
y in this plane. On the other hand, if it is observed the weight and height values of a group of people, 
it is known a priori that the behavior of the observed points (weight, height) is linear, that is, it can be 
represented by a line, but it does not correspond exactly to the weight and height ratio of the entire 
population, that is, this set of points is just a sample of this population. A good sample should be 
randomized, so each person is randomly drawn for weight and height measures and has a statistically 
reasonable size. Thus, with this collected sample, the behavior of the population for the problem under 
study (weight, height) is estimated, which is a line composed of estimated values of the slope of the line 
(average of the observed values of weight), and the factor that correlates height with weight. This process 
considers model errors and estimates depend on probability distributions. In item “Genetic evaluation 
of livestock”, a multivariate linear model is presented, that is, several dependent variables (which would 
replace weight) and several independent variables (which would replace height), and also: a) fixed effects, 
which are the of the factors that can be observed, such as the height in our example; and b) random 
effects, which are not observed in the sample collection, but need to be estimated by the model.

Another framework within mathematical modeling is inductive logic models, for example, “if A is a stable 
then A has horses”. Among these models are fuzzy logic. For example, if we have a glass of water, it can 
be full, half full, half empty, or empty, according to the interpretation of each person looking at the glass. 
So, you can form rules, such as the glass is empty if it has 0 to 20 mL of water, it is half empty if it has 10 
mL to 100 mL of water, it is half full if it has 50 mL to 160 mL of water, and it is full if you have more than 
140 mL of water. To solve a classification of how each cup is, a system based on fuzzy rules is developed. 
Item “Sustainable Pantanal Farm” shows an application of systems based on fuzzy rules that assist decision 
making regarding sustainability in Pantanal farms, considering environmental, social, and economic values.
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Modeling the citrus HLB dispersion dynamics 
Brazil is the world’s largest producer of oranges, with the 2020/2021 harvest being estimated at almost 
288 million boxes (40.8 kg) (Fundecitrus, 2020). The disease known as huanglongbing (HLB) or greening, 
identified in the country in 2004, is currently the most important for the national citrus industry. Citrus 
HLB is caused by the bacterium Candidatus Liberibacter asiaticus and transmitted in Brazil mainly by 
the psyllid Diaphorina citri, which acquires the bacteria by feeding on the sap of infected plants, later 
transmitting them to healthy plants.

Due to its importance to the national economy, Embrapa has been developing biomathematical tools 
to assist in monitoring, sampling, detecting, and eradicating HLB from citrus since 2012. Initially, a 
deterministic compartmental mathematical model was developed (Vilamiu et al., 2013) to assess the 
impact on decreasing population levels of the insect vector D. citri in the Recôncavo Baiano region. 
More specifically in areas where citrus and alternative hosts are planted (orange jessamine – Murraya 
paniculata) in different proportions, aiming to collaborate with public policies for the sector. In this 
study, citrus and myrtle populations were divided into compartments (susceptible, exposed, infected 
and recovered plants), and the general characteristics of each compartment were expressed through 
mathematical equations in order to analyze HLB propagation temporal dynamics.

More recently, a new modeling approach based on simulation scenarios with different spatial 
configurations of orange jessamine and citrus was used to assess, among other aspects, the role of 
orange jessamine as a push or pull factor on vector insects in cultivated areas (Barbosa, 2015). For this 
purpose, individual-based modeling (IBM) (Grimm; Railsback, 2005) was used, and considers in the model 
the presence and particularity of each individual of the populations involved, while observing the final 
system as the result of interactions between the individuals of different populations. The IBM approach 
is adequate for the objectives of the study because it allows one to jointly explore the temporal and 
spatial aspects of the “host-insect vector-HLB” system in a more intuitive and flexible way than classical 
mathematical models such as those used in Vilamiu et al. (2013).

The IBM was developed in Python programming language and considers a standard agricultural 
landscape of the Recôncavo Baiano, containing 9 plots with 20 x 42 plants in each plot (total of 840 host 
plants per plot or 7,560 plants in the landscape), spacing between rows of 6 m and spacing between 
columns of 4 m, totaling an area of 120 m (width) x 168 m (length), just over 2 ha.

In order to analyze the intra-orchard dispersion of the insect vector and the propagation of HLB, 3 
different landscapes were tested and compared: a) Scenario 1: only citrus; b) Scenario 2: citrus and myrtle 
around the entire area; c) Scenario 3: citrus and myrtle on the edges of each plot. Thus, the populations 
considered in the IBM and involved in the computer simulations are: a) main host plant (citrus); b) 
alternative host plant (myrtle) for testing the repulsion and attraction effect; c) D. citri insect vector in the 
nymph stage; d) adult vector insect.

In the execution of the model simulations, the user can choose different values for the following 
biological parameters obtained from studies and biological experiments conducted at the Embrapa 
Cassava & Fruits (Cruz das Almas, Bahia, Brazil) experimental fields:

•	 time of the disease incubation phase in the plant: 180 to 540 days;

•	 duration of the latency phase of the disease in the plant: 30 or 60 days;

•	 proportion of insects per plant: 0.41 to 5;
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• simulation time: 1, 2, 5, 10 or 20 years;

• simulation mode: 1 (single) or 2 (multi);

• probability of primary infection (PIP), according to the incidence in the region: 0.01 (low),
0.15 (medium) or 0.30 (high);

• probability of detection of the disease in the field by the human inspection: 0 or 0.476.

The simulations start with all healthy plants and the arrival of a certain proportion of infective insects, 
according to PIP values. Populations evolve stochastically over time (according to the probability of 
occurrence) from processes such as birth and death of nymphs and adult insects, infection of host plants, 
acquisition of bacteria by nymphs and adult insects, reproduction, and flight of adult insects.

At the end of the computer simulations, two types of results are generated: a) “single” simulation type: 
at every 10 days of the simulation execution, a file with the status of populations in each position of 
the planting area is generated (type of host, infection status, number of insects in position); b) “multi” 
simulation type: at the end of 100 automatic executions (Monte Carlo process), graphs of the number of 
susceptible, infected and symptomatic plants are generated over time.

The MBI results are saved, and a software developed in Java language allows the visualization of the 
model results via Web. This is illustrated by the examples shown in figures 4, 5, and 6, related to the 3 
simulation scenarios that represent different landscapes (different configurations and proportions of 
citrus and myrtle) for a “single” simulations type.

Figures 4, 5, and 6 show the dynamics of HLB spread, after a certain number of days from the start of the 
simulation, which occurs from the arrival of insects in random plants of the first two left columns of the 

Figure 4. Simulation image after 10 days for Scenario 1. 
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Figure 5. Screenshot after 60 days of simulation for Scenario 2.

Figure 6. Screenshot after 60 days of simulation for Scenario 3.
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fields. The amount of infective insects arriving in this area depends on the proportion of insects per plant 
and the PIP value chosen by the user. For example, for the proportion of 0.41 insects per plant, there are 
1,033 insects at the beginning of the simulation, of which: a) for PIP = 0.1%: 1 infective insect; b) for 
PIP = 1%: 10 infective insects; c) for PIP = 15%: 154 infective insects.

Scenarios 1, 2, and 3 were tested separately in numerous combinations of the aforementioned 
parameters for the repulsion and attraction analysis. No visual differences were found in graphics 
generated by the “multi” execution, or the dynamics observed in the “single” executions. Following the 
analyses, scenarios were compared in a two by two scheme, and several simulations were performed for 
each scenario. Statistical tests were performed to compare the time of arrival of the disease in the target 
plot as well as in all comparisons between scenarios while considering different probabilities of primary 
infection. It was found that, statistically, there is no difference (comparisons between PIP equal to 1% and 
15%) regarding the time of disease arrival in the target plot.

The results of the simulations prove observations made in field experiments: the primary infection has 
much more weight in the dynamics of disease propagation than the different spatial configurations of 
orange jessamine and citrus in the simulation scenarios .

Thus, the main conclusion obtained is that the simple presence of the alternative host (orange jessamine) 
does not significantly influence the epidemic process. This leads us to question how the interaction of the 
“HLB-insect vector-citrus” system would be with the use of vector population control methods, such as 
the application of insecticides, which could significantly affect the primary infection.

At the same time, the search for a threshold value for primary infection leads us to estimate the effort 
of regional management in order to stabilize the epidemic process. Furthermore, vector infectivity 
levels can be an indicator to be used in the future for the effectiveness of control measures in regional 
management. This indicator can be obtained more easily than extensive surveys with infected plants.

Currently (Barbosa, 2019) the MBI is evolving by the inclusion of new alternative hosts to evaluate in 
repulsion and attraction configurations, as well as testing periodic insecticide control strategies which 
minimize the effect of primary infection on landscapes.

From the spatiotemporal dynamics observed in the citrus HLB represented in the model, it is possible to 
simulate complex dissemination scenarios and perform the selection of more promising repulsion and 
attraction configurations to control the spread of the vector insect. This may be tested in future experiments 
along with obtaining indicators of effectiveness, with potential for more detailed studies in other projects.

Genetic evaluation of livestock
Animal breeding programs aim to genetically improve the population in terms of economic 
characteristics demanded by the market, adopting appropriate indices for the production system. 
In short, they consider the identification and genetic discrimination of individuals in the population, 
the selection of those with superior traits for replacement, either male or female, and the mating 
between them. An integral part of these programs are the genetic evaluation processes, which consist 
of continuously and cumulatively collecting biometric and genealogical data from the population 
undergoing improvement and periodically using a genetic-statistical model to predict the genetic values 
of each animal. The data include observation on the expression of physical or behavioral attributes of 
interest to the market. These attributes are called phenotypes and pedigree data, which in other terms 
means the relationships that define the genealogy of the population.
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Currently, the methodology used in genetic evaluations of animals is based on the theory of mixed 
models (Henderson, 1963), known as BLUP (Best Linear Unbiased Prediction). It basically consists of the 
prediction of genetic values, adjusting the data simultaneously for fixed effects and an unequal number 
of observations per class (Lopes, 2005). Among the advantages of a genetic evaluation using BLUP are 
the inclusion of complete family information through a kinship matrix; comparison of individuals with 
different levels of fixed effects; and simultaneous evaluation of sires, females, and progenies. Lastly, 
there is the evaluation of individuals without observations, missed observations and with observations 
in only some characteristics (Lopes, 2005). BRBLUP (Higa, 2020) is a software for genetic evaluation of 
animals developed by Embrapa, based on the Python programming language and associated scientific 
computing libraries called Scipy/Numpy and PyTables. It supports the specification of mixed model 
equations so that different genetic-statistical models can be specified, including the multivariate 
animal model (MAM), which simultaneously evaluates fixed and random effects for a set of quantitative 
phenotypes while taking correlations between phenotypes or random effects into account, such as 
genetic origin effects.

As an example to illustrate the use of BRBLUP, (Example 5.4 of Mrode (2014) an animal model with two 
phenotypes (bivariate) is considered: a) FAT1: fat yield in lactation period 1; b) FAT2: fat yield in the lactation 
period 2. Associated with each phenotype is the presence of a fixed effect referring to herd-year-season 
(HYS1 and HYS2). The data set is shown 
in Table 1: there are eight animals, 
numbered from 0 to 7, and only those 
that have observed phenotypes 
(animals 0, 1 and 2) appear in the 
pedigree (columns Sire and Dam). 
The residual variances are 65 for the 
FAT1 phenotype and 70 for the FAT2 
phenotype, with the covariance 
between them equal to 27; the genetic 
variances are 35 for the FAT1 phenotype 
and 30 for the FAT2 phenotype, with the 
covariance being equal to 28.

To solve the model, the BRBLUP software is executed through a command line, passing a configuration 
file as a parameter with the model specification. The result is stored in an output file.

Table 2 presents the contents of the generated output file. It contains 4 columns (Trait: column in the 
data file corresponding to a phenotype; Effect: specified effect in the model; Level: level of the effect in 
the data file; Sol: obtained solution). In this example, the first line of the file means that the solution for 
level 0 of effect 1 (HYS1) for the phenotype in column 3 is equal to 175.73126996362862. The seventh 
line means that level 1 (animal 1) for effect 0 (genetic value) for the phenotype in line 3 is equal to 
-2.999142788478058.

Accuracy values, which represent the reliability of the solution obtained for the genetic value, were not 
presented in this example, but are always used together. Finally, another aspect not addressed refers to 
the fact that, currently, animal genetic improvement programs are making efforts to include genomic 
information in the genetic evaluation process. This has direct implications for the construction and 
resolution of the genetic-statistical model used.

Table 1. Dataset (columns 0, 1, 2: pedigree – columns 0, 3, 4, 5, 6: observed data).

Animal Father Mother HYS1 HYS2 FAT1 FAT2

3 0 1 0 0 201 280

4 2 1 0 1 150 200

5 0 4 1 0 160 190

6 2 3 0 0 180 250

7 0 6 1 1 285 300

Source: Adapted from Mrode (2014).
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Sustainable Pantanal Farm
In recent decades, given the globalization of the economy 
and the creation of competitive markets, pressures 
to increase the productivity of farms in the Pantanal 
have intensified, compromising the sustainability of 
their production systems due to the fragility of its 
ecosystems. Given this scenario, a multidisciplinary group 
of researchers from Embrapa Pantanal, using previous 
experience on the characterization of Pantanal farms 
(Santos et al., 2017), developed a project in partnership 
with Embrapa Digital Agriculture. They aim to develop a 
tool to assess the sustainability of beef cattle production 
systems in complex and dynamic regions, such as the 
Pantanal, so that it would be possible to verify the 
system’s weaknesses in order to seek good sustainability 
management practices.

The Pantanal biome is located in the Midwestern 
region of Brazil (80%), also covering part of Bolivia 
and Paraguay. It constitutes an extensive neotropical 
wetland that is seasonally flooded, with a temporal 
and spatial variability of diversity, which is controlled 
by the flood pulse. This makes the region a complex, 
dynamic and uncertain system (Santos et al., 2017). 
Because it has extensive areas of natural grasslands 
with a predominance of forage, the Pantanal has a 
vocation for the extensive beef cattle ranching with 
low use of external inputs which has contributed to its 
conservation for more than two centuries. This has been 
the main economic activity on Pantanal farms, making it 
an important socioeconomic sector at the regional and 
national level. Considering that farms comprise about 
95% of the Pantanal plain, the main challenge for decision makers is to define beef cattle production 
systems that do not cause major environmental impacts while bringing economic and social benefits 
to the local population and ensuring 
the conservation and sustainable use 
of natural resources.

In order to understand Pantanal farms 
holistically, aspects and indicators were 
defined in a hierarchical manner at both 
ranch and regional level and assess the 
beef cattle production system 
(Figure 7). These aspects and indicators 
were selected due to their practicality in 
representing and simplifying complex 
and systemic phenomena. Some of 

Table 2. Result of genetic evaluation.

Trait Effect Level Solution

3 1 0 175.73126996362862

3 1 1 219.61329398893875

4 2 0 243.23908674216108

4 2 1 240.54972646633607

3 0 0 8.969159144237393

4 0 0 8.840288629082728

3 0 1 -2.999142788478058

4 0 1 -2.7772802747175986

3 0 2 -5.970016355758499

4 0 2 -6.063008354365654

3 0 3 11.75424243135119

4 0 3 11.657587566164255

3 0 4 -16.252956614066754

4 0 4 -15.823507978243187

3 0 5 -17.31429689333114

4 0 5 -15.719126003080525

3 0 6 8.690473723985185

4 0 6 8.137644915235219

3 0 7 22.702139483291525

4 0 7 20.930688340763133

Figure 7. Hierarchical structure of the Sustainable Pantanal Farm.
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the indicators were based on scientific studies carried out by the multidisciplinary team, while others were 
determined through several participatory workshops involving decision makers to validate the indicators. 
Some of these indicators must be evaluated directly in the field, while others can be studied through image 
analysis and mathematical calculations, or defined within the inference system adopted. To guide the 
field assessment and the collection of information necessary for the calculations, several protocols were 
developed and published (Soares et al., 2014; Santos et al., 2014a, 2014b, 2015; Abreu et al., 2015; Amâncio 
et al., 2016). This hierarchical process (Figure 7) enables assessing each aspect of sustainability individually 
and simultaneously. 

The Sustainable Pantanal Farm software
Some problems arise in sustainability assessment, and it is necessary to take the level of abstraction 
involved in the concept into account, as well as the existence of natural variability in some phenomena. 
The synthesis provided by the indicators for a given “degree of sustainability” requires a robust 
methodology to deal with uncertainties, express complex interrelations, while at the same time, being 
interpretable and transparent to guarantee confidence in the assessment.

A mathematical and computational framework capable of dealing with these difficulties come from fuzzy 
set theory (FS), fuzzy logic, and fuzzy rule-based systems – FRBS. Such systems have been applied in areas 
such as engineering, modeling, and control, among others. Historically, its success is due to the ability to 
model knowledge based on natural language and good generalization capacity as well as the remarkable 
competence of FRBS in explaining the elaboration of the result based on the input values provided.

The Sustainable Pantanal Farm software was built as a decision support system based on models 
expressed in FRBS. Sustainability is evaluated by the environmental, economic, and social dimensions, at 
both ranch and regional level. Models were defined for each assessment (Figure 7), while input variables 
were the indicators themselves, with their scales defined in natural language (such as Good, Moderate 
and Bad). The relationships between indicators are expressed as a set of rules defined by domain experts. 
The evaluation results (indices and sub-indices), in addition to providing a comparative numerical value 
(1 to 10), have a corresponding qualitative output. Each model (index) feeds the more general models 
hierarchically further down, culminating in the farm’s sustainability model.

The Sustainable Pantanal Farm interface to Internet2 (Figure 8) is an interactive system where the user, 
given the indicator values, is able to infer qualitative concepts and numerical values, as well as compare 
how good these values are in relation to what is desired. It is also possible, through graphics, to visualize 
which indicators had more influence on the result. The rules that were used for the conclusion are shown 
to the user, ensuring interpretability and transparency. The system also allows the user to simulate 
scenarios in order to plan which ones lead to the level of sustainability one wants. The Sustainable 
Pantanal Farm software also has a second interface, aimed at mobile devices such as tablets and 
smartphones (Figure 9) using the Android operating system (available on the Google Play app store). 
Essentially, it provides the same functionalities, and it is based on the same mathematical models. 
Given a regional restriction of the Pantanal and farms in general, this version does not need an internet 
connection, as it has its own inference engine built into the application.

The Sustainable Pantanal Farm tool can be adopted by several decision makers (researchers, owners, 
technicians, politicians, legislators, certifiers, among others). Its main use is the diagnosis (degree 
of sustainability) of the beef cattle production system in the Pantanal through the assessment of 
environmental, social, and economic impacts of this activity, thus assisting in efficient management 

2	 2 Available at: https://www.fps.cnptia.embrapa.br
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Figure 8. Internet Sustainable Pantanal Farm software interface elements. 
Source: Sustainable Pantanal Ranch (2020).

through technology selection and good management practices. However, its application can be much 
broader for financing subsidy programs, certification, and marketing strategies that value products 
from the region. It may also offer necessary subsidies for the reformulation of current legislation and 
public incentive policies for sustainable production in the region. It is intended to insert the aspect of 
multifunctionality and ecosystem services in the future, something essential for the sustainability of 
production systems. The tool is being implemented in 15 farms in the Mato Grosso Pantanal with support 
from other agribusiness regional institutions, such as FAMATO, ACRIMAT, SENAR, IMEA, and rural unions, 
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as well as in six farms in the Pantanal of Mato Grosso do Sul, with support from FAMASUL, SENAR, and 
rural unions. Improvements will be incorporated over time, together with technicians, producers, and 
researchers.

Final considerations
In this chapter, several scientific-computing techniques applied in solving problems in the agricultural 
sector were presented. In the area of artificial Intelligence, classical logic techniques were applied to 
the development of an expert system for soil classification. The same problem was also addressed by a 
completely different technique using machine learning algorithms, which are fundamentally linked to 
statistics. Statistical analysis is also the basis of text mining techniques used to group documents with 
similar content in the agricultural area.

Another area of scientific computing, mathematical modeling, was explored in three different ways. In 
the first, Individual-Based Model provided a fully computational tool through a simulation system to 
compare three citrus and orange jessamine planting configurations in order to evaluate propagation 
control strategies for HLB in citrus. In the second application, linear predictor models, composed of 
classical mathematical equations, were used to assess the genetic values of livestock, with the objective 
of discovering which of them reinforce characteristics desired in the market. In the third model, the 

Figure 9. Sustainable Pantanal Farm Android app interface. 
Available at: https://play. google.com/store/apps/details?id=br.embrapa.cnptia.fps
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mathematical calculations were internally performed in a fuzzy logic inference-based system in order 
to assess sustainability in Pantanal farms. In this case, the advantage of fuzzy logic is combining natural 
language in the construction of a logical model where the answer is explainable to the decision maker.

Scientific computing techniques are essential for analyzing the large volume of data produced in this 
process of agricultural digital transformation. Through these techniques, it will be possible, from the 
collected data, to extract information and knowledge that will assist in the decision-making process in 
all links of the production chains, becoming central in the development of new agricultural solutions 
and technologies in Digital Agriculture. The applications presented in this chapter illustrate the variety 
of problems that can be addressed by the scientific computing methodological framework, including 
mathematical and statistical modeling, classical and fuzzy logic systems, simulation models, and machine 
learning models.

Considering these applications, it is worth emphasizing that the constant growth in data availability, 
technological advances and the expansion of the dimension and complexity of the demands of Brazilian 
society pose enormous challenges and opportunities for research and development in scientific 
computing applied to agriculture.
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