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Introduction
Biotechnology has been fundamental for the progress observed in Agriculture over the last 30 years. 
Bioinformatics, the multidisciplinary area responsible for analyzing the large volume of data resulting 
from genomic technologies, was essential in this progress. With the arrival of next-generation sequencing 
technologies, an extraordinarily large volume of genomic data that needed to be analyzed was produced. 
In the era of digital transformation, the ability to generate biological data more rapidly, more affordably 
and in greater volume, produces an enormous amount of data, Big Data. This large and growing volume 
of data requires solutions in at least three spheres: scalable infrastructure, data management and 
intelligent use of that data. 

Bioinformatics uses computational tools to answer complex biological questions and contribute to 
innovative results. The theme involves the use of high-performance computing infrastructure and tools 
to organize, analyze, integrate, process, simulate and store large volumes of data derived from in vivo and 
in vitro experiments. A challenge for bioinformatics is to integrate the heterogeneous data generated by 
the “omics” sciences (both with each other and with the data generated by traditional sciences), allowing 
discoveries that go beyond what is possible in each of the individual disciplines. Several new layers 
of omics, such as analysis of genomes, metabolomes, transcriptomes, or interactomes, have become 
important for research advances. The integration of all this information allows making discoveries and 
improving the knowledge of biological systems.
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Access to high storage and processing capacity, with powerful indexing algorithms, as well as machine 
learning applications, is crucial for the execution of bioinformatics activities. More importantly, a 
trained and constantly updated team to assist in planning data generation processes, data analysis and 
extraction/acquisition of new knowledge from Big Data is what will enable Embrapa to be a relevant 
actor in this area of knowledge.

In this context, in 2011, Embrapa’s Multiuser Laboratory of Bioinformatics (LMB) was created to provide 
bioinformatics support to RD&I projects aligned with Embrapa’s strategic objectives. Since its creation, 
the LMB has already contributed in a broad portfolio of projects, within three operating guidelines:

• Access to the computing park, hence its high-performance infrastructure.

• Consulting in the analysis of biological data that require high-performance computing, 
whether due to the volume of data or the complexity of the analyses.

• Training for multiplying skills through courses and other training actions.

The LMB has performed research projects at Embrapa and partner institutions that involve more than 
20 crops and livestock systems studied in more than 50 research projects. An important aspect in 
bioinformatics is that each project is unique, and the LMB team works to meet these demands. This work 
in bioinformatics is based on the following areas: analysis of gene expression, assembly and analysis of 
genomes, identification of molecular markers, analysis of transcriptomes and metagenomes, evolution 
studies, modeling of biological systems, prediction of protein structures and molecular interaction, 
interaction or inhibition of molecules, among other activities.

LMB computational infrastructure to support 
bioinformatics projects applied to agriculture
Bioinformatics projects require a differentiated computational infrastructure, and most of them are very 
difficult or even impossible to carry out using common computational equipment. These requirements 
can be understood considering the computational complexity of the algorithms and the volume of 
biological data analyzed.

 The objective of this session is to present the computational infrastructure used for storage and 
processing of large volumes of data produced by the biotechnology research projects of Embrapa and its 
partner institutions. This infrastructure focuses on making available processing and memory capacity as 
well as storage of large volume of data.

To deal with the various algorithms with high computational complexity in bioinformatics, it is standard 
to use computational clusters of computers for data processing. For those less familiar with the field of 
high-performance computing, a computer cluster is a set of computers connected in a network with a 
central coordination node that work together to solve computational problems. The main advantage 
of a cluster is to provide computing power of tens, hundreds and, in some extreme cases, thousands of 
processing nodes in a transparent way for the user, that is, without the user having to interact and trigger 
data analysis in each of the machines individually. The jobs to be executed in the system are activated 
from a management node that remain in one or more execution queues and are automatically sent to a 
suitable processing node, when available.

With the arrival of multicore computing, each processing node in modern clusters has a few dozen cores; in 
some exceptional situations, each node can reach hundreds of processing cores. Therefore, a very important 
question for processing in bioinformatics is: how much memory should each processing node have? The 
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answer requires careful consideration regarding that as the amount of memory is directly proportional to 
the number of cores in the processing node. In addition, it should be considered that this proportion has 
increased with the development of new biological investigation techniques, which generate significantly 
increasing amounts of data. Thus, until recently, it was recommended that each processing node should 
have 8 Gb of RAM for each available core. With the significant increase in the volume generating biological 
data, this amount was updated, and new processing platforms for bioinformatics activities are being 
developed with 16 Gb of RAM for each available CPU core in the computing node. 

Another relevant issue in biological data processing platforms is related to data storage and preservation. 
Basically, the most significant bottleneck that has to be addressed is the amount of data to be stored. The 
speed of data accessing does not significantly impact the performance of the platforms, as in general, the 
tools and programs executed to perform the analyses will load the data into memory and execute the 
analyses for a significant amount of time. A delay in the initial load does not considerably impact the total 
execution time of the task. However, a restriction on the storage capacity of the computing environment 
will have a wide range of negative occurrences. It is not possible to execute several projects at the same 
time, as they commonly demand a few hundred gigabytes, and can reach a few tens of terabytes for raw 
data storage for some exceptional projects. During the analyses, it is necessary to store intermediate 
data, possibly up to an order of magnitude of the original data size. Therefore, currently the platforms for 
processing biological data commonly use storage systems with capacity of a few petabytes.

The processing environment available today has a cluster with a head node and 14 processing nodes. Of 
these, 13 have 64 cores and 512 Gb of RAM each. There is also a special node that is used to perform jobs 
that require a large amount of memory. This node has 2 Tb of RAM and 160 processing cores. In total, the 
cluster provides 992 processing cores. For managing tasks in the cluster, a queue management system 
is used, initially developed by Sun Microsystems, known as Sun Grid Engine (SGE). For bioinformatics 
analyses, a high performance cluster is specially useful as the analyses, in general, involve multiple 
datasets to be processed in pipelines consisting of multiple stages, enabling the execution of computing 
tasks in parallel on separate machines. Computational analyses with such characteristics are ideal to be 
executed in clusters of computers.

The following data storage servers are available: an SGI Infinite storage with 150 Tb capacity in a RAID 6 
configuration and an IBM DS3412 storage capable of storing 51 Tb in a RAID 5 configuration. In addition 
to primary storage, it is critical to have a backup policy that ensures data security on the platform. Due to 
the volume of data constantly received and generated, the most cost-effective methodology for backup 
involves the use of LTO tapes. Currently, the platform has a tape library available with capacity for 44 
LTO6 drives. As each LTO6 tape provides, on average, 6.25 Tb of data storage, the total library is capable of 
handling up to 275 Tb of online backup.

This type of computational infrastructure is essential for carrying out data analysis of bioinformatics 
research projects in agriculture.

Applications

Bioinformatics and the tambaqui production chain
Embrapa’s first strategic objective is “to develop knowledge and technologies for the adequate 
management and sustainable use of Brazilian biomes.” Historically, Embrapa has always been concerned 
with regional development, actively performing on front lines where scientific or economic risks were 
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discouraging factors for the private sector. This exceptional role played by Embrapa has guaranteed the 
use of the Cerrado biome for agriculture, bringing development and wealth to the region. The North 
region of Brazil has a fish production chain with an annual native fish production of 290 thousand 
tons, according to the 2019 Pisciculture Yearbook, and the main product is tambaqui (Colossoma 
macropomum). To promote the development of this important production chain, among other equally 
relevant objectives, Embrapa, through the BRS Aqua1 project, identified critical points for increasing 
the production that, if properly resolved, would increase the competitiveness and sustainability of the 
tambaqui production chain.

One of the critical points identified by Embrapa in the tambaqui production chain2 was the occurrence 
of crossbreeding between related matrices. Many fish farmers do not know this, but the simple choice of 
matrices for crossbreeding can, if wrongly done, reduce the final weight of fish by 10% to 30%. In other 
words, using the same amount of feed in the food, the producer could lose up to 30% of food conversion. 
In the scientific literature, this phenomenon is known as inbreeding depression, and few fish producers 
are aware of this. To measure the size of the problem, let us observe the case of native fish, which are 
highly appreciated in the North region. As mentioned, in 2019, the production was 290 thousand tons, 
assuming a conservative estimate, as the inbreeding of related matrices may have negatively impacted 
production by at least 30 thousand tons.

In addition to inbreeding depression, the inbreeding between related matrices causes yet another 
harmful phenomenon, scientifically known as lethal alleles. In any population, lethal alleles are rare; 
however, when they occur in homozygosis, they impair embryo development. That is, these alleles cause 
deformities in embryos or abort their development when inherited from both the father and the mother. 
Hence the recommendation to avoid consanguineous pairings. If these alleles are rare in the population 
as a whole, within families carrying these alleles the occurrence of homozygosity is significantly more 
frequent, reaching up to 25%. That is, in consanguineous breeding, up to 25% of embryos can be lost 
or have birth defects. Both inbreeding depression and lethal alleles are critical problems in the fish 
production chain. 

In addition to inbreeding depression and lethal alleles, another critical point is the existence of fertile 
hybrids in the breeding stock. In biology classes, one learns that when two different species interbreed, 
the result is an infertile animal. Unfortunately, this is not always true for fish. For example, the tambaqui 
can crossbreed with the pacu (Piaractus mesopotamicus), and the hybrid is a fertile animal. However, 
many producers crossbreed tambaqui with pacu because the hybrids gain more weight than purebred 
animals and the flavor of the meat is not significantly affected. In the literature, this phenomenon is 
known as “hybrid vigor”, and it is widely used in grain production, for example. The problem occurs when 
hybrids are wrongly chosen to compose the breeding stock. While this choice may seem unlikely at first, 
it occurs because selection is often based on external characteristics, and because of hybrid vigor it is 
not uncommon for a hybrid to be wrongly selected because it weighs more, for example. In this case, as 
the hybrids are fertile, the error of this choice will only be discovered during crossbreeding, when the 
producer observes the natural segregation that entails a great deal of variability in the economic interest 
characteristics, such as slaughter weight. Producers who sell fingerlings for fattening may have their 
credibility affected by selling low quality animals, as the segregation variability greatly affects fattening. 

1 The BRS Aqua project is financed by the BNDES/Funtec Technological Fund, the Fisheries and Aquaculture Secretariat (SAP) of the Ministry 
of Agriculture, Livestock and Supply (MAPA), CNPq, FAPDF and Embrapa. In this part of the BRS Aqua project, the following Units largely 
participated: Embrapa Genetic Resources and Biotechnology, Embrapa Fisheries and Aquaculture and Embrapa Agricultural Informatics.

2 This critical point occurs in all fish production chains where it is not possible to identify the relationship between the matrices.
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Once these problems were identified, Embrapa researchers developed two DNA chips that solve such 
issues in an innovative, efficient and low-cost way. These chips have molecular markers, known as 
single nucleotide polymorphisms, or simply SNPs, that can provide enough information to determine 
the degree of relatedness and purity of the species. In the case of kinship, the markers must have 
considerable variability in the population studied. Mathematically, this means requiring the Minor Allele 
Frequency (MAF) to be close to 0.5. The principle is exactly the same as a paternity test, except that this 
application can identify any degree of kinship to avoid inbreeding, reducing inbreeding depression and 
minimizing the occurrence of lethal alleles. The scientific challenge is to precisely choose such SNPs 
molecular markers. In the case of tambaqui, the lack of a publicly available reference genome was the 
first obstacle to be overcome. This led Embrapa to carry out an internal Tambaqui Genome Project, and 
the LMB was responsible for assembling the Tambaqui Genome. The genome contains approximately 
1.3 billion nucleotides divided into 27 chromosomes (or linkage groups). Once the genome was ready, 
the next step was to select a representative subpopulation of the tambaqui population and then 
sequence the DNA from the pool of that subpopulation. The result of this sequencing was mapped to 
the reference genome, and finally the discovery of SNPs was carried out. Although a minimum coverage 
of 150X was required, more than 2 million SNPs were identified (Ianella et al., 2019). The task of selecting 
96 SNPs to compose the kinship chip took into account the MAF, the spacing within the chromosomes, 
the functional annotation and, finally, the absence of genomic variations in the flanking regions of the 
candidate SNP. As noted, the bioinformatics work was very intense in order to carry out all these tasks, 
which justifies the need for an infrastructure like the LMB. After the validation phase of the SNPs in a 
different population from that used in the previous phase, the validated SNPs were incorporated into the 
chip, which proved to be extremely efficient in determining the degree of relatedness and is currently 
being used in the tambaqui production chain. In other words, the producer already has an innovative tool 
to eliminate inbreeding depression and lethal alleles, thus avoiding silent damage caused by inbreeding.

The DNA chip for purity determination, however, required more complex analyses. This is because it 
was necessary to include in the analysis two more species that crossbreed with tambaqui and produce 
fertile hybrids, namely, the pacu and the caranha (Piaractus brachypomus). As none of these species has 
a reference genome, it was necessary to use the tambaqui genome as a reference. This procedure is 
important because, in addition to intraspecies variations, there are also interspecies variations 
(tambaqui x pacu / tambaqui x caranha), which increases the degree of complexity of the analyses. Even 
at the stage of mapping the reads in the reference genome, the similarity requirement had to be reduced 
due to interspecific differences. Differently from relatedness SNPs, SNPs to measure the purity of the 
species must be “fixed”, that is, they must not show species variation, that is, MAF = 0.

 An example can help to better understand the problem. If at a specific position in the genome there is 
an “A” nucleotide fixed on the tambaqui, and in that same position there is the “C” nucleotide fixed on the 
pacu, then this genome position is a serious candidate to compose the purity chip of species, because, in 
a DNA test, an “A” result would mean “tambaqui” and a “C” would mean pacu. And to further reduce costs, 
genomic markers capable of simultaneously separating the tambaqui from the other two species were 
explored. In the previous example, this would mean that the caranha also had a “C” fixed to that same 
genomic position3. Thus, with a single DNA chip, it is possible to assess the purity of tambaqui in relation 
to the two main species that produce hybrids4. Once again, using allelic frequency, physical spacing in the 
genome and functional annotation, 96 SNPs were selected to compose the chip, and after the validation 

3 SNPs are biallelic markers, which enable separating one species from two others simultaneously. There are triallelic SNPs, but they are very 
rare, and therefore it is not possible to produce a single genotyping chip that separates the three species two by two simultaneously.

4 From what has already been shown, this purity chip does not separate pacu from caranha.
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phase in independent populations, the validated SNPs were incorporated into the purity measurement 
chip. This genomic tool enables us to eliminate all the hybrids that were wrongly chosen to compose the 
breeding stock. 

Economic impact studies carried out by Embrapa, assuming an average production of 150 thousand tons 
of tambaqui, forecast additional gains between US$ 1,8 million and US$ 5,5 million for producers5. Each 
sample analysis for purity and relatedness currently costs US$ 12.00. For a producer with 100 matrices, 
this would be equivalent to an investment of US$ 2,4 thousand. As each matrix has a useful life of three 
years, this amount is amortized over an equal period. These two technologies, named TambaPlus6, have 
already been adopted by producers in five states: Mato Grosso, Tocantins, Roraima, Amazonas and 
Rondônia, and more than 1,500 tests have already been performed. The TambaPlus is so important that 
the technology was selected to compose a select group of technologies that were highlighted at the 47th 
Anniversary of Embrapa7.

Research on the tambaqui production chain will continue. There is still plenty of room to improve fish 
production. In any genetic improvement program, there are two main phases, namely, the Selection and 
the Crossing phase. Tambaqui is still at an earlier stage, known as pre-breeding. The main concern was to 
first avoid inbreeding and the presence of hybrids in the breeding stock.

Bioinformatics in vaccine development: reverse vaccinology
In animal production, the use of vaccines is an effective and low-cost alternative for preventing or 
reducing the severity of diseases that affect livestock. Vaccination contributes to maintaining animal 
health and welfare, increasing the efficiency of food production and reducing the transmission of 
zoonoses. Compared to other forms of control, for instance the use of antibiotics and pesticides, vaccines 
have advantages, such as the non-contamination of the environment and animal products (meat, milk 
and eggs).

Following conventional vaccine development methodology, the pathogen is cultivated in vitro in the 
laboratory and used in its attenuated form (in which it loses the ability to cause disease) or killed to elicit a 
protective immune response in the host. Alternatively, purified components of the pathogen can also be 
used as antigens in the subunit vaccines (Rappuoli; Covacci, 2003).

Although conventional obtained vaccines are among humanity’s most important inventions, which 
comprise a powerful tool in the fight against disease-causing biological agents, not all pathogens can 
be cultivated in vitro and used in the development of vaccines, in its conventional form. In addition, 
conventional methods are quite time-consuming, and it may take five to 15 years to obtain an effective 
vaccine (Vernikos, 2008).

Reverse vaccinology, a methodology first published by Rappuoli (2000), emerged as an alternative 
strategy for the discovery of protective antigens for developing vaccines based on the analysis of the 
target pathogen’s genome. Made possible by large-scale gene sequencing, along with the development 

5 News provided in a video conference entitled TambaPlus®: Genomic tools for the analysis and management of tambaqui matrices for the 
production of fingerlings, available on the Agrotins platform. Available at: https://agrotins.to.gov.br/programacao/tambaplus-ferramentas-
genomicas-para-analise- e-gestao-de-matrizes-de-tambaqui-destinadas-a-produca.html.

 6 Available at: https://www.embrapa.br/busca-de-noticias/-/noticia/46203188/ferramentas-genomicas-ajudarao-a-evitar-cruzamentos-
consanguineos-entre-matrizes-de-tambaqui

7 Available at: https://www.embrapa.br/47-anos/solucoes-tecnologicas-em-destaque?link=47-anos
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of bioinformatics tools, reverse vaccinology uses in silico prediction tools to identify targets (antigens) 
for developing vaccines. Through these tools, genomes, transcriptomes and proteomes are examined 
in silico, predicted proteins are selected based on desirable attributes – which can induce an immune 
response capable of protecting against a given disease, and the targets are then identified. Based on 
them, different types of vaccines can be designed and developed within an interval of 1 to 2 years.

Commercial vaccines obtained through this methodology are already a reality. A vaccine developed against 
invasive meningococcal disease, caused by the bacterium Neisseria meningitidis serogroup B, was released 
for use in Europe in 2014 (Andrews; Pollard, 2014). In this vaccine, the immune response is triggered by 
epitopes – specific sequences of amino acid residues present in the antigen that directly participate in 
the interaction with antibodies, which were identified using bioinformatics tools. Epitopes have been 
considered particularly interesting in vaccine development, as it has been shown that vaccines composed of 
these peptides can optimize or exceed the protection potential induced by the cognate native protein (Kao; 
Hodges, 2009). In contrast to live attenuated vaccines, a vaccine containing a synthetic epitope is not able 
to reverse the virulence of a pathogen (Palatnik-De-Sousa et al., 2018). Furthermore, epitope-based vaccines 
are more specific, do not induce undesirable immune responses, are capable of generating long-lasting 
immunity and are less expensive than conventional vaccines (Ahmad et al., 2016).

In the reverse vaccinology approach, the protein sequences of an organism are analyzed using in silico 
prediction programs. These proteins, however, are mostly predicted from the sequencing of genomes and 
transcriptomes, using bioinformatics tools. This is because large-scale genetic sequencing, made possible by 
new technologies that have dramatically reduced the cost of generating sequences, as well as exponentially 
increasing the number of sequences generated from a sample, has accumulated an unprecedented 
amount of genomic and transcriptomic data. On the other hand, a technological advance that would allow 
a large-scale development of protein sequencing techniques with high sensitivity has not yet taken place. 
Methodological progress for obtaining expressed gene sequences caused the subsequent evolution in 
analysis methodologies. A list of programs can be accessed on the “List of RNA-Seq bioinformatics tools” 
page (Wikipedia, 2020). We will now provide a brief commented description of the methodology applied to 
obtain differentially expressed genes in the salivary gland of the bovine tick (Andreotti et al., 2018). All tools 
cited are obtained through an academic license or government research institution or are freely distributed.

 In order to better understand the host-parasite interaction and identify possible genes and mechanisms 
involved, a study initiated in 2015, funded by Embrapa, generated more than 600 million sequences from 
RNA sequencing (using the RNA-Seq methodology) from larvae, nymphs, salivary gland, intestine and 
ovaries of the cattle tick, Rhipicephalus (Boophilus) microplus (Andreotti et al., 2018).

In addition to the characterization of transcriptomes from different tissues through de novo assembly, 
our research group also identified the differentially expressed genes (DEG) between ticks grown in 
resistant cattle (Nellore), susceptible cattle (Holstein) and crossbred animals with intermediate resistance 
to the parasite (Nellore x Holstein). The analysis of this dataset, using tools that inform the function of 
proteins predicted from DEG and the biological pathways in which they act, brought new discoveries 
about the cattle tick interaction and pointed out potential candidates that can be used as antigens in the 
development of vaccines to control the cattle tick (Giachetto et al., 2020).

The first step in RNA-Seq analysis is to check the quality of the generated sequences. Tools like FastX 
Toolkit (FastX-GitHub, 2020) and FastQC (FastQC-GitHub, 2020) check several parameters, highlighting the 
following:

• Average quality of bases and average quality per sequence. For a good result, the sequence must 
have a “Phred score” greater than 30.
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• GC content (%GC). The percentage of the presence of Guanine and Cytosine nucleotide bases in 
the sequence must be close to the normal distribution, since the very high GC content prevents 
the synthesis and, often, the clustering of sequences during the acquisition and assembly 
processes.

• Number of indeterminate bases (%N). Indeterminate bases make the contingency process 
difficult. They can occur at the beginning of the sequencing, where there is a saturation of 
reagents; in the end, by decreasing the concentration of reagents; or in a region with high %GC, 
which hinders reading the region by the polymerase.

• Presence of adapters. Adapters are short nucleotide sequences used for library preparation and 
sequencing. Its presence impairs contingency, giving rise to chimeric sequences. To eliminate 
them, tools such as Trimmomatic (Bolger et al., 2014) and Trim Galore (TrimGalore-GitHub, 2020) 
are often used.

As we deal with a large number of sequences, a great tool to group and visualize the data obtained in 
the quality analysis (and subsequent steps) is the MultiQC (Ewels et al., 2016), which organizes the results 
obtained in a Web page.

After verifying the quality of the sequences, we proceeded to obtain the transcriptome, through 
sequence-to-sequence comparison and their contingency by similarity. Several tools can be used in this 
step, such as QUAST (Gurevich et al., 2013), which is recommended for the analysis of metagenomes. 
The tool of choice for analyzing this work was the Trinity program (Grabherr et al., 2011). This tool is, in 
fact, a pipeline that brings together, through scripts developed in the programming languages Perl8 and 
Python9, various analysis tools for quality, sequence contingency and statistics to identify DEGs, with the 
differential of being able to identify isoforms (the same as transcribed) of the same gene, resulting from 
alternative splicing. Different tissues can express different isoforms in different amounts. Identifying the 
locally expressed isoform allows to better understand the expression of a particular gene in a particular 
metabolic pathway or tissue. 

Once the transcriptome is obtained, the next step is to verify the quality of the assembly. An initial 
approach is to map the sequences used for assembly back to the transcriptome obtained. In a good 
setup, more than 80% of the sequences map the transcriptome. A second assessment consists of 
identifying and quantifying complete sequences, through similarity analysis against curated databases, 
such as SwissProt or TrEMBL (The UniProt Consortium, 2019), or searching for orthologs present in the 
closest classification of the studied organism, in this case, the arthropods, using the BUSCO software 
(Seppey et al., 2019).

Several factors influence the experimental design of an RNA-Seq assay for the identification of DEGs:

• In the preparation of samples, from extracting total RNA to obtaining libraries for sequencing, 
the batch effect may occur, in which they are included from using different solutions (made on 
different days) to the person who prepares them (Conesa et al., 2016).

• The sequencing depth (the number of generated sequences), which influences the number of 
sequences obtained and, therefore, the quantification of the number of identified DEGs (Conesa 
et al., 2016; Lamarre et al., 2018).

8 Available at https://www.perl.org

9 Available at: https://www.python.org
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• The number of technical replications (how many times the same sample is sequenced), 
which influences the statistical power for detecting DGEs, recommending no less than three 
repetitions (Conesa et al., 2016), although a higher number (about six repeats) can increase the 
representativity of transcriptome sequences (Lamarre et al., 2018). An assay with triplicates is 
commonly accepted, as the increase in replicates implies an increase in assay costs.

• The preparation of a biological repetition. Conesa et al. (2016) point out that biological variability 
is particular to each assay, and although difficult to control, it is important for a study involving 
populations, suggesting that the biological sample be done in triplicate. Lamarre et al. (2018) 
point to the detection of up to 20% of DEGs due to biological variability, which may not justify 
raising the costs of the assay.

The correlation between the samples used in the assay is also an important measure of the quality of the 
assembly and the libraries constructed. The principal component analysis allows visualizing correlations 
between technical and biological replicates, which should preferably form not too distant clusters. 
A discrepancy between samples from the same group may indicate contamination, sample mixture, 
sequencing error or batch effects, which must be considered for discarding that sample. Also important is 
the fact that without a technical triplicate, a biological duplicate must be discarded, impairing the entire 
analysis.

With a good quality transcriptome, the differentially expressed sequences were identified. Trinity 
incorporates several statistical tools for this purpose. In this case, we chose to use RSEM (Li; Dewey, 
2011), which estimates the quantity of each transcript by realigning the sequences of each library (or 
experimental treatment) to the generated transcriptome – a reason for the importance of quality and the 
relationship between replicates - and edgeR (Robinson et al., 2010), a package developed in the statistical 
program R (R Core Team, 2020) and part of the Bioconductor Project (Huber et al., 2015) for the analysis of 
biological data, which performs the pairwise comparison sequences generated between all samples and 
identifies those with differential expression.

The penultimate step is the annotation (or identification) of each differentially expressed sequence, 
through similarity analysis in nucleotide and protein sequence databases, looking for homology to 
already known sequences, and in databases of metabolic pathways that inform in which one the gene 
participates. This is followed by a manual analysis of each result, the bibliographic basis seeking the role 
of such a gene in the development of the tick’s life cycle, and the selection of possible targets for vaccine 
development.

The existence of commercial vaccines available for the control of bovine ticks demonstrates they can act 
effectively in the control of infestations, reducing the application of acaricides. However, the adoption 
of these vaccines has been limited, mainly because they are not effective against all life stages of the 
parasite, in addition to their low efficacy against some regional strains of R. (B.) microplus (Andreotti, 
2006). The results obtained in a test conducted by Embrapa with a regional tick isolate showed an efficacy 
of 46.4% and 49.2%, respectively, for the TickGARD® and GavacTM vaccines (Andreotti, 2006). Thus, 
based on the database described above, our team is currently coordinating a study that foresees the 
identification of candidate immunogenic epitopes for the development of vaccines against cattle ticks, 
using the methodology of reverse vaccinology, based on the predicted proteins of the transcriptomes of 
the parasite. Executing a pipeline containing a series of analysis tools, candidate target genes for vaccine 
production are analyzed for the presence of epitopes that can interact with the bovine immune system 
for the production of antibodies, helping to fight to tick infestation.
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A highly effective vaccine, integrated in cattle tick control strategies, can considerably reduce herd 
infestations and the implications related to the use of acaricides, which include, in addition to cost and 
environmental contamination, a growing concern with food safety, which has increasingly led to the 
consumption of food free of chemical residues, obtained from sustainable production systems. Also, 
by validating the pipeline we are proposing, the LMB will be able to apply the reverse vaccinology 
methodology in the identification of targets for the control of other problems of interest in agriculture.

Bioinformatics tools
As advocated by digital agriculture, to be transformed into useful knowledge, information generated 
from biological experiments must be accessible and, when possible, made available on the Internet. 
Bioinformatics and computational biologists have been dealing with this scenario for more than a decade 
in an environment with adequate infrastructure like the one described above, and have implemented 
software libraries, toolkits, platforms and databases to achieve success in this matter.

Several data analysis tools are used in Embrapa’s LMB, and a search for a data integration solution became 
necessary. Analysis results are carefully stored in a directory structure and reports are generated. Some 
tools generate results in a format already available for the Internet or they can be executed directly 
online. Two tools under development have greatly contributed to the integration of the generated data 
and the transformation of these data into information.

Machado: a genomic data integration framework
In 2017, the PlantAnnot project was started to discover candidate proteins to use in pipelines for the 
development of transgenic plants (Prado et al., 2014; Napier et al., 2019) that are resistant to abiotic 
stresses. It aimed to develop a bioinformatics system applied to the discovery of genes related to 
abiotic stresses in plants, focused on climate change. In this project, a large volume of genomic data 
was extracted from public databases. The extracted dataset corresponds to 53 plant genomes, totaling 
more than 1.8 million genes and more than 2.3 million proteins. These data were used to perform 
computational analyses in order to select 72,000 proteins of interest for the pipelines. One of the project 
goals was to store and make available the data and analyses performed.

To solve this problem, the Machado open-source software was developed. Machado is a genomic data 
integration framework written in Python10 that allows research groups to store genomic data, and also 
offers interfaces for navigation, searches, and visualization. Machado uses the BioPython library (Cock 
et al., 2009) which supports the vast majority of file formats and programs used in bioinformatics. 
In addition, Python has become one of the main programming languages in the data sciences area 
(Millman; Aivazis, 2011), and Machado can also benefit from the tools in this area. This framework uses 
the Chado database schema and therefore should be very intuitive for current developers to adopt or 
execute Machado on existing databases. 

GMOD’s biological relational database schema, Generic Model Organism Database Project11, known 
as Chado (Mungall; Emmert, 2007), is one of the few open-source initiatives that has achieved relative 
success in the community. Many software systems can connect to it, such as Gbrowse (Stein et al., 2002), 
Jbrowse (Skinner et al., 2009) and Apollo (Lee et al., 2013), which are important tools for visualization and 

10 Available at: https://www.python.org

11 Available at: http://www.gmod.org
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annotation of genomes. There are some data integration tools that use Chado as a database schema or 
that can extract data from that schema, but they were developed in programming languages not often 
used in bioinformatics (Kalderimis et al., 2014; Spoor et al., 2019).

Machado has several data loading tools for genomic data and for analysis results from known software in 
the biological environment (BLAST, InterproScan etc.) (Altschul et al., 1990; Quevillon et al., 2005), and its 
web interface contains a powerful search tool that allows users to quickly filter and sort the results.

Within the scope of the PlantAnnot project, a tool called Plant Co-expression Annotation Resource 
was created using Machado to store and make available the data of the project12. This tool is an 
implementation of Machado, which is an example of its usefulness for researchers who need to store and 
make accessible a large volume of genomic data. 

As an example, one of the uses of the Plant Co-expression Annotation Resource is to enable navigation 
through the genome of 53 species of angiosperm plants, which allows visualizing details about genes, 
proteins and RNA through the JBrowse genome browser. This tool is also used to perform keyword 
searches and use filters. The user can then perform simple searches for genes, proteins and RNA, using 
keywords of interest. Furthermore, it can also add more complex filters to the search results, producing 
more specific result lists. For example, a set of proteins with no known function, candidates for the 
creation of transgenic plants resistant to abiotic stresses, such as drought, heat, cold, among others.

Machado is meant to be a modern object-relational framework that uses the latest Python modules to 
produce an effective open-source program for genomic research and can be an engaging project for new 
developers, contributors and users. Thus, we created a corporate account for LMB on GitHub, which we 
believe is the first Embrapa account on this platform13. A demo version of the system was also created14.

Machado will undergo improvement phases for ongoing projects at Embrapa, such as the project “The 
Hologenome of Nelore: Implications for Meat Quality and Food Efficiency” which is focused on genomic 
improvement of cattle, led by Embrapa Southeast Livestock. This project intends to identify molecular 
mechanisms related to meat tenderness, therefore, several data sets that need to be integrated were 
produced, such as genomes, transcriptomes, proteomes, genotyping, among others.

DBGAP: web system for retrieving information on pedigree, phenotypes and genotypes
The development of large-scale genotyping technologies of molecular markers such as the Single 
Nucleotide Polymorphisms (SNP) – to estimate the genomic profile of animals – has enabled developing 
genome-wide association studies – GWAS at a genomic scale, as well as the introduction of genomic 
selection technology in genetic improvement programs. Current technologies for generating molecular 
data are capable of genotyping tens to hundreds of thousands of SNP markers, in a single assay for each 
individual, with enormous speed and automation (Caetano, 2009).

On the other hand, this situation implies the need to store an enormous volume of data, not only of 
genotypes, but also the phenotypes and pedigree of an increasing number of animals. Therefore, 
performing the proper storage and extracting useful knowledge from this amount of data is a major 
challenge. Given the volume of data stored, an important matter to consider when developing a 
computational solution is the suitability of database modeling for the desired application, as this will 

12 Available at: https://www.machado.cnptia.embrapa.br/plantannot

13 Available at: https://github.com/lmb-embrapa

14 Available at: https://www.machado.cnptia.embrapa.br/demo_machado
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directly impact the query and writing times in relational database management systems (RDBMS) where 
this information will be stored.

Therefore, in order to provide a solution that would be efficient both in storage and in the integration 
and querying of this high volume of data, the Database of Pedigree, Phenotypes and Genotypes (DBGAP) 
system was developed. The purpose of this system is to integrate the data sent in various formats, so they 
can be analyzed in genetic/genomic evaluation software. The DBGAP was initially developed using a data 
diagram proposed by Higa and Oliveira (2015). This diagram was redesigned in such a way as to allow 
implementing the JavaScript Object Notation (JSON) type. With the implementation of JSON and text 
types in some tables, it was possible to use the Not Only SQL15 (NoSQL) approach to store part of the data, 
streamlining queries that would need to perform joins with other tables.

To develop the system, information technology components were chosen within the philosophy of 
using free software. The database management system chosen was PostgreSQL16, as it is a reliable DBMS, 
widely used in the market. The version control software, GitLab17, hosted at Embrapa, was used. The 
programming language chosen was Java18 and its components of the Java Enterprise Edition (Java EE) 
technology.

Among the Java EE technologies available and used by DBGAP, the Java Server Faces (JSF) framework 
stands out. The architecture of the JSF framework employs the MVC model (Model, View, Controller), 
which separates the presentation and application layers. The application server chosen to host the 
DBGAP system was WildFly19.

The system development project used some concepts from Scrum, which is an agile framework to 
perform complex projects. Scrum combines monitoring and feedback activities, generally through 
quick and daily meetings with the entire team, in order to identify and correct any deficiencies in the 
development process. In addition, the Scrum method is based on fundamentals such as: small teams, 
unknown requirements and short iterations, these are called sprints (Schwaber, 2004).

The DBGAP system has many features implemented and is currently in the process of user’s approval. 
Through its web interface, it is possible to query and import phenotypic, genotypic and pedigree data of 
various animal species. When accessing it, the login page will be displayed (Figure 1):

15 Available at http://nosql-database.org

16 Available at: https://www.postgresql.org

17 Available at: https://gitlab.com

18 Available at: https://www.oracle.com/br/java

19 Available at: http://wildfly.org/downloads

Figure 1. BDPFG20 system login screen.
Available at: http://www.dbGaP.cnptia.embrapa.br



191Chapter 10 – Applications of bioinformatics in agriculture

One of its important features concerns the visualization of animal data (Figure 2). On this screen, the user 
finds various information about the individual, such as individual identifier code, original name, father, 
mother, date of inclusion in the population, population and other information contained in the JSON 
variables related to the type of individual (beef cattle, poultry, etc.). However, it is important that the 
variables of the phenotypes related to the species considered by the system must be previously registered, 
which are imported from the Embrapa Experiments System - SIEXP (Apolinário et al., 2016), where they were 
defined for the species the user will work with in the user group (e.g., beef cattle, poultry, etc.).

Figure 2. Screen showing registered individuals in the system.
Available at: http://www.dbGaP.cnptia.embrapa.br

One can also import data from files with columns separated by tabs (TSV). These files must follow a 
standardized format. After importing the data, the pedigree of an animal listed on the animal view 
page can be viewed. The pedigree window can be expanded to facilitate viewing the animals and their 
relatives. 

The database provides several filters so that the user can check the data that has been uploaded and then 
export it to the format of the evaluation software. Generally, the data are exported in tabular format to 
be analyzed in the R program, as they are extensive tables with measurements of animal characteristics. 
It is also possible to export the data of these animals (phenotypes, pedigree) to files in CSV format and 
operate them in Excel. Existing filters allow queries by population, category, animal name, father’s name, 
mother’s name. Another tool, perhaps the most important in the system, is the one for identification of 
duplicated animals, allowing the user to associate duplicated animals in a single animal.

The DBGAP system is part of a computational solution proposed in other Embrapa projects (MaxiDep and 
MaxiPlat). The goal of these projects was to combine efforts to structure a computing solution (of which 
DBGAP is one of the components) to support routine genetic evaluation of beef cattle breeding programs, 
within the scope of the Embrapa-Geneplus program. This effort included both the development of assets 
to support the organization of data used in genetic evaluations (DBGAP system) and the development of a 
national solution for the resolution of genetic-statistical models (brBlup software).
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A comparison by a search in other software systems with web interface developed by Embrapa Digital 
Agriculture (Vieira, 2012a, 2012b), with functionality to store genotypes and phenotypes and that includes 
basic queries to molecular data (SNPs), shows that a simple query in about 800 animals and 700 thousand 
SNP markers took at least an hour to be processed in the other software systems developed. A similar query 
performed in the DBGAP database takes less than a minute, as using the JSON type fields and text in the 
tables removes part of the necessary normalization of the traditional model, speeding up the searches.

Final considerations
The research reported in this chapter is ongoing and will continue to other stages. Regarding the research 
on tambaqui, with the progress of production in the near future, it will be possible to start the genetic 
improvement itself. The genomic tools presented in this chapter may evolve to assist in the matrix 
selection stage, focused on improving some characteristic of economic interest, like for instance, the 
slaughter weight. In the beef production chain, genomic selection is already a reality, and the results are 
excellent. The same can occur with the fish production chain. With the growing status of fish protein on 
the world menu, perhaps the Amazon region may soon become a major producer and, possibly, even 
an exporter of native fish. There is still a long way to go, but Embrapa has already made a significant 
contribution by showing and opening the way, and bioinformatics plays a fundamental role.

Validating a methodology that includes the identification of antigens through a reverse vaccinology 
pipeline and obtaining a multi-epitope vaccine is underway at Embrapa, with the participation of the 
LMB, which is aimed at controlling the bovine tick. The infestation of cattle herds by this parasite is 
considered today one of the most significant problems in livestock farming in economic terms, affecting 
all countries with tropical and subtropical climates.

In Brazil alone, annual losses due to tick infestation are in the order of US$3.24 billion (Grisi et al., 2014). 
Obtaining an effective vaccine will certainly contribute towards controlling the parasite, reducing the 
application of acaricides, as well as the environmental and economic damage resulting from this practice. 
Moreover, once validated, there are several possible applications of the methodology, including the 
identification of targets for the control of other problems of interest to agriculture involving animal health 
and welfare.

Machado tool will assist other ongoing projects at Embrapa. There is already a program for its use in the 
Genomics Applied to the Optimization of Genetic Improvement Programs for Tropical Forage Species, led 
by Embrapa Cerrados, with a focus on forage plant improvement. This project predicts the sequencing 
of reference genomes for six tropical forage species, with the characterization of broad sets of genomic 
variants, and Machado will probably be used as a basis for the implementation of a portal to access the 
generated genomic data. 

DBGAP database is being structured to allow its use in other data collections, with some specific changes 
for each project.

As shown in the research reported here, bioinformatics has become fundamental and will be even more 
important in the innovation agendas towards the digital transformation of agriculture. The existence of 
multi-user structures is crucial to support research projects that do not have the necessary structure for 
complex analyses, allowing better use of the resources. With bioinformatics relying on the availability of 
a specialist team and adequate infrastructure, the management of the structure that supports research 
projects must be focused on keeping both aspects up to date.
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