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Introduction
Computer vision, in a simple and comprehensive definition, is a field of artificial intelligence dedicated 
to extracting information from digital images. In the context of digital agriculture, computer vision can 
be used in the detection of diseases and pests, in yield estimation and in the non-invasive evaluation of 
attributes such as quality, appearance and volume, and it is also an essential component in agricultural 
robotic systems. According to Duckett et al. (2018), field robotics could enable a new range of agricultural 
equipment: small and intelligent machines capable of reducing waste and environmental impact1 and 
providing economic viability, thus increasing food sustainability. Also according to Duckett et al. (2018), 
there is considerable potential to increase the window of opportunity for interventions, for example, in 
wet soil operation, night operation and constant crop monitoring.

A class of problems addressed by computer vision are the alleged perceptual problems: the detection 
and classification of patterns in images that are associated with an object of interest, as for instance fruits 
(Sa et al., 2016; Santos et al., 2020), animals (Barbedo et al., 2019) or symptoms of diseases and pests 
(Ferentinos, 2018; Barbedo, 2019). 

Constant and efficient monitoring can be carried out based on images captured by field teams or 
obtained by cameras attached to tractors, implements, robots or drones: the search for crop or livestock 
anomalies; the evaluation of crop spatial variability for intervention, according to the precepts of 
precision agriculture; and autonomous action by machines and implements. Figure 1 shows an example 
of detection of grape bunches in images obtained from vineyards.

1 Due to the sparing and intelligent use of pesticides or simply mechanical intervention: the physical removal of pests
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Another class of problems are geometric ones. In forming an image, the light captured by the lens is 
projected onto a surface so that the three-dimensional scene produces a 2-D representation. Much of 
the scene structure is in the image, but depth information (the distance between the camera and the 
objects in the scene) is lost. One of the greatest contributions of geometric computer vision was the 
development of algorithms for recovering lost three-dimensional information from a set of images of the 
same scene. This is one of the most widely used computer vision applications in the market today: three-
dimensional mapping and the production of maps from imagery obtained by Unmanned Autonomous 
Vehicles (UAVs – popularly known as drones, see Figure 2). Methodologies based on geometric computer 
vision have been employed in geological studies (Westoby et al., 2012), in pasture height assessment 
(Forsmoo et al., 2018) and in crop mapping (Comba et al., 2018), among other uses. Commercially, it 
is the core technology behind 3-D mapping and reconstruction services by UAVs extensively used in 
agriculture, such as Pix4D mapper and Agisoft PhotoScan/Metashape.

There is a growing number of computer vision applications in agricultural research. Consider, for example, 
the journal Computers and Electronics in Agriculture, which specializes in new software, hardware, and 
electronics applications in agriculture. A search for articles related to computer vision reveals that 23.7% of 
all works published in 2018 are associated with computer vision, rising to 29.1% in 2019. From January to 
June 2020, 115 of the 319 works (36.0%) published are related to computer vision. This volume of articles 
also translates into impact: of the 25 most cited works by June 2020, 14 are computer vision applications. 
Some simple factors explain this growth. Digital cameras are affordable and widely available devices in 
various configurations, easily integrated into larger systems (such as smartphones and UAVs). The advances 
in algorithms and hardware over the last ten years are reflected in the current dynamism of the area.

The next sections will present the recent innovations in the application of computer vision to agriculture, 
focusing on the contributions by Embrapa Digital Agriculture over the last 3 years. These advances are 
the result from both perceptual computer vision, the recognition of elements in the scene (Section 2), 
and geometric computer vision, the retrieval of three-dimensional information from images (Section 3). 
The combination of both fronts (Section 4) opens the way for systems that can perform highly complex 
operations, such as field robotics. Section 5 closes the chapter with some final remarks.

Perception: pattern recognition in images
Pattern recognition can be seen as the role of finding a representation for the pattern sought that is 
sufficiently versatile to cover observable variations, yet simple enough to be processed in a timely 

A B

Figure 1. Examples of a perceptual task, the detection of grapes in images: image taken in a winery of a Chardonnay vine (A); detection result using a neural 
network (B).
Illustration: Thiago Teixeira Santos
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Figure 2. UAV mapping: images are used to identify the three-dimensional structure of the area, and the position and orientation of the aircraft, displayed in 
red (A); the geolocated three-dimensional model is then projected onto a plane, forming a map. (B).
Illustration: Thiago Teixeira Santos
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manner by the machine. In other words, it is an adequate pattern description to allow the machine to find 
it in the input data, yet succinct so that its interpretation is carried out within operating time constraints.

Visual patterns in natural images can be incredibly intricate, with regularities and variations that are 
difficult to describe. In agriculture, patterns assumed by fruits, leaves, grains, plants and symptoms of 
pathologies exhibit enormous variability, amplified by differences in lighting, position, occlusion and 
different sources of noise (dirty lenses, dust, interference, etc.). Figure 3 illustrates some of the difficulties 
a fruit detection system faces in real field growing conditions: severe occlusion between fruits, leaves 
and branches; color similarity between green fruits and the canopy; lighting variations between images; 
specular reflection (direct reflection of sunlight that saturates the camera sensor); and focus problems. 
Notwithstanding some success from the use of machine learning techniques (Gongal et al., 2015), pattern 
recognition in natural images began to reach high levels of accuracy with the arrival of convolutional 
neural networks (Lecun et al., 2015), quickly adopted for image recognition in agriculture (Kamilaris; 
Prenafeta-Boldú, 2018).

In neural networks, an architecture or model is a sequence of modules that perform simple operations 
on the data so that a module receives data from previous modules and propagates the result of its 
operations to the following modules. In computer vision, the most used neural networks are the 
convolutional neural networks (CNNs), in which the main operation employed is convolution, a linear 
combination of values in the vicinity of the input pixels. Neural networks are said to be deep if there is a 
large sequence of linked modules. The deeper the network, the greater its ability to learn representations 
for complex patterns, since each module is able to compose the representations of previous modules in 
a hierarchy. In the case of images, there is an intuitive interpretation for this behavior: the initial modules 
are able to find lines and edges of objects, the following modules compose these patterns into simple 
textures and structures like triangles and spots, which are then combined into other structures like parts 
of leaves, branches and berries. Finally, the final modules combine these elements into objects of interest: 
a plant, a bunch of grapes, an ox.

Figure 3. Examples of the difficulties faced in fruit detection. In the images, we can observe problems of focus, specular reflection, severe occlusion by leaves, 
branches and other fruits, light variations and similarities in the color pattern between fruits and leaves.
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The modules have parameters that need to be adjusted so that the joint operation of the entire network 
produces the expected results. A frequently used metaphor is to imagine that each parameter is adjusted 
by a dimmer. Adjusting a neural network would be performing the adjustment of millions of dimmers, 
each of which could affect the pattern recognition performance. Manually, however, this adjustment 
would be impractical and virtually impossible. The training of neural networks is an automated process 
for adjusting these parameters, so that the network “learns” the appropriate representations for the 
recognition problem in question.

In supervised learning of image patterns, this training is carried out using observations, images whose 
desired answer is known (“there is an orange in this image”, “there are signs of coffee rust on this leaf”). 
This training requires thousands of observations, which is directly linked to the size of the network: more 
parameters require more observations, although it is difficult to determine an exact relationship between 
the number of parameters and the number of observations required. When the network processes the 
input image, the produced result is compared to the expected result, and their error is computed. The 
parameters are then adjusted to reduce the previous error, in a process known as backpropagation 
(Goodfellow et al., 2016). In practice, observations are grouped into batches, the network processes 
the batch and the observed error is computed. The backpropagation algorithm is used to adjust the 
parameters, starting with the final modules of the network and proceeding towards the parameters of 
the initial modules (hence the name of the procedure). Training proceeds with the next batch, and the 
procedure is repeated until the error reaches an observable minimum2. In short, deep neural networks 
automate the process of searching for adequate representations in pattern recognition problems, 
provided there is a sufficiently large set of observations for training in order to adequately represent the 
variability of the intended pattern. It is precisely this ability that makes the methodology so attractive to 
the intricate problems of recognition in agriculture.

Identification of plant diseases
The detection and classification to diagnose disease, pests and plant nutritional deficiencies in images 
are of great interest in agriculture. Automatic detection enables constant monitoring and searching for 
crop anomalies, based on images captured by field teams or obtained by cameras attached to tractors, 
implements, robots or UAVs. On the other hand, classification associates the detected anomalies to the 
disease, deficiency or pest, assisting the producer in the correct intervention. Neural networks can be 
used in both tasks, even simultaneously.

As seen above, thousands of observations are required before a neural network is able to produce 
accurate results. This need is amplified for plant disease recognition due to the large number of 
combinations resulting from the crossing between target cultures, pathologies, stage of disease 
development and imaging condition (manual collection, aerial monitoring by UAVs, capture at the 
ground level by machine, camera position, among others). This situation points to the need for 
large shared databases (Barbedo, 2018; Ferentinos, 2018), as considerable effort is required for their 
production.

The process of collecting and annotating the images, in other words, associating each image with the 
desired result for the supervised learning stage, is usually lengthy and costly. However, some strategies 
can be used to increase the number of observations. Barbedo (2019) showed that multiple lesions 

2	 The ideal error would be zero, but there is no guarantee that an architecture will be able to achieve this. It is also an open problem to 
determine a priori what is the smallest error a network will be able to achieve for a given training set.
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of the same pathologies which occur on the same leaf can be exploited to increase the number of 
observations from the same collection. Several examples of symptoms can be obtained from a single leaf 
or plant tissue sample, as seen in Figure 4. This strategy allowed an original database, containing 1575 
observations (Barbedo, 2018), to be expanded to 46409 observations (Barbedo, 2019), producing gains in 
disease classification accuracy of, on average, 12%.

Ph
ot

os
: J

ay
m

e G
ar

cia
 Ar

na
l B

ar
be

do

Figure 4. Examples of observations used in training systems for plant disease recognition: a sample of a diseased leaf, collected in the field (A); an observation 
of symptoms associated with the pathology (B); clusters of symptoms that also form a discernible pattern associated with the pathology (C).

A CB

Barbedo (2019) showed that a convolutional neural 
network, the GoogLeNet architecture (Szegedy 
et al., 2015), can be applied in the classification of 
many pathologies in different cultures, reaching 
accuracy values of 80% (passion fruit) up to 100% 
(cassava, cabbage, cotton, wheat, and sugarcane), 
as shown in Table 1. The database used, termed as 
Digipathos, was made publicly available3. Although 
the classification results are promising, there are 
still major challenges, especially with regard to 
detection (“are there symptoms present in the 
observation?”), which is crucial in autonomous 
monitoring for pest and disease management, but 
which still does not present the same classification 
accuracy (“what is the pathology for the observed 
symptom?”). In his experiments, Barbedo (2019) 
shows that accurate detections can be produced 
when symptoms are already severe, but not when 
the symptoms are still mild or do not occupy large 
portions of plant tissue, which is the ideal time for 
intervention by the farmer. False positive detection 
errors (healthy tissue detected as diseased) are 
often caused by factors such as the presence of 
dust, debris or even water droplets. It is also not 
clear yet what number of samples is needed so that 

3	 Available in: https://www.digipathos-rep.cnptia.embrapa.br

Table 1. Accuracy of the classification of pathologies in different 
cultures. For the cassava and kale images, the accuracy reached 
100% in all tests.

Crop Number of images Accuracy (%)

Bean 3,079 94 ± 0.8

Cassava 895 100 ± 0.0

Citrus 1,868 96 ± 0.6

Coconut 1,504 98 ± 0.6

Corn 10,480 75 ± 4.4

Coffee 1,899 89 ± 1.9

Cotton 2,023 99 ± 0.3

Cashew 4,509 98 ± 0.5

Grape 2,330 96 ± 0.8

Kale 196 100 ± 0.0

Passion fruit 280 80 ± 4.2

Soy 13,733 87 ± 3.6

Sugar cane 2773 99 ± 0.4

Wheat 840 99 ± 0.5

Total 46,135 94 ± 2.0

Source: Adapted from Barbedo (2019).
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the characteristics of symptoms can be properly learned by neural networks (still an open question in 
computer vision in general).

Detection of animals in pastures
Barbedo et al. (2019) present an example of how UAV technologies and computer vision can be combined 
for monitoring large areas, for example detecting cattle in extensive livestock production. Given the 
dynamics of the animals and the enormous size of the pasture areas, the ranchers face great difficulties 
monitoring the herds in the pastures.

A database composed of 1853 images containing 8629 Canchim animals was produced based on images 
obtained by a commercially available quadrirotor4. Barbedo et al. (2019) tested 15 different neural 
network architectures at 3 distinct spatial resolutions (1, 2 cm/pixel and 4 cm/pixel), in order to analyze 
the performance resulting from different flight heights. The results showed that most of the tested 
architectures were able to reach high levels of accuracy, above 95%. The NasNet architecture (Zoph 
et al., 2018), a very deep network with great capacity to learn complex patterns, achieved accuracy close 
to 100%. These results are expressive, especially considering the complexity of the problem, as shown in 
Figure 5: several situations, from severe occlusion by trees and drinking fountains to differences in

4	 In this case, a DJI Phantom 4 Pro vehicle.
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Figure 5. Examples of situations observed in the detection of animals in pastures: animal in high pasture (A); dry pasture (B); exposed soil (C); tree occlusions 
(D); covering of drinking fountains (E) and electrical cables (F).
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 lighting and pasture conditions, in addition to the position and disposition of the animals, all of which 
present highly variable situations. Even so, the accuracy of most of the architectures tested is expressive. 
Another particularly interesting effect from an operational point of view was that most models present 
better results at the 2 cm/pixel resolution and not at the maximum 1 cm/pixel resolution, which may 
be due to the resolution of the convolutional modules with which these architectures were originally 
designed. In practice, this enables flights at higher heights, which allows covering areas in less time.

Detection and counting of fruits
Automatic fruit detection is an enabling component for many agricultural applications. It can help 
estimate production, which is useful in logistical planning and in negotiations between rural producers 
and buyers. If detection is combined with precise spatial location, new applications can be developed in 
precision agriculture, assisting in the proper management of spatial crop variability. Fruit detection can 
also be a preliminary step in monitoring disease and nutritional deficiencies (see item “Identification of 
plant diseases”), restricting the areas in the images that should be inspected for symptoms. Given the 
decline in the agricultural workforce, fruit detection is also a technology that enables automated spraying 
and harvesting systems (Duckett et al., 2018; Xiong et al., 2020).

As discussed earlier, there are several factors that hinder the detection process, from occlusion by leaves 
and branches to camera focus and lighting issues (Figure 3). In some crops, the fruits also have various 
shapes, compactness and orientation, such as viticulture (Santos et al., 2020). Despite some success with 
other machine learning techniques (Gongal et al., 2015), fruit detection has recently gained traction with 
the improvements in convolutional neural networks (Sa et al., 2016; Bargoti; Underwood, 2017; Kamilaris; 
Prenafeta-Boldú, 2018).

Camargo Neto et al. (2019) produced a dataset with 3,066 images of oranges collected in the field, from 
different devices, such as cameras and smartphones. Most of the images were provided by the Crop 
Estimation Program (PES) of the Citriculture Defense Fund (Fundecitrus). The fruits, from different varieties 
of orange, had different levels of maturation, with a predominance of green fruits (Figure 3). From these 
images, a subset of 2036 observations was used in the training of a YOLOv3 neural network (Redmon 
et al., 2016; Redmon; Farhadi, 2018). The authors evaluated the network trained in the 1030 remaining 
images and verified the correct detection of more than 90% of the fruits, with an accuracy also above 
90%, that is, less than 10% of the detections produced were false positives. Figure 6 shows an example of 
fruit detection in an orange tree image taken in the field.

Santos et al. (2020) showed that for the grapes in viticulture that present high variation in shape, color, 
size and compactness, bunches can be detected and segmented using architectures such as Mask-RNN 
and YOLO. The authors produced a new annotation tool that can speed up the process of associating 
pixels to fruits, discriminating exactly which pixels belong to which bunches. The generated dataset, 
named WGISD (Embrapa Wine Grape Segmentation Dataset) and publicly available5, contains 4,432 
bunches in 300 images, covering five wine varieties. The authors evaluated three different neural network 
architectures, YOLOv2 (Redmon; Farhadi, 2017), YOLOv3 (Redmon; Farhadi, 2018) and Mask-RCNN (He et 
al., 2017), the latter responsible for the most promising results. In a test base composed of 837 bunches, 
the network identified 87% of the bunches, with precision of 90.7%. Examples of the produced detections 
are shown in Figure 1 (B). 

5	 Available at: https://doi.org/10.5281/zenodo.3361736.
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Figure 6. Orange detection results in the field using a 
YOLOv3 convolutional neural network: an orange tree 
imaged in the field, the fruits detected by the network in 
red (A); detail (B).
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However, a complete fruit counting application needs a methodology that can integrate the detections 
reported in several images, so that fruits seen in more than one image are not counted multiple times. 
In other words, fruits (and objects of interest in general) observed in several images must be associated 
with each other. This data association task can be performed by integrating pattern recognition with 
geometric computer vision, as shown as follows.

Three-dimensional mapping and reconstruction
One of the greatest contributions of geometric computer vision was developing algorithms capable 
of recovering three-dimensional information from a set of images of the same scene. As results from 
decades of research in areas such as projective geometry and continuous optimization, these algorithms 
can transform even a simple webcam into a powerful 3-D scanner. Perhaps even more importantly, they 
allow a mobile agent, such as a UAV, not only to map the three-dimensional structure of the environment, 
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Figure 8. Three-dimensional reconstruction with SfM for a Chardonnay vine in the field: the red prisms indicate the camera (a commercial webcam) position 
and orientation, when each image was captured (A); same 3-D model observed from another angle (B).
Illustration: Thiago Teixeira Santos.

but also to determine its precise location (Figure 2), paving the way for autonomous agents that can 
navigate and interact with its surroundings (Stachniss et al., 2016).

Images must be obtained from different positions, by multiple cameras or by a single camera moving 
through the scene. This is the meaning of the term structure from motion (SfM), used in computer vision 
to define the problem of recovering the three-dimensional structure of a scene and the position of the 
camera from a set of images. Figure 7 illustrates the process of projecting a point in the scene as the 
camera is moved to three different positions. If we can determine correspondences between points in 
different images, it is possible to determine, with the help of projective geometry techniques, the position 
of the camera at the time each image was captured, more precisely the location of its projection centers, 
represented in the Figure 7 for points C1, C2 and C3

6. Once the location of the projection centers has been 
determined, it is then possible to estimate the position of the point in three-dimensional space based on 
its projections on the images (the points x1, 
x2, and x3 in Figure 7), a process known as 
triangularization. A detailed description of 
the entire process can be seen in Hartley and 
Zisserman (2003). The determination of image 
correspondence is also obtained automatically, 
using algorithms specialized in finding visually 
salient points (the points x1, x2, and x3) and, by 
comparing the pixels in their neighborhoods, 
associating different image points (Lowe, 2004; 
Detone et al., 2018).

Santos et al. (2017) showed that an SfM 
system using a simple webcam can build 
accurate three-dimensional plant models in 
the field. Figure 8 shows an example, for a 
Chardonnay vine. As we will see in the next 
section, these three-dimensional models can 
be used to estimate 3-D attributes, such as

6	 Additional information, obtained by calibration methods, is needed to determine the correct scale, that is, the distance in a known unit such 
as meters or millimeters.

A B

Figure 7. Structure from motion. An X point on a scene surface is projected onto the 
image plane at different positions as the camera is moved to positions C1,C2 and C3.
Illustration: Thiago Teixeira Santos
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fruit volume and position. The 3-D system used and developed at Embrapa Digital Agriculture, named 
3dmcap, is freely available7 for non-commercial use.

The use of three-dimensional information in agriculture is expected to intensify in the coming years, not 
only through the use of the SfM technique (already commercially used by 3-D mapping services with 
UAVs), but also by the falling costs of stereo cameras, which provide depth information in the image, and 
by LIDAR sensors. Recent examples are the use of stereo cameras in vineyard phenotyping (Milella et al., 
2019) and the detection of apples using LIDAR (Gené-Mola et al., 2020).

Figure 8 shows the three-dimensional reconstruction with SfM for a Chardonnay vine in the field: red 
prisms indicate the position and camera orientation (a commercial webcam, at the time of capture of 
each image (A); same 3-D model from another angle (B).

Combination of structure and recognition 
If the SfM retrieves the three-dimensional structure from the scene and the imaging itself (the camera 
position(s) during the capture time), and the recognition identifies objects of interest in the scene, such 
as symptoms, fruits, plants or animals, the combination of the two pieces of information allows a broad 
assessment of the observed environment.

One of the uses of this combination is fruit 
mapping: the 3-D information combined 
with the detection of fruit in each image 
allows the spatial position of each fruit 
to be determined and that the same fruit 
is not counted more than once when it 
appears in multiple images.

Santos et al. (2020) used SfM to obtain a 
three-dimensional reconstruction of a row 
of vines in the field, based on the frames of 
a video sequence produced by a camera 
embedded in a service vehicle. A neural 
network was used to detect bunches of 
grapes in each image. By projecting the 
3-D points of the scene onto the images, it 
was possible to associate detections with 
positions in the three-dimensional space 
and, therefore, determine the consistency 
between the bunches observed in one 
video frame and the bunches seen in the 
following frames8 (Figure 9).

The joint use of 3-D models obtained by 
SfM and convolutional networks for fruit 

7	 Available at: https://github.com/thsant/3dmcap

8	 8 A video demonstrating the tracking of grape bunches is available at: https://www.youtube.com/watch?v=1Hji3GS4mm4

Figure 9. Tracking grape bunches in a video sequence obtained in the field: video 
frames were extracted and submitted to fruit detection by neural networks (A); the 
nodes represent bunches of grapes, in the order in which they were found by the neural 
network (each column of nodes represents a frame of the video sequence). The arrows 
inform the association between nodes from one frame to another, performed using 3-D 
information obtained by SfM (B).
Illustration: Thiago Teixeira Santos.
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detection and counting was also explored by Liu et al. (2019) in mango orchards and by Häni et al. (2020) 
in apple orchards.

Attributes of great interest in agronomic applications can be extracted from three-dimensional 
information. Santos et al. (2017) used a machine learning algorithm to identify which regions of the three-
dimensional vine models corresponded to the bunches of grapes, as shown in Figure 10 (A). The volume 
of bunches was then estimated based on these regions. Fruit volume has a strong correlation with its 
weight, as can be seen in Figure 10 (B). These computer vision-based systems can provide a non-invasive 
and non-destructive methodology for estimating fruit weight, without having to remove them from the 
plant. Such technology can be used to assess growth throughout the crop cycle, without the need to 
remove (collect) samples.

Figure 10 shows the estimation of fruit weight based on volume in three-dimensional models.

Figure 10. Estimation of fruit weight from the volume in three-dimensional models: grape bunches are identified (in colors) and separated from the rest of 
the plant (in black) (A); coefficient of determination between the estimated volume and the total weight of fruits in five different vines (B).
Source: Adapted from Santos et al. (2017).

Performance and intervention: field robotics
The combination of SfM and recognition is precisely one of the enabling technologies for one of the most 
challenging and impactful applications in agricultural automation: field robotics. Take, for example, a 
major challenge in agricultural robotics: automated fruit harvesting. While crops such as grains, sugarcane 
and coffee have their own machinery for automated harvesting, the same does not apply to horticulture 
and fruit cultivation – especially for the latter – due to the existing complexity in the structure of the 
orchards. Fruit harvesting depends on manual harvesting, which is unsettling considering the decreasing 
availability of labor in the field (Roser, 2013).

Automatic harvesting systems require two components of computer vision: the perceptual, for 
identifying fruits and obstacles, and the geometric, for the automatic positioning of the robot and its 

A
B
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handlers. Several research groups have applied these two components in the development of automated 
harvesting systems. Taking apple farming as an example, Silwal et al. (2017) developed a robotic apple 
harvesting system, evaluated in a commercial orchard. Their computer vision system was accurate, 
taking an average of 1.5 s to locate each fruit. The system was successful in harvesting 85% of the fruits, 
with an average time of 6 s per fruit. In addition to pomiculture, other crops have been investigated for 
implementing robotic harvesting, such as peppers (Bac et al., 2017), lettuce (Birrell et al., 2020), strawberry 
(Xiong et al., 2020), kiwi fruit (Williams et al., 2020), among others.

Final considerations
Computer vision has enormous potential for application in the area of digital agriculture. Several 
products and services based on computer vision components are expected to reach producers in the 
coming years. However, many challenges still depend on research and development endeavors.

A major bottleneck is the need for large databases to train neural networks for perceptual tasks. Research 
in the area of semi-supervised and unsupervised learning is currently being conducted by the computer 
vision community. The idea is to be able to learn patterns of interest with few examples and obtain 
systems with good accuracy in order to detect patterns such as fruits, symptoms and animals.

In robotics, the challenge continues to be developing robust systems that are capable of autonomously 
operating in the field for long periods, but which are safe for people and animals circulating in the field. 
These systems need to map the environment quickly, respond promptly, accurately find the objects to be 
monitored, and carry out the interventions for which they are designed. Despite the immense challenges, 
the computer vision and robotics communities have made great advances in recent years, which will 
soon be reflected in various agricultural applications, from monitoring to performance.

Finally, the authors emphasize that the results in fruit detection were financed by the Embrapa SEG 
11.14.09.001.05.04 and FAPESP 2017/19282-7 projects. The results related to disease detection were 
financed by projects FAPESP 2013/06884-8 and Embrapa SEG 02.14.09.001.00.00. The results related to 
animal detection experiments were funded by FAPESP 2018/12845-9 project. The images for citriculture 
research were provided by PES/Fundecitrus. In addition, the GPUs used to train the neural networks were 
donated by NVIDIA Corporation.
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