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Abstract
In the agricultural sector, using lower quality water sources has increased in irrigation practice. 
Thus, this review summarizes the consequences of using brackish and/or saline water in 
irrigated agriculture, highlighting some effects on soil and plants in general. Water quality 
for irrigation and the salinity tolerance threshold of forage species with productive potential 
for semiarid regions are also discussed. Between January and June 2022, a systematic search 
was carried out for studies that evaluated the quality of water for irrigation, the effects of 
using water with excess salts on the soil and on plants in general, and on forage species with 
productive potential in semiarid regions. The databases consulted were: ScienceDirect, Scopus, 
Wiley Online Library, Web of Science, Taylor and Francis, and Scholar Google. A total of 
1567 studies were found. Of these, 200 studies were reviewed and 154 were used because 
they met the review objective. The forage plants reported here have salinity tolerance ranging 
from low to moderate. The management adopted, as well as the species used, are factors that 
influence the performance of the crop under stress. Although they are widely cultivated in arid 
and semiarid regions of the world, few studies still show the salinity threshold of these crops, 
mainly for forage cactus, sunflower, and pigeon pea species. Therefore, it is essential to carry 
out more research on this topic in order to provide information that improves the management 
of production systems in saline environments around the world.

Highlights

•	 Forage species have tolerance ranging from low to moderate.
•	 The management adopted and the species influence the performance of the crop under 

stress.
•	 Sorghum and millet are the most tolerant species studied.
•	 Some practices lessen the effects of salinity on forage plants.
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1  Introduction

The scarcity of good quality water resources is a problem that affects the entire world, 
with a greater impact in areas with arid and semiarid climates, where rainfall is irregular 
and atmospheric demand is high (Norton-Brandão et  al. 2013; Yasuor et  al. 2020). In 
the agricultural sector, this problem has increased the use of unconventional sources of 
water for irrigation, such as groundwater and wastewater of inferior quality, which in most 
cases, have high levels of salts that can negatively affect the soil and plants (Yasuor et al. 
2017; Cheng et al. 2021). Ions such as sodium (Na+), calcium (Ca2+), magnesium (Mg2+), 
chloride (Cl−), and carbonate (CO3

2−) are among the most harmful to crops because, at 
relatively high concentrations in irrigation water, they can accumulate in the soil and 
inhibit the full growth of plants (Zörb et al. 2018; Köster et al. 2018).

It is estimated that more than 830 million hectares of land are affected by salinity, and 
this value tends to grow even more (Minhas et al. 2020; FAO 2022). Soil salinity is a global 
problem that threatens the ability of soils to produce, and estimates reveal that around 50% 
of all arable land will be impacted by salinity by 2050 (Butcher et al. 2016). Thus, strategies 
that help in the management of soils affected by salts, and better management of inferior 
water used in irrigation, should be prioritized and favor more sustainable agriculture. The 
use of saline stress-tolerant plants (i.e., halophytes), irrigation methods and frequency, as 
well as the application of leaching depths associated with an efficient drainage system are 
examples of practices that can minimize the effects of salinity within the production system 
(Yasuor et al. 2020; Minhas et al. 2020).

Salt stress is one of the abiotic factors that mostly limits the growth and productive 
potential of crops (Minhas et  al. 2020). In general, most commercially important 
plants are sensitive to salt, as they have a relatively low salinity threshold, showing a 
significant decrease in growth and yield when exposed to an initial salinity condition of 
1.0 to 2.5 dS m−1 of soil saturation extract (ECe) (Zörb et al. 2018; Yasuor et al. 2020). 
On the other hand, forage plant species with productive potential in semiarid regions 
(e.g., cactus, sorghum, millet, pigeon pea, and sunflower) have low to moderate salinity 
tolerance (Singh et al. 2015; Freire et al. 2018; Souza et al. 2021; Jardim et al. 2020a, b; 
Salvador et al. 2021).

The response of plants to salinity occurs in two distinct phases (Munns and Tester 
2008). The first, called the osmotic phase, occurs when salts (e.g., Ca2+, K+, Na+ and 
Cl−) reach the roots, decreasing the osmotic potential of the soil–plant interface, making 
water absorption difficult. The second phase, called ionic, occurs when the salt, at high 
concentrations, reaches the aerial part of the plant, causing toxicity and, consequently, 
leaf death. This significantly reduces the photosynthetic rate of the plant, causing a 
decrease in growth and productivity, as well as the quality of the raw material produced 
(Munns and Tester 2008).

After exposure to salt stress, osmotic reactions in plants occur at an accelerated rate, 
and the toxicity of the ions present in the medium has several consequences (Julkowska 
and Testerink 2015; Yasuor et al. 2020). For example, excess Na+ in the soil, in addition to 
reducing water absorption, can cause an imbalance of nutrients in plants, by reducing the 
absorption of K+, Ca2+, and Mg2+ by the roots, due to ionic antagonism (Zörb et al. 2018). 
On the other hand, the high content of Cl− in irrigation water can cause changes in the 
uptake and use of nitrate (NO3

−) by the crop, causing negative effects on its development 
(Yasuor et al. 2020). Furthermore, high levels of salts, especially Na+, can accelerate the 
degradation of soil structure (Martínez-Alvarez et al. 2016; Qadir et al. 2021).
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The responses of forage plant species to saline stress are variable. In addition, there is 
little information on the tolerance of some species, such as forage cactus, sunflower and 
pigeon pea. Considering the increasing use of water with high salt content in irrigation, 
mainly in semiarid regions, this review presents a summary of the consequences of the use 
of lower quality water in irrigated agriculture. The effects of salinity on soil and plants are 
described, as well as the quality of irrigation water and salinity tolerance of forage species 
with productive potential in semiarid regions.

2 � Literature Review

2.1 � Method

Between January and June 2022, a search was carried out for studies that evaluated the 
use of lower quality water in irrigated agriculture. The main focus of the research was 
the quality of water for irrigation, the effects of using water with excess salts on the soil 
and plants in general, and on forages with productive potential in semiarid regions. For 
this, the following databases were used: 1—ScienceDirect, 2—Scopus, 3—Wiley Online 
Library, 4—Web of Science, 5—Taylor and Francis and 6—Scholar Google, without 
application of date and language restrictions for the studies. Keywords used were: low 
quality water, irrigation, salinity, forage plants, plants, salinity tolerance, saline soil, salin-
ity, forage cactus, forage sorghum, forage millet, pigeon pea, forage sunflower, water qual-
ity, effects of salinity, salinity tolerance mechanisms and saline stress were used in the 
search, both individually and combined with each other by the Boolean operator "AND", 
forming 20 search strings.

A total of 1567 studies were found, the majority being in the Google school database 
(Fig. 1). Of these, 200 studies were reviewed, and 154 met the criteria to meet the objective 
of this review. The works included were published between 1954 and 2022 (Fig. 2).

Then, the sessions discussed in this review were defined: Water quality for irrigation, 
Effect of salts on soil and plant, and Tolerance of forage plant species to salinity. The latter, 
with emphasis on the responses of forage cactus (Opuntia spp. and Nopalea spp.), forage 

Fig. 1   Flowchart of procedures for inclusion of studies used in the review. *Database (Google Academic) 
with the highest number of results found
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sorghum [Sorghum bicolor (L.) Moench], forage millet (Pennisetum glaucum L.), forage 
sunflower (Helianthus annuus L.), and pigeon pea [Cajanus cajan (L.) Mill sp.] species, 
submitted to saline stress conditions.

3 � Results and Discussion

3.1 � Water Quality for Irrigation

Rapid population growth, increased demand for food, climate change, and the intensification 
of agricultural activities impose strong pressure on non-renewable natural resources, mainly 
soil and water. For this reason, freshwater scarcity is increasingly becoming one of the main 
global problems, being an obstacle to the development of sustainable agriculture (Gharaibeh 
et al. 2016; Zaman et al. 2018). According to the United Nations Organization (UNO), it is 
estimated that by 2050 the world population will increase from 7.6 billion to more than 9 
billion, with a large part of this population being present in underdeveloped countries, where 
water scarcity and food production are already striking problems (Bortolini et  al. 2018; 
Zaman et al. 2018). For this scenario, a 70% increase in current agricultural productivity 
is predicted to be necessary for the global demand for food to be met (Zaman et al. 2018). 
Thus, better water management for irrigation is crucial to achieving satisfactory crop yields, 
as well as improving the efficient use of water resources (Queiroz et al. 2016; Pereira et al. 
2020). In addition, efforts are also needed to better capture and conserve rainwater for 
agriculture, especially in arid and semiarid regions, where the effects of climate change are 
more pronounced (Zaman et al. 2018; Punia et al. 2020). On the other hand, the existing 
water limitations in these regions evidence the need to seek alternative sources of water 
(Lemos et al. 2021).

The use of water of lower quality, whether underground and/or wastewater (e.g., 
saline water, treated domestic sewage, brackish water, desalinated water, among 
others), has been gradually increasing in irrigated agriculture (Norton-Brandão et  al. 

Fig. 2   Number of articles per year of publication used in the review
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2013; Libutti et al. 2018; Al-Reyami et al. 2020; Cakmakci and Sahin 2021). This is a 
promising alternative, as in addition to improving food production, it can significantly 
reduce the demand for high-quality water (Carvalho et  al. 2021). However, its use, 
without proper management, can cause problems of toxicity to crops, negative effects 
on the soil, spread of parasites, and damage to the irrigation system (Bortolini et  al. 
2018). For these reasons, there are concerns about the agricultural use of these waters, 
which encompass aspects of human and environmental health (Norton-Brandão et al. 
2013). Therefore, its usability in agriculture also depends on the adoption of agronomic 
practices that mitigate its adverse effects, its characteristics, and, consequently, its 
quality (Bortolini et al. 2018; Minhas et al. 2020; Carvalho et al. 2021).

The quality of water used in irrigation is one of the factors considered for the proper 
management of water and nutrients in agricultural production systems. Generally 
speaking, water quality standards are seen as a relatively broad topic, which includes 
a large number of guidelines or regulations that vary according to the end use of 
water. However, when related to irrigation, the characterization of the quality of water 
resources initially comprises the knowledge of the water sources available for this 
purpose (e.g., fresh water, saline/brackish water, wastewater, and desalinated water), 
as well as, the type of crop, irrigation system used and water quality parameters, with 
emphasis on salinity (Norton-Brandão et  al. 2013; Lothrop et  al. 2018; Yasuor et  al. 
2020).

Many parameters are used in the evaluation of water quality; however, the concentration 
and composition of the salts present in the water determine its usability for different 
purposes, such as for human, animal, and irrigation (Bortolini et  al. 2018; Zaman et  al. 
2018). For the latter, according to Zaman et  al. (2018), there are four basic criteria for 
assessing water quality:

•	 The total soluble salts (salinity hazard);
•	 Relative proportion of sodium ions (Na+) to calcium Ca2+ and magnesium (Mg2+) 

– sodium adsorption ratio (sodicity risk);
•	 The concentration of residual sodium carbonate anions (RSC) – bicarbonates (HCO3) 

and carbonates (CO3
2−) concerning Ca2+ plus Mg2+ ions, and

•	 The excessive concentrations of sodium (Na), Boron (B) and chloride (Cl−) that cause 
ionic imbalance or toxicity in plants.

Among the mostly used references to characterize and, thus, define the quality of water 
for irrigation, is the classification of the United States Salinity Laboratory (Richards 
1954) and the FAO (Food and Agriculture Organization of the United Nation) (Westcot 
and  Ayers 1985). Regarding the classification of Richards (1954), a diagram (Fig.  3) is 
used to classify the waters, being divided into four classes (C1 to C4), considering the 
electrical conductivity (ECw), i.e., as a function of the concentration of total soluble salts, 
and another four classes (S1 to S4), according to their sodicity, based mainly on the effect 
that exchangeable sodium has on the physical condition of the soil. The combination of 
these two indices, ECw and SAR, makes it possible to establish different types of water, 
each one being identified by the initial of each of the numerical indices and sub-indices. 
As the value of the sub-indices increases, the quality of irrigation water decreases. Table 1 
presents the meaning and restrictions of use for each class of water according to Richards 
(1954) classification.

This classification is widely used today, although later studies have shown some 
drawbacks. For example, Pizarro (1985, 1996) pointed out the main problems of this 
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classification: a) The assumption that Ca2+ and Mg2+ have the same ion exchange 
selectivity, which does not correspond to reality; for the same SAR, the adsorption of 
Na + increases when the Mg/Ca ratio increases due to the lower energy of adsorption 
of Mg2+; b) It does not take into account the possibility of salt precipitation, a phenom-
enon that can increase the risk of sodicity since Ca2+ is the cation mostly subjected to 
reaction, precipitating in the form of carbonate and sulfate that are of low solubility; 
and c) The classification has a conceptual error since the salts in the soil solution have 
a flocculating effect, opposite to the dispersing effect of exchangeable sodium; thus, for 
the same SAR, the risk of sodicity will be lower for higher ECw.

Thus, the descending lines in the classification diagram become ascending according 
to Fig.  4, therefore, of the sixteen predicted classes of the combination of salinity 
and sodicity in the classification of Richards (1954), six do not exist under natural 
conditions.

In the classification proposed by Westcot and  Ayers (1985), the quality of water 
used in irrigation practice is related to potential problems that can be caused, which 
are subdivided into four groups (Table 2).

Fig. 3   Richards diagram for 
interpreting water for irrigation 
purposes (adapted from Richards 
1954)
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3.2 � Effect of Salts on Soil and Plant

The exploitation of water with high levels of salts can overcome the scarcity of quality 
water for irrigation. However, the use of this water can induce, when poorly managed, 
salinization of the soils, with consequent negative effects on the development and growth 
of the plants (Yasuor et al. 2020; Cheng et al. 2021; Feng et al. 2021).

Soil salinization is a term that includes saline, saline-sodic, and sodium soils, which are 
characterized, respectively, as: 1 – soils that present high concentrations of salts, which 
can be converted to non-saline soils by leaching the soluble salts present in the root zone; 
2 – soils with high concentrations of Na+; and 3 – soils with high pH, mainly due to the 
high concentration of CO3

−2 (Richards 1954; Daliakopoulos et  al. 2016). Soil salinity is 
classified based on the electrical conductivity of the soil saturation extract (ECe) and the 
relative Na+ content, which in turn is obtained by RAS (Eq. 1) or exchangeable sodium 
percentage (ESP) (Eq.  2) (Richards 1954; Butcher et  al. 2016; Carabali et  al. 2019). In 
general, saline soils have an ECe equal to or greater than 4 dS m−1 (Table  3), which is 
equivalent to approximately 40  mmol L−1 of NaCl or an osmotic potential of -0.2 Mpa 
(Rengasamy 2006; Köster et al. 2018). In turn, soil sodicity is characterized by high SAR 
or ESP (Table 3) and accumulation of Na+ concerning Ca+ and Mg+ (Rengasamy 2010; 
Cucci et al. 2013).

Fig. 4   Approximate diagram 
of water classes for irrigation 
(adapted from Pizarro 1996)
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(1)
SAR =

Na+
√

Ca2++Mg2+

2

(2)ESP =
Na+ × 100

CEC

Table 2   Guidelines for interpreting water quality for irrigation (Westcot and Ayers 1985)

Potential problem Unit Degree of use restriction

None Mild to moderate Severe

Salinity (affects the availability of growing 
water) EC or

dS m−1  < 0.7 0.7 – 3.0  > 3.0

Dissolved solids content—DSC mg L−1  < 450 450 – 2000  > 2000
Infiltration (reduces seepage; assess using SAR and EC)

  SAR = 0 – 3 and EC =  dS m−1  < 0.2 0.2 – 0.7  > 0.7
  3 – 6 and EC =  dS m−1  < 0.3 0.3 – 1.2  > 1.2
  6 – 12 and EC =  dS m−1  < 0.5 0.5 – 1.9  > 1.9
  12 – 20 and EC =  dS m−1  < 1.3 1.3 – 2.9  > 2.9
  20 – 40 and EC =  dS m−1  < 2.9 2.9 – 5.0  > 5.0

Specific ion toxicity (Affects sensitive crops)
  Sodium (Na+)
    Surface irrigation SAR  < 3 3 – 9  > 9
    Sprinkler irrigation meq L−1  < 3  > 3
  Chlorine (Cl−)4

    Surface irrigation meq L−1  < 4 4.0 – 10  > 10
    Sprinkler irrigation meq L−1  < 3  > 3
    Boron (B) mg L−1  < 0.7 0.7 – 3.0  > 3

Various (affects sensitive crops)
  Nitrogen (NO3 N) mg L−1  < 5 5.0 – 30  > 30
  Bicarbonate (HCO3) (foliar spray only) mg L−1  < 1.5 1.5 – 8.5  > 8,5
  pH Normal range 

5.5 – 8.4

Table 3   Characteristics of salt-affected soils

Source: Richards (1954)

Property of the soil Unit/Symbol Types of soils affected by salts

Saline Saline-sodic Sodic

Electric conductivity ECe (dS m−1)  > 4  > 4  < 4
Exchangeable sodium percentage ESP  < 15  < 15  > 15
pH -  < 8.5  < 8.5  > 8.5
Sodium absorption ratio SAR  < 13  < 13  > 13
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where Na+, Ca2+, and Mg2+ refer to the concentration of sodium, calcium, and magnesium, 
respectively, in the soil, in mg L−1, and CEC is the cation exchange capacity of the soil, 
that is, the number of negative charges present in the soil, in mmolc dm−3.

Soil salinity is a widespread problem affecting over 424 million hectares of topsoil (i.e., 
0–30 cm) and 833 million hectares of subsoil (i.e., 30–100 cm) worldwide, with significant 
effects on about 20% of the entire irrigated area (Negrão et al. 2016; FAO 2022). Consid-
ered one of the greatest threats to soil degradation, this process can be due to primary and 
secondary causes (Daliakopoulos et al. 2016).

Primary salinization is caused by the natural accumulation of soluble salts from the 
parent rock, which occurs due to physical or chemical weathering and transportation of the 
original material, deposition of geological materials, and elevation of saline groundwater 
(Daliakopoulos et  al. 2016; Yasuor et  al. 2020). This process often occurs in arid and 
semiarid regions, where rainfall distribution and occurrence are low and atmospheric 
demand is high. For this reason, primary salinization is also called dryland salinity (Yasuor 
et al. 2020). On the other hand, secondary salinity is a result of human effects, especially 
irrigation with saline water and/or irrigation with saline/brackish water and/or inadequate 
irrigation associated with inefficient drainage conditions (Daliakopoulos et al. 2016; Singh 
2019; Jardim et al. 2020b; Yasuor et al. 2020).

The high concentration of salts can cause serious problems to the soil, such as changes 
in its physicochemical properties, reduction in hydraulic conductivity and infiltration, as 
well as in the water potential (i.e., an increase in osmotic potential) (Daliakopoulos et al. 
2016; Perri et al. 2020; Li et al. 2022). In conditions with high levels of Na+, for example, 
the degradation of the soil structure and, consequently, a decrease in the movement of 
water and air in its environment processes are frequently observed (Rengasamy 2010). This 
is due to the dispersion and expansion of clay, which in turn blocks soil macropores and 
reduces its permeability (Nouri et al. 2017).

With reduced infiltration, the availability of nutrients and water becomes restricted to 
plants, in addition to increasing the risks of flooding, susceptibility to erosion, and surface 
runoff from the soil (De La Paix et  al. 2013). On the other hand, when the soil is dry, 
surface crusts are formed due to the obstruction of the pores by small clay particles, which 
hinder the hydraulic conductivity of the soil environment (Daliakopoulos et al. 2016; Nouri 
et al. 2017).

In the case of soils with high concentrations of Ca+ and Mg2+, changes in pH are 
observed (Zörb et  al. 2018; Köster et  al. 2018). The higher the concentration of 
these ions, the higher the pH of the soil, with significant effects on its fertility and 
physical–chemical properties. The large variation in water content is another recurring 
problem, which becomes a limiting factor for productivity (Deinlein et  al. 2014). 
The high levels of soluble salts present in the medium increase the osmotic pressure, 
significantly reducing the availability of water and the absorption of nutrients by the 
plants (Deinlein et al. 2014). In addition, processes such as decomposition and respiration 
are negatively impacted by the increase in soil ECe (Singh 2016). The decomposition of 
organic matter is affected due to changes in the microbiological community of the soil, 
as osmotic stress can cause microbial cell lysis, with consequent accumulation of cellular 
solute and reduction in the population of microorganisms (Singh 2016). In summary, 
breathing is altered due to increased CO2 emissions caused by high salinity. According 
to Singh (2016), fewer microbes breathe more and decompose readily available organic 
molecules under saline stress. Thus, the CO2 produced can be dissolved in the soil 
solution and underestimate its evolution. Singh (2016) also points out that, in sodic 
soils, the dissolution of calcium carbonate (CaCO3) forms CO2, which can overestimate 
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respiration. Therefore, the effects of salinization can result in the loss of resources, goods, 
and services from the soil and, consequently, impact local sustainability and agricultural 
production, with possible sociocultural and human health problems (Daliakopoulos et al. 
2016; Nikalje et al. 2017; Yin et al. 2022).

In agricultural areas with salinity problems, glycophytic plants (i.e., plants sensitive to 
salinity) have difficulty maintaining their full growth and development (Perri et al. 2018; 
Ayub et  al. 2020). The effects of salinization on crop growth and productivity include 
increased osmotic stress, which affects water and nutrient uptake, the toxicity of ions, or 
even the accumulation of specific ions in the aerial part of plants (Julkowska and Testerink 
2015; Minhas et al. 2020). The high concentration of salt in the soil creates a high osmotic 
potential that reduces water availability for plants. Decreased water potential causes 
osmotic stress, which inactivates photosynthetic electron transport. In addition, the loss of 
cell turgor promotes stomata closure, which in turn decreases CO2 fixation and, therefore, 
effects on plant growth, development, and productivity are observed (Safdar et al. 2019).

In general, the plant response to salinity can be described in two phases, the first charac-
terized by the independent plant response to ions and, the second when the observed effects 
are induced by specific ions (Negrão et al. 2016). The first phase occurs quickly, ranging 
from minutes to days after initial contact with saline stress (Julkowska and Testerink 2015). 
In this phase, the water relationships of plants undergo significant changes, causing stoma-
tal closure, inhibition of leaf development, and physiological drought (Negrão et al. 2016; 
Nouri et al. 2017). The latter is caused by ions dissolved in the soil solution near the roots, 
which create a water potential difference at the soil–plant interface, making it difficult for 
the root system to absorb water (Ayub et al. 2020). On the other hand, the second phase 
develops for a longer period (i.e., days to weeks) and the accumulation of ions at toxic lev-
els in the aerial part of the plant is a striking feature, inducing leaf senescence and, conse-
quently, the reduction of the final yield or even the death of the plant (Negrão et al. 2016).

In conditions of high salinity, the first reactions can be observed in the reduction of the 
germination potential of the seedlings; however, the most evident effect is the delay in the 
growth and development of the plants (Minhas et al. 2020). Toxic responses are initiated 
when Na+ ions enter the epidermal and cortical cells of the roots, through non-selective 
cation channels, leading the plant to several perturbations (Julkowska and Testerink 2015; 
Yasuor et al. 2020).

High concentrations of Na+ and Cl−, especially in the cytosol, have significant 
consequences on the absorption of cationic elements (e.g., K+, Ca2+, and Mg2+), as well as 
on the nutritional imbalance of the plant, mainly due to the interaction with nitrate (NO3

−) 
(Yasuor et  al. 2020). High levels of Na+ and Mg2+ can destroy cell morphology, reduce 
chlorophyll production and thereby restrict photosynthesis (Daliakopoulos et al. 2016). In 
addition, in response to salt stress, plants show significant production of reactive oxygen 
species (ROS), such as singlet oxygen (1O2), superoxide (O2−), hydroxyl radical (OH−), 
and hydrogen peroxide (H2O2), which in turn cause oxidative damage to cells, interfering 
with vital plant cell functions (Gupta and Huang 2014).

To deal with salinity stress, plants develop some physiological and biochemical mechanisms 
capable of mitigating the effects of salinity (Ayub et al. 2020). Among the many, there are: 
homeostasis and ion compartmentation; transport and absorption of ions; biosynthesis of 
osmoprotectants and compatible solutes; activation of antioxidant enzymes; synthesis of 
polyamines and antioxidant compounds; nitric oxide production, and hormonal modulation 
(Gupta and Huang 2014). However, it is worth noting that plants may have variable tolerances 
to salinity, depending on the soil type, types of rhizobacteria, growth stage, and agronomic 
practices (Daliakopoulos et al. 2016).
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The adoption of some management practices within production systems is an alternative 
to maintain, at satisfactory levels, the growth, development, and production of plants under 
saline stress conditions. For example, in the cultivation of Cucumis sativus L. subjected to 
irrigation with different levels of NaCl, Cao et al. (2016) observed that the use of a straw 
biological reactor decreased salinity and improved soil chemical properties, reducing Na+ 
accumulation in the shoots and roots of plants, with a significant increase in nutrient uptake 
and crop growth. Yield and fruit quality were also improved with the use of technology. In 
tomato cultivation in an arid environment, under irrigation with water with different ECw, 
Li et al. (2022) obtained good results in fruit quality. In this study, the authors adopted drip 
irrigation management under the regulation of the levels of salts in the irrigation water and 
observed, in addition to the good quality of the fruits, an acceptable concentration of salts 
in the soil over two years of cultivation.

3.3 � Tolerance of Forage Plant Species to Salinity

Salinity tolerance refers to the ability of plants to withstand concentration of soluble salts 
present in the soil solution, without affecting their growth, development, and productivity; 
in turn, it is specific to each culture (Minhas et al. 2020). The following is a brief report on 
the salinity tolerance of some forage plant species that have great production potential in 
agricultural systems in a semiarid environment.

3.3.1 � Cactus Forage (Opuntia spp. and Nopalea spp.)

Cactus (Opuntia spp. and Nopalea spp.) is an important forage resource for arid and semi-
arid regions. Despite the low concentration of dry matter (5–15% DM), crude protein, 
and fiber, attributes such as high digestibility, high levels of soluble carbohydrates, and 
water reserve make this crop a viable food alternative for herds (Araújo Júnior et al. 2021a; 
Dubeux Júnior et al. 2021). In the Brazilian semiarid, for example, the species commonly 
cultivated are the Orelha de Elefante Mexicana—OEM (Opuntia stricta Haw. (Haw.)), 
Ipa Sertânia—IPA (Nopalea cochenillifera (L.) Salm-Dyck), and Miúda—MIU (Nopalea 
cochenillifera (L.) Salm-Dyck), mainly due to their resistance to carmine mealybug (Dac-
tylopius opuntiae Cockerrell, 1929, Hemiptera: Dactylopidae), which are considered the 
main pest of the crop (Araújo Júnior et al. 2021b).

Due to its morphophysiological characteristics, the cactus forage can adapt to condi-
tions with high air temperatures and water scarcity, maintaining a good production of 
green phytomass even during periods of long drought (García-Nava et al. 2015; Queiroz 
et  al. 2015). Its photosynthetic metabolism, called Crassulacean acid (MAC), gives it 
excellent efficiency in the use of water since CO2 capture occurs at night when the air 
temperature is lower and the loss of water through transpiration is minimal (Scalisi et al. 
2016). In addition, its succulent stems (i.e., cladodes), responsible for photosynthesis 
and with a high capacity to accumulate water, low number of stomata, thick cuticle, and 
an adapted root system are other characteristics that make it adapt to adverse conditions 
(Hassan et al. 2019). Although it is adapted to a large number of growing conditions, its 
tolerance to saline environments is little reported in the literature (Gajender et al. 2014). 
Considering that salinity is one of the abiotic factors that most limit plant growth and 
productivity, this information is extremely important for the proper management of the 
crop (Freire et al. 2021).
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The adaptation of forage cactus to salinity and, consequently, its productive potential 
under these conditions, vary according to the clones cultivated (Freire et al. 2018). Accord-
ing to Inglese et al. (2017), even with characteristics that give it the ability to adapt to vari-
ous cultivation environments, the species Opuntia fícus-indica (L.) Mill is sensitive to high 
soil salinity and waterlogging, due to the lack of air in the root zone caused by these condi-
tions. The cactus root system has low dry mass production, which restricts its development 
in saline environments (Snyman 2004). In this sense, the cultivation of this species in soils 
with ECe > 4 is not indicated (Inglese et al. 2017).

The use of saline water in irrigation causes, in addition to salinization, variations in 
soil pH throughout the crop cycle, which is normally associated with the alkalinity of the 
water, which in turn can be a result of the concentration of bicarbonates (Porto Filho et al. 
2011). Although most crops can tolerate a wide pH range (Zaman et al. 2018), forage cac-
tus may have reduced growth, as reported by Gajender et al. (2014), who, when evaluating 
three clones of Opuntia fícus-indica (L.) Mill submitted to three salinity levels (0, 32, and 
52 mM), observed that the cactus species was tolerant to the salinity of 52 mM (EC ~ 5 dS 
m−1), but they found sensitivity at pH equal to 9.8, with negative effects on plant growth. 
However, Singh (2004) evaluated different soil pH (8.1, 8.4, 8.7, 9.4 and 10) in cactus pear 
cultivation, and observed different effects on the culture’s growth dynamics. For example, 
at pH 8.1, the sprouting of cladodes started at 54 days after planting (DAP), while at pH 10 
it was observed at 90 DAP. From pH 8.7, the plants showed a lower rate of shoots, as well 
as reduced size and mass of cladodes. Given these findings, indicating an ideal pH range 
for cactus pear cultivation becomes difficult. The performance of the crop under different 
salinity conditions may vary according to the species and the management adopted in the 
production system, and not just the stress applied.

In plants of Nopalea cochenillifera Salm Dyck submitted to irrigation with saline water 
with ECw (3.6 dS m−1), Freire et al. (2018) observed a reduction in the amount, thickness, 
and width of cladodes, as well as a decrease in forage yield, possibly due to a large number 
of salts absorbed by the plant in relation to other conditions (0.3, 0.5, and 1.5 dS m−1). The 
effects of salinization on crop growth and productivity include increased osmotic stress, 
which affects water and nutrient uptake (Minhas et al. 2020). In this sense, the difficulty in 
capturing water by the roots favors the decrease in the thickness and width of the cladodes, 
significantly reducing the growth of the forage cactus (Scalisi et al. 2016). Therefore, the 
variation in cladode thickness may be indicative of plant dehydration (Inglese et al. 2017), 
which in turn may be due to the osmotic effect. Characteristics such as the quantity, size, 
and distribution of cladodes in the plant influence the photosynthesis of the crop and, con-
sequently, its productivity (Araújo Júnior et al. 2021b).

Irrigation with saline water can result in adverse effects on the soil–water-plant interface, 
causing negative effects on the productive potential of plants. Furthermore, toxic effects of 
salinity can be observed if the concentrations of salts present in plants are above their toler-
ance levels (Dias et al. 2016). The use of irrigation with saline water with ECw ranging from 
1.5 to 3.6 dS m−1 caused greater damage (i.e., dehydration and chlorosis) to basal, primary, 
and secondary cladodes of Nopalea cochenillifera Salm Dyck (Freire et al. 2018).

In a study with 20 forage cactus species (Opuntia and Nopalea) irrigated with water 
with ECw (3.6 dS m−1), Freire et al. (2021) observed that the species forage Liso (Opuntia 
fícus-indica (L.) Mill) took 419 days to reach score 5 (i.e., severe damage) in relation to 
the other species, indicating its greater tolerance to salinity. However, in terms of dry mat-
ter yield, this clone presented the lowest results (36.1 g plant−1) compared to Orelha de 
Elefante Mexicana (Opuntia stricta (Haw.) Haw) (51.5 g plant−1), and Orelha de Elefante 
Africana (Opuntia undulata Griffiths) (50.8 g plant−1), showing that, despite not showing 
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high tolerance to the imposed conditions, the Orelha de Elefante Mexicana and Orelha 
de Elefante Africana can be an alternative for forage production in these environments 
(Freire et al. 2021).

In conditions irrigated with saline water (ECw – 1.5 dS m−1), in the Brazilian semi-
arid region, the clone Orelha de Elefante Mexicana showed higher productivity in relation 
to clones of the genus Nopalea (Miúda and Ipa Sertânia), both in green mass and in dry 
mass (Araújo Júnior et al. 2021b). According to Freire et al. (2018), cactus species of the 
genus Nopalea have a low tolerance to salt stress. Thus, the findings by Araújo Júnior et al. 
(2021b) may be indicative of greater tolerance to the saline environment of clones of the 
genus Opuntia than the genus Nopalea.

As seen, the salinity tolerance of forage cactus can vary, among other factors, according 
to the cultivated species. On the other hand, the expression of metabolites such as dehy-
drins and the accumulation of compounds may contribute to the tolerance of cactus to abi-
otic stresses (Ochoa Alfaro et al. 2012). In addition, parameters such as total chlorophyll 
content in young and old cladodes, chlorophyll-a content in old cladodes, and total solu-
ble sugars present in the roots can be used to identify the tolerance of Opuntia species to 
salt stress (Lallouche et al. 2017). Mechanisms such as ion retention through selective root 
transport and carbon balance through CAM metabolism are other possible reasons why 
cacti tolerate saline soils (Nobel et al. 1984).

3.3.2 � Sorghum Forage (Sorghum bicolor (L.) Moench)

Sorghum is a forage species belonging to the Poaceae family, originating in Africa and dis-
tributed throughout the tropical and subtropical regions of the world (Jardim et al. 2020a; 
Pennells et al. 2021). It is considered the sixth most cultivated food in the world, and the 
fifth cereal with the highest economic value, being, in many parts of the world, the sta-
ple food for many rural communities and people with food insecurity (Punia et al. 2019; 
FAOSTAT 2022) .

Its C4 photosynthetic metabolism gives it high efficiency in water use and drought toler-
ance (Pennells et al. 2021; Pinheiro et al. 2021) and characteristics such as rapid growth, 
resistance to water deficit, tolerance to lodging, high production of biomass, geographic 
adaptation and easy cultivation from seeds, make this crop an important alternative for the 
development of sustainable technologies in the most diverse areas (e.g., bioenergy, biofu-
els, food, and feed, among others) (Nghiem et al. 2016; Stamenkovic et al. 2020).

Characteristics such as high forage and agronomic potential (i.e., low water requirement 
and regrowth potential), linked to its chemical attributes (i.e., source of energy and fiber, 
high production of dry mass and crude protein) make the cultivation of sorghum and its use 
for animal feed, one of the strategies adopted by producers in arid and semiarid regions, 
being in many situations a partial or total substitute for corn in the formulation of rations 
(Samarappuli and Barti 2018). In addition, its salinity tolerance is another attribute that 
makes it an important food resource for these regions (Chakravarthi et al. 2017; Punia et al. 
2021; El-Mageed et al. 2021).

Although considered tolerant to saline stress, some sorghum cultivars, in the early 
stages of development, are sensitive to this condition (El-Mageed et  al. 2021). The 
stages of germination and emergence of seedlings of this forage are considered the most 
informative of the crop cycle to identify salinity tolerance (Dehnavi et al. 2020). Bafeel 
(2014) evaluated seven sorghum cultivars (C1, C2, C3, C4, C5, C6, and C7) subjected 
to irrigation with seawater (i.e., dilutions of Red sea water at 1.65, 3.1%, 6.3%, 12.5%, 
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25%, 50% and 100%), and observed that seeds irrigated with 100% saline water did not 
germinate after three days of exposure to the treatment. On the other hand, when sub-
mitted to irrigation with 50% saline water, all seeds of three cultivars (C1, C3, and C5) 
germinated, a result not observed for cultivars C2, C4, C6, and C7, which showed ger-
mination ranging from 77 to 97%. These results show that the physiological responses of 
the plant subjected to salinity, among other factors, vary according to the cultivar used 
(Ali et al. 2020). Similar results were obtained by Coelho et al. (2018). Ali et al. (2020), 
when studying the effects of saline irrigation (0, 2.5, 5.0, 7.5, 10 and 12.5 dS m−1) on ten 
genotypes of forage sorghum (F305, BRS-655, BRS-610, Volumax, 1015045, 1016005, 
1016013, 1016015 and 1016031), observed different responses in plant photosynthesis 
and transpiration, with the F305 genotype showing the worst performance. Factors such 
as growth, development, and duration of exposure to stress can also be determinants of 
plant tolerance to salinity (Munns and Tester 2008).

Salt stress tolerance in the early stages of development determines a better establish-
ment of the crop in the field, and the characteristics observed in the seedlings are a valid 
criterion for the selection of more salt tolerant sorghum genotypes (Dehnavi et al. 2020). 
The growth and development of the root system and shoot, as well as the weight of the 
plant, can decrease significantly due to salt stress (Bafeel 2014). When evaluating the ini-
tial growth of 10 sorghum genotypes submitted to four levels of NaCl (0, 100, 150, and 
200 mM), Dehnavi et al. (2020) observed that salinity reduced the percentage of germina-
tion, root length, shoot length of the seedling, and the fresh and dry mass of the seedlings, 
with different responses between the genotypes studied. Dehnavi et al. (2020) point out that 
factors such as reduced water imbibition, osmotic stress, alterations in enzymatic activities, 
which affect hormonal balance and reduce seed reserves, and an increase in phenolic com-
pounds, can be decisive to reduce the germination process under saline stress. In addition, 
salinity can inhibit the maintenance of essential nutrients for the growth of roots and shoots 
of seedlings. In turn, the toxic effect of Na+ on photosynthesis, due to the reduction in CO2 
concentration and stomatal closure, reduces the fresh and dry mass of seedlings. Another 
factor is that Na ions can decrease the rate of transport of essential ions (e.g., NO3

−), which 
reduces the amount of nitrogenous compounds, with consequent inhibition of both plant 
growth and biomass accumulation. On the other hand, under moderate salinity conditions 
(i.e., 3 to 5 dS m−1), some sorghum cultivars may show good initial shoot growth (Coelho 
et al. 2018). This result corroborates the salinity limit value (ECe = 6.8 dS m−1) by Maas 
(1986), who classified sorghum as moderately tolerant to saline stress.

Regarding the productive potential of the crop, studies carried out in the semiarid region 
of Brazil showed the good productive performance of the crop under irrigation water salinity 
conditions ranging from 1.4 to 1.6 dS m−1. For example, Jardim et al. (2021), when evaluat-
ing three sorghum cultivars (2502, IPA-SF11, and IPA-467) in an exclusive and intercropped 
system under irrigation with high salinity water (i.e., C3, according to Richards classification 
1954), obtained average green matter yields equal to 221.73 Mg ha−1 (cactus + sorghum) and 
145.92 Mg ha−1, respectively. Diniz et al. (2017) obtained average yields of 62.01 kg ha−1 
of green mass and 14.07 kg ha−1 of dry mass, for the cultivar SF-15 in an exclusive system 
under different water regimes with saline water. On the other hand, under rainfed conditions, 
Perazzo et al. (2013) obtained yields ranging from 37.17 to 52.14 kg ha−1 in green mass, and 
10.88 to 14.51 kg ha−1 in dry mass, when studying five cultivars of sorghum (Ponta Negra, 
SF-15, IPA 1011, IPA 2502 and IPA 46742). These results show that irrigation with water of 
lower quality can be an alternative for the cultivation of forage sorghum in Brazilian semiarid 
conditions. However, in addition to productivity, the quality of the forage produced must be 
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taken into account, as it has a direct influence on the digestive functions and health of the 
animals (Chakravarthi et al. 2017).

In this sense, when evaluating 23 genotypes and 300 sorghum lines subjected to different 
salinity levels (60, 80, 100, 120, and 150 mM NaCl), Punia et al. (2021) reported an influence 
on the nutritional quality of the forage produced, with a reduction in protein content and dry 
matter digestibility, with increased levels of NaCl, and considerable accumulation of hydro-
cyanic acid under the same conditions. Reductions in plant height and accumulation of dry 
matter, decreasing the amount of forage, were also reported by these authors.

In general, sorghum tolerance to salinity may be related to the exclusion of Na+ from the 
aerial part of its plants (Krishnamurthy et al. 2007), as well as to the high concentration of 
soluble sugars in the leaves, which exert significant activity of osmoregulation in this culture 
(Coelho et  al. 2018). High photochemical quantum yield, high chlorophyll content, high 
relative water content, and a higher chlorophyll stability index can also confer salt tolerance 
in sorghum plants (Punia et al. 2021). In addition, the application of exogenous hormones 
(e.g., jasmonic acid, humic acid, and gibberellic acid) can reduce the adverse effects of 
salinity on the development of this crop (Nimir et al. 2014; Ali et al. 2020). The application of 
phytohormones in seed treatment, such as jasmonic acid, can increase the diffusion of water 
into the cell, improve oxygen absorption, and increase a-amylase activity and the transfer of 
nutrients from cotyledons to embryos, favoring a higher seed germination rate (Nimir et al. 
2014). In summary, the exogenous application of gibberellic acid can mitigate the effects of 
NaCl in several cultures, due to the activation of catabolizing enzymes or by blocking the 
biosynthesis pathway of abscisic acid, which is responsible for seed dormancy under stress 
conditions (Nimir et  al. 2015). On the other hand, humic acid can be easily absorbed by 
plants, and thus, favors the absorption of nutrients (e.g., nitrogen and phosphorus) (Elmongy 
et al. 2018) which improves crop performance under stressful conditions (Nimir et al. 2014).

3.3.3 � Millet Forage (Pennisetum glaucum L.)

The millet (Pennisetum glaucum L.) belongs to the Poaceae family, is considered the 
sixth most consumed cereal in the world, being the staple food of the low-income rural 
population, mainly in arid and semiarid areas of India and China (Dias-Martins et al. 2018; 
Yousaf et al. 2021; Mitharwal et al. 2021). Such importance is due to the high nutritional 
value of the crop, which has high levels of essential amino acids, crude protein, fat, ash, 
energy, calcium, and iron in its composition compared to other cereals such as wheat, corn, 
and rice (Souza et al. 2019; Mitharwal et al. 2021).

Since its introduction in Brazil in 1929 in Rio Grande do Sul, millet has been widely used 
as a ground cover in no-till and as fodder in animal feed (Dias-Martins et al. 2018). The latter, 
mainly in the semiarid region, is due to the great potential for biomass and grain production, 
when compared to other crops that have reduced yields due to the climatic peculiarities of 
the region (Santos et al. 2017). Millet produces considerable amounts of biomass even when 
subjected to conditions of low water availability, and may, for example, be an alternative to 
corn to feed livestock (Bergamaschine et al. 2011; Alonso et al. 2017; Bhattarai et al. 2020). 
In addition, the nutritional composition and low production cost are other factors that favor 
its use in the Brazilian semiarid region (Alonso et al. 2017). However, it is worth mentioning 
that drought tolerance varies for each cultivar (Santos et al. 2017).

This species has C4 metabolism, which favors its cultivation in environments where 
high air temperatures and water deficit are outstanding characteristics (Souza et  al. 



Use of Lower Quality Water in Irrigated Agriculture and Effects…

1 3

Page 17 of 28     44 

2019; Bhattarai et al. 2020; Wilson and Vanburen 2022). In addition, the crop is well 
adapted to conditions of low soil fertility and high salinity (Singh et  al. 2015; Souza 
et  al. 2021). A wide variation in salt stress tolerance can be found in several geno-
types of this species, and varieties native to arid and semiarid regions may show better 
responses to stress conditions when compared to new cultivars (Jha 2022).

Millet responses to salinity depend on its genetic makeup and environmental conditions 
(Jha et al. 2021). Considering the valuable genetic resource that some varieties of this species 
can present, some studies have used millet genes to confer salinity tolerance to other species, 
such as rice and peanuts (Tripathy et al. 2017; Rao et al. 2017). However, it is worth mention-
ing that, although it is tolerant to salinity conditions, recent research has shown significant 
reductions in grain and forage yields of this crop. For example, under high salinity condi-
tions, with levels ranging from 8 to 12 dS m−1, Yadav et al. (2020) observed reductions of 
13 to 22.43% in the final grain yield. Decreases of 19 and 41.3% were observed by Toderich 
et al. (2018) on biomass and grain yield, respectively, in 11 millet lineages.

The performance of plant species under stress conditions must be evaluated through 
existing characteristics among the tolerant genotypes, as well as by the plant devel-
opment stage, to select individuals that present better responses to salinity (Jha et  al. 
2021). In this sense, observing the growth characteristics in the initial stages of crop 
development is essential, since good responses to high salt concentrations in these 
stages can be predictive of a good establishment of the adult plant under salinity condi-
tions (Uddin et al. 2017; Dehnavi et al. 2020).

After selecting the most productive lines in the field, Toderich et al. (2018) observed 
that when subjected to increasing salinity levels (100, 200, 300, and 400  mM NaCl) 
in the initial growth phase, the selected strains, IP 19586 and HHVBC Tall, showed 
tolerance to osmotic stress, but not to stress from ionic acid at the seedling stage. 
However, IP 19586 was less affected by salinity than HHVBC Tall, due to the higher 
content of proline and malondialdehyde (MDA), proving to be a good alternative for 
cultivation under the conditions studied.

In a study with 33 millet genotypes at an early stage of development, submitted 
to four salinity levels (50, 75, 100, and 150  mM NaCl) during 7, 14 and 21  days of 
exposure to stress, Jha et  al. (2021) identified two highly tolerant genotypes, 18 with 
moderate tolerance and 13 salt-sensitive. Under these conditions, the authors observed 
a higher content of osmolytes and antioxidant enzymes in the highly tolerant genotypes, 
which may indicate a better response to salinity. Thus, osmotic adjustment and 
scavenging of free radicals may be the main mechanisms controlling millet tolerance at 
saline conditions (Jha et al. 2021).

Plants can present several stress tolerance strategies, such as osmotic adjustment, 
compartmentalization of toxic ions, and ROS homeostasis, through significant changes 
in their gene expression, which in turn can trigger changes in protein levels, leading to 
phenotypic and/or physiological changes in plants (Mahmoud and Abdelhameed 2021; 
Jha 2022). Furthermore, the application of plant bioregulators such as salicylic acid and 
thiourea, in addition to improving millet growth, development, and yield, can minimize 
the adverse effects of salt stress on the crop (Yadav et al. 2020).

3.3.4 � Sunflower Forage (Helianthus annuus L.)

Sunflower (Helianthus annuus L.) is an oilseed crop belonging to the Asteraceae family, 
native to North America, being traditionally cultivated to produce edible oil (Sinha 
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et al. 2017; Ebrahimian et al. 2019). The plants contain 40 to 50% oil, which consists 
of unsaturated fatty acids and vitamin E, with good nutritional quality, which makes it 
a great option for human consumption. In addition, the significant protein values, which 
range from 17 to 20%, make the crop a good alternative for animal feed production 
(Sinha et al. 2017; Hussain et al. 2018; Ebrahimian et al. 2019).

Sunflower has C3 metabolism and is well adapted to regions with arid and semi-
arid climates, where it is normally cultivated under rainfed conditions or supplemental 
irrigation (Pinheiro et al. 2021). Such adaptation is due to its deep root system, capa-
ble of absorbing the available water at greater depths, and thus, ensuring greater toler-
ance to short periods of water deficit. In addition, its short cultivation cycle reduces the 
need for irrigation, which makes it a strategic crop for these regions (Tolk and Howell 
2012). However, under prolonged drought conditions, the plant has low efficiency in 
leaf expansion and reduced transpiration rate, which significantly interferes with crop 
yield (Pekcan et al. 2015; Hussain et al. 2018; Ebrahimian et al. 2019).

Sunflower has moderate salinity tolerance (El-Hameid and Sadak 2020; Li et  al. 
2020; Ma et  al. 2021) and can be grown in soils with a salinity of up to 4.8 dS m−1, 
without reducing the significant impact on their income (Francois 1996; Katerji et  al. 
2000). However, salt stress can inhibit their growth in more vulnerable developmental 
stages, resulting in irreversible physiological damage and decreased productivity (Zeng 
et al. 2014; Torabian et al. 2016; Jiménez-Becker et al. 2019).

The ability of a crop to survive and grow under saline stress conditions may vary, 
among other factors, depending on the cultivar used and its growth stage (Li et al. 2020; 
Wang et  al. 2022). Germination is the first stage of plant growth, and crops are more 
susceptible to salt stress at this stage (Dehnavi et al. 2020). In this sense, the ability to 
germinate in saline conditions may be an indication of greater tolerance to stress.

Li et al. (2020) carried out a study with seeds of 552 sunflower germplasm subjected 
to nine concentrations of NaCl (25, 50, 75, 100, 150, 200, 250, 300 and 400 mM), and 
reported a significant reduction in germination rate and index at concentrations above 
300 mM, possibly due to the dysfunction caused in seed metabolism. Salinity can influ-
ence germination by altering the water imbibition by the seeds, as the reduction of the 
osmotic potential caused hinders the absorption of water, and therefore, reduces ger-
mination (Bijeh 2012; Safdar et al. 2019). Furthermore, the high amount of salt causes 
osmotic stress and pseudo-drought, leading to decreased water absorption by plant tis-
sues (Dehnavi et al. 2020). Although most seeds germinated under conditions of up to 
300 mM NaCl, Li et al. (2020) observed that seedling growth was strongly affected. At 
the end of this study, and using fuzzy modeling, Li et al. (2020) concluded that of the 
552 evaluated germplasms, 30 lineages were considered highly tolerant to salt, 53 toler-
ant, 366 moderately tolerant, 80 sensitives, and 23 highly sensitive to salt, showing the 
great variability that this species can present in relation to its performance under salin-
ity conditions (Machekposhti et al. 2017; Yasmeen et al. 2020).

Plant tolerance to saline stress can be, in most cases, associated with morphologi-
cal and physiological changes (Munns and Tester 2008), especially in the roots, where 
ions act directly (Ma et al. 2021). For example, Ma et al. (2017a, b) reported that sun-
flower plants exposed to salinity tend to allocate a greater amount of photoassimilates 
in the roots as a way of adapting to stress. On the other hand, salinity can affect the 
growth dynamics and distribution of the root system in the soil profile, influencing the 
absorption of water and nutrients (Imada et al. 2015; Ma et al. 2021). Ma et al. (2021) 
observed a decrease in root penetration in sunflower seedlings subjected to salinity 
levels; however, a significant increase was observed in the vertical growth of the root 
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system, even under stress conditions, but with the application of nitrogen (N) doses. 
This was observed after plant anthesis, indicating that N fertilization can attenuate the 
adverse effects of salinity (Zeng et al. 2016). Other strategies, such as the application 
of antioxidants (e.g., glutathione) and the use of plant growth-promoting rhizobacteria, 
can attenuate the harmful effects of salinity in sunflower plants (Yasmeen et al. 2020; 
El-Hameid and Sadak 2020).

The sunflower stem shows a loss in water content due to the increase in salinity in the 
irrigation water (Li and Zhang 2019; Han et al. 2022). This result illustrates that the stem 
of this species may be more sensitive to salt when compared to other parts of the plant, 
such as the capitulum, which did not lose water due to increased salinity (Han et al. 2022). 
Adverse effects on plant height, stem diameter, and stomatal conductance (gs) have also 
been reported by some authors who have evaluated increasing salinity levels in sunflower 
cultivation (Machekposhti et al. 2017; Han et al. 2022; Wang et al. 2022). Han et al. (2022) 
observed that for every 1 dS m−1 of irrigation water salinity, the plant height decreased by 
about 1.6 cm. Wang et al. (2022) reported that the gs in sunflower leaves decreased with 
increasing soil salinity. Excessive salinity, in addition to damaging plant cells and influenc-
ing plant growth, can inhibit gs and affect the physiological and ecological activities of 
cultures (Munns et al. 2006; Wang et al. 2022).

The sunflower salinity threshold varies according to the cultivar and the environmental 
conditions of the growing area (Han et al. 2022). For example, Francois (1996) reported a 
threshold of 4.6 dS m−1, with a 5% reduction in the final sunflower yield. On the other hand, 
Machekposhti et  al. (2017), evaluating the response of sunflower irrigated with seawater, 
found that the salinity threshold was 1.6 dS m−1, with yield reduction ranging from 10 to 14% 
for each 1 dS m−1 increase in soil salinity, for the environmental conditions of Sari, Iran. This 
result is similar to those reported by Han et al. (2022), who obtained salinity threshold values ​​
equal to 1.6, 2.6, and 0.3 dS m−1 for the years 2018, 2019, and 2020, respectively. Above 
these thresholds, the authors observed a decrease in yield variables around 1.5, 2.1, and 3.8% 
for each 1 dS m−1 of soil salinity, over the years studied.

3.3.5 � Pigeon Pea (Cajanus cajan (L.) Mill sp.)

Pigeon pea (Cajanus cajan (L.) Mill sp.) is a legume native to India, considered to be a good 
source of carbohydrates and proteins, having multiple uses, e.g., in human and livestock, 
green manure and fuel production (Castillo-Gómez et al. 2016; Benítez et al. 2021). It is 
the main food legume in South Asia and East Africa, where it has great economic and 
nutritional importance. In addition to protein and carbohydrates, the culture contains about 
1.2% fat and 65% cholesterol-free lipids, and is also a great source of fiber, iron, sulfur, 
calcium, vitamins, and minerals (Solomon et al. 2017; Buch et al. 2020).

In arid and semiarid regions, pigeon pea is considered an important component in agri-
cultural production systems, due to its adaptation to drought and low fertility soils (Yohane 
et al. 2020; Mekonen et al. 2021). Its branched and deep root system gives it a high capacity 
for osmotic adjustment under conditions of low water availability, in addition to enabling the 
chemical restoration of degraded soils through the solubilization of phosphorus and the bio-
logical fixation of atmospheric nitrogen (N), which happens from the symbiosis with Rhizo-
bium bacteria, being able to fix up to 200 kg of N ha−1 (Yohane et al. 2020; Buch et al. 2020; 
Salvador et al. 2021).

Pigeon pea has a wide variation in maturity (i.e., extra early, early, medium, and late), which 
allows it to adapt to different environmental conditions and cropping systems (Choudhary 
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et al. 2011). However, areas with high concentrations of salts in the soil constitute a major 
problem for its production, since it is considered a crop with high sensitivity to salinity, with 
a threshold below 1.3 dS m−1 (Waheed et al. 2006; Duhan et al. 2018; Choudhary et al. 2018; 
Garg and Sharma 2019).

Salt stress is one of the environmental problems that most limit the dynamics of growth, 
development, and productivity of legumes in arid and semiarid regions around the world 
(Araújo et al. 2015). In a study carried out by Tayyab et al. (2016), the authors reported that 
plant height, relative growth rate, and fresh and dry pigeon pea biomass were severely reduced 
with increasing soil salinity levels (ECe 0.5, 1.6, 2.8, 3.5, 3.8, and 4.3 dS m−1) and plant death 
was observed after 14 weeks of exposure to the highest levels of salt. A decrease in plant 
biomass in pigeon pea as a function of salinity was also reported by Garg and Sharma (2019), 
who observed greater effects on the root system than on the shoot, with a decrease in mycor-
rhizal colonization, and consequently, a reduction in the efficiency of nitrogen fixation, which 
in turn may be related to higher concentrations of Na+ in roots and nodules.

In pigeon pea, the salinity response may vary according to the maturation group, where 
early genotypes are more sensitive than late cycle genotypes (Choudhary et al. 2018). Some 
studies showed no correlation between germination tolerance and later stages of growth; how-
ever, the ability to survive under salt stress showed some association with seed production 
under these conditions (Choudhary et al. 2011, 2018). Duhan et al. (2018) observed no del-
eterious effects and no decline in percentage survival in pigeon pea seedlings subjected to a 
salinity of 30 mM NaCl. On the other hand, the authors reported that the effects were more 
pronounced when stress was applied at later stages of development. A significant reduction in 
flower and pod production was reported by Tayyab et al. (2016).

Morphological and biochemical characteristics, as well as molecular responses to salt 
stress, are expressed differently between sensitive and tolerant genotypes of this crop (Awana 
et al. 2019). A study by Awana et al. (2020) evaluating two genotypes, ICP1071 (salt sensi-
tive) and ICP7 (salt tolerant), showed that under non-stressful conditions, the physiological 
pattern of plants was not altered; however, when saline stress was imposed, specific biochemi-
cal responses in each genotype were observed, mainly concerning the production of proteins 
that help in the synthesis of antioxidant enzymes (e.g., cysteine synthase), indicating that the 
accumulation of these enzymes may contribute to the tolerance of the ICP7 genotype.

In general, there are few reports on the tolerance of pigeon pea to salinity, and considering 
its socioeconomic importance in various parts of the world, it is necessary to develop studies 
that address this issue, to provide consistent information that favors proper management of the 
culture and, consequently, improve its performance under these conditions.

4 � Conclusions

In this review, a summary of the consequences of using lower-quality water in irrigated 
agriculture was presented, focusing on the effects of water salinity on soil and crops. Water 
quality for irrigation and salinity tolerance of forage plant species with productive potential 
for semiarid regions were also addressed.

The effects of water and soil salinity are observed during all stages of plant growth and 
development. The early stage of development (i.e., germination and seedling growth) is the 
most critical. However, attention is also needed in the other stages of development so that 
growth and productivity problems do not appear in the crop.
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The forage plants reported in this review have salinity tolerance ranging from low to 
moderate. The management adopted, as well as the species used are factors that influence 
the performance of the crop under stress. Although they are widely cultivated in arid and 
semiarid regions of the world, there are still few studies that show the salinity threshold 
of these crops, mainly for cactus pear, sunflower, and pigeon pea species. Therefore, it 
is essential to carry out more research on this topic in order to provide information that 
improves the management of production systems in saline environments around the world.
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