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Abstract

The structure of macroinvertebrate communities in agroecosystems has been assumed to

be modular and organized around key herbivore pests. We characterized the macroinverte-

brate community in the annual organic brassica agroecosystem in tropical central Brazil to

determine if the community was a random assemblage of independent populations or was

organized into repeatable multi-species components. We sampled 36 macroinvertebrate

taxa associated with six organic brassica farms at biweekly intervals during the dry season

during two years in the Distrito Federal, Brazil. We used an unconstrained ordination based

on latent variable modeling (boral) with negative binomial population counts to analyze com-

munity composition independent of variation in sample abundance. We evaluated observed

community structure by comparing it with randomized alternatives. We found that the com-

munity was not a random assemblage and consistently organized itself into two modules

based around the major herbivores; one with lepidoptera and whiteflies and their associated

natural enemies which was gradually replaced during the season by one with brassica

aphids, aphid parasitoids and coccinellids. This analysis suggests that the historical and

present-day focus on pest herbivores and their associated species in agroecosystems may

be justified based on community structure.

Introduction

Annual agroecosystems have been used to examine many ecological questions because they

are amenable to experimentation and replication and have lower species richness than is typi-

cal of natural ecosystems. Although some intensive studies of annual agroecosystems have

found >500 macroinvertebrate species [e.g., 1, 2], a lower species richness is more commonly

found. If we consider that each species could have its own unique response to the abiotic and

biotic environment a complete theoretical description of these communities would require

one equation for each species. Thus, in annual agroecosystems, the macroinvertebrate commu-

nity is a high-dimensional system. In practice, however, most studies on macroinvertebrates in

annual agroecosystems have focused on one or a few key pest populations and their “life sys-

tems” with the goal of understanding pest biology and improving pest control. A life system is
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the common natural enemies and main abiotic factors associated with a pest or pest complex

[3]. Although this approach has resulted in considerable pest control successes, it begs the

question if such a focus can be justified from the characteristics of the structure of the broader

macroinvertebrate community in the agroecosystem.

Recent work in community ecology has focused on describing community organization

and evaluating its consequences. Theoretical and empirical work has suggested that communi-

ties are organized into modules [also called components or compartments; 4–11]. A module is

a subset of the populations in a community that interact mostly among each other and less fre-

quently with populations outside the module. Many studies have concentrated on the structure

of bipartite interactions [e.g., 12–15]. A bipartite community is one with two distinct levels

with no omnivory, intraguild or intra level interactions and include pollinator and herbivore

communities. Recent examples of non-bipartite modularity include Leaper et al. [16], who

used species clustering to describe species modules in animal communities associated with

coral reefs (which they called archetypes) and Cordero and Jackson [17], who used correlation

analysis to identify modules in freshwater fish communities.

Ordinations have been commonly used to simplify terrestrial arthropod communities and

reveal underlying community organization. Many of these studies have used constrained ordi-

nations, which seek to understand how the arthropod community may be related to exogenous

abiotic and biotic factors [e.g., 18–21]. Unconstrained ordination, relying on NMDS, has also

been used frequently on terrestrial arthropod communities [e.g., 22–24] and in fewer cases,

unconstrained ordination has been used to demonstrate modularity in a plant-arthropod her-

bivore community [25] or lack of modularity in an ant-food resource community [26]. How-

ever, these analyses have focused on bipartite communities with only two trophic levels and no

intraguild interactions. To our knowledge, unconstrained ordination has not been used to

look for modularity in more complex arthropod communities involving herbivores and natu-

ral enemies.

We used model-based unconstrained ordination coupled with randomization to test an

hypothesis about the structure of the macroinvertebrate community associated with an annual

agroecosystem in tropical Brazil. Annual agroecosystems characteristically have frequent, peri-

odic major disturbances, such as tillage for field preparation, weed control, harvesting and

post-harvest residue destruction. These disturbances disrupt biotic interactions and can result

in a random community structure because there is insufficient time for the community to

organize into strongly interacting multi-species modules. In this case, species population

dynamics would be relatively independent of most of the other species in the community and

populations could be studied in isolation without considering other populations. An alterna-

tive hypothesis is that colonization dynamics are rapid [27, 28] and the community quickly

organizes into a repeatable structure as the annual crop develops. We test if the community

becomes organized into repeatable modules or if it remains a random assemblage of species.

Specifically, as suggested by [4], the macroinvertebrate community may become organized

into modules around pest herbivores and their natural enemies.

Methods

Sampling

Brassica oleracea production fields at six organic vegetable farms in the Distrito Federal, Brazil

were examined during 2017 and 2018: 15˚39’06"S 48˚06’33"W; 15˚39’00"S 48˚12’01"W; 15˚

36’43"S 48˚04’43"W; 15˚33’54"S 48˚01’48"W; 15˚44’18"S 47˚39’13"W; and 15˚45’44"S 47˚

38’29"W. Data were collected under authorization numbers SISBIO 36950 and IBAMA

02001.008598/2012-42. We focused on organic farms to avoid complications associated with
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pesticide use and none of the farmers used pesticides. Crops were grown according to recom-

mendations for organic production [29]. Within a field in each farm, an area of about 200 m2

was designated as the sample area. Invertebrates were sampled at each farm every two weeks

during the dry season (May to September, 10 sample dates total), because aphid populations,

which are important pests of brassicas, are more abundant during the dry season. Each sample

comprised a count of all invertebrates on 30 plants by visual inspection. All invertebrates were

identified in the field to the lowest feasible taxonomic level based on pictorial keys and experts

in the field. When aphids were sparse, we counted all aphids, but when they reached very high

numbers, we estimated the total population by subsampling. We sampled 30 plants/sample

time × 10 sample times/farm × 6 farms/year × 2 years = 3600 plants. For each sample date for

each farm in each year, the total count of each taxon was calculated.

We studied the B. oleracea agroecosystem because it is a common vegetable crop world-

wide, encompassing broccoli, cauliflower, brussels sprouts, collard greens, kale, and kohlrabi.

It has a well-known macroinvertebrate fauna, which in our study area includes as herbivores,

the lepidoptera Plutella xylostella (diamond-backed moth), Trichoplusia ni (cabbage looper)

and Ascia monuste (great southern white), the aleyrodid Bemisia tabaci (silverleaf or sweet

potato whitefly), the aphidids Brevicoryne brassicae (cabbage aphid), Lipaphis pseudobrassicae
(turnip aphid) and Myzus persicae (green peach aphid), the polyphagous coleoptera Diabrotica
speciosa (cucurbit beetle) and Lagria villosa (bicho capixaba) and some polyphagous Orthop-

tera, Diptera and Hemiptera.

We sampled the 36 most abundant macroinvertebrate populations. These included the her-

bivores B. brassicae + L. pseudobrassicae, M. persicae, Uroleucon spp. (Aphididae), aphid alatae,

leafminers (Diptera), Lepidoptera eggs, Noctuidae (including T. ni), P. xylostella immatures,

A. monuste immatures, Hemiptera herbivores (primarily Pentatomidae), B. tabaci, Galeruci-

nae (including D. speciosa), L. villosa, Astylus variegatus (maize pest), Orthoptera, and Gastro-

poda. Natural enemies included the predators coccinellid eggs, Harmonia axyridis adults, Ha.

axyridis immatures, Cycloneda sanguinea adults, C. sanguinea immatures, Hippodamia conver-
gens adults, Hi. convergens immatures, Eriopis connexa adults, E. connexa immatures, spiders,

Dolichopodidae (long-legged flies, all adults), Syrphidae (hoverflies, larvae and adults), Chryso-
perla externa (green lacewings, nearly all eggs), Hemiptera predators, and Staphylinidae. Para-

sitoids were sampled as aphid mummies, microhymenoptera (nearly all aphid parasitoids) and

large parasitoids (mostly lepidopteran parasitoids). Muscoidea (flies) and Formicidae (ants)

were also sampled.

Community analysis

We used model-based unconstrained ordination to extract the organization of the macroinver-

tebrate community [30]. These model-based methods have several advantages over the dis-

tance-based methods [31], such as non-metric multidimensional scaling (NMDS), especially

for the analysis of macroinvertebrate counts. Distance-based methods transform counts, typi-

cally with the square root transform. However, as arthropod counts are rarely Poisson distrib-

uted, the square root transform actually gives greater weight in a NMDS to the most highly

over-dispersed populations and does not provide a clean signal of the effects only of commu-

nity composition. Model-based methods can explicitly model population abundance for each

population in the community, which stabilizes variance, enabling the detection of a clean sig-

nal of community composition. In addition, model-based methods can use residual analysis to

check how well the model fits the data and can use maximum likelihood tools, such as AIC

and BIC, to assist with model selection. The disadvantage of model-based methods is that the

number of parameters estimated can be substantially greater than for distance-based methods
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[32]. In our case, which is a two-dimensional ordination with 36 populations and 120 samples,

NMDS would fit 240 parameters, while the model-based method would fit 504 parameters

with separate negative binomial responses for each population. This gives an average of 8.6

observations per parameter for the model-based method with our data.

We conducted the model-based unconstrained ordination using the R package boral [33].

We assumed a negative binomial mean-variance relation for our count data and evaluated

latent variable models (LVM) with 0–4 latent variables, with fixed or random sample effects,

and with samples nested within a random farm × year effect or no farm specification. To evalu-

ate convergence of the MCMC Gibbs sampler, we considered the Gewenke convergence crite-

rion and adjusted the p-values using the Holm-Bonferroni method [34] as suggested and

implemented by the authors of boral. When sample effects are fixed, the LVM is an analysis of

community composition, as the fixed effects remove the effect of variation in total abundance

among samples. When sample effects are random, the LVM returns an analysis allowing for

quadratic population responses [35], which means the populations can increase and then

decrease with time. Nesting within the farms separates the sample effect into a farm effect and

a within farm sample effect and allows for evaluation of spatial variation among farms in com-

position. We used AIC to help with model selection but based the final model selection mainly

on biological criteria as recommended by the package authors [33]. We selected the LMV with

2 latent variables, fixed samples with nesting of farms (S1 Table), which is given as

g mij

� �
¼ ai þ b0j þ ut

iyj ð1Þ

where the mean response of sample i and species j, μij, is regressed via the log link, g, with nega-

tive binomial error, on αi which are the fixed sample effects and are hierarchically estimated as

a farm × year random effect with fixed sample effects within farms × years, β0j which are the

response specific intercepts, and the product of ui which is a matrix of the vectors of latent var-

iables and θj which are response-specific coefficients relating to these latent variables. Specifi-

cally, we used the boral function, boral(y = abund, family = "negative.binomial", lv.

control = list(num.lv = 2), row.eff = "fixed", raneff.ids = matrix(rep(1:12, each = 10), ncol = 1)).

Community randomization

We randomized the data to have 2–5 modules using a customization of the R script GenData-

Sample, which we called GenDataSampleMod (S1 File), from the RGenData package as recom-

mended by the author [36]. We defined modules to have greater association within modules

and lower association among modules. We generated random modules by ordering popula-

tions from most abundant to least abundant and assigning the most abundant population to

module 1, the second most abundant to module 2 and so on for the required number of mod-

ules and repeating the process until all populations were assigned to a module. This was done

to ensure that population abundance would have minimal effect on the random modules,

which would be uncontrolled if we had used a randomized assignment process. We then ran-

domized the data within modules to have within module correlations of 0.4 and between mod-

ule correlations of 0, to examine how the 2-factor latent variable model would characterize the

modules in the community. Subsequently, we randomized data for the two-module randomi-

zation to have a more realistic correlation structure that was representative of the original data

with within module correlations of 0.25 and between module correlations of 0.02. We con-

ducted 10 randomization trials for each condition using a custom R script (S1 File) with Gen-

DataSampleMod and fitted model Eq (1) to these data.

We also randomized the data to generate a dataset with reduced correlation among the pop-

ulations to simulated randomly organized communities using another custom R script (S1
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File) and fitted model Eq (1) to the random data. We independently randomized counts

among samples for each population preserving the population counts but not the summed

counts of the populations in each sample. We randomized the original data 500,000 times, cal-

culated the 1260 p-values of the Pearson correlation matrix for each randomization, and

selected the randomization with p-values that were distributed most closely to a uniform dis-

tribution as estimated by the Kolmogorov-Smirnov distribution test. A uniform distribution

of p-values is expected when p-values are randomly distributed and the community is ran-

domly assembled.

We tested if spatial variation among the farms affected LV1, LV2 and β0j, which is the aver-

age ln population counts for each sample and is indicative of variation in total abundance of

the sample. These analyses evaluate the potential role of the species pool surrounding the

farms on the community composition. We used lmer in the lme4 package [37], treating the

observation periods (Time) within farms and years as repeated measures, as follows:

Response � Timeþ ð1jFarmÞ þ ð1jYearÞ

where Response is either LV1, LV2 or β0j. We estimated the significance of the random effect

of farm using the likelihood ratio test (2 × difference in log-likelihood of nested models),

which is a conservative test.

Statistical analysis

We compared the latent variable models of the observed data against the hypothesis of random

assemblage and an assemblage of two modules assuming that the latent variable models were

bivariate distributions. We compared the statistical similarity of the two marginal distributions

of the latent variables first with the Shapiro-Wilk normality test and then, based on the results

of [38], we used Fisher’s method for combining p-values to compare the models as bivariate

normal distributions. We also compared the Pearson correlations between latent variables for

the three models using the Fisher transformation to z-values.

Results

Ordination model

The boral model with two latent variables (LV1 and LV2) and negative binomial population

responses fit the data well. Residual analysis of the fitted samples and the fitted populations

showed uniform, symmetric distributions (Fig 1A and 1B) and the Q-Q plot was virtually lin-

ear with the exception of a few samples in the tails of the distribution (Fig 1C). The popula-

tion-specific negative binomial response model was essential (Fig 1D), as there was

considerable variation in dispersion among taxa and overdispersion in nearly all taxa.

The unconstrained ordination (Fig 2) indicated that the brassica aphids and coccinellids

separated from other populations by having positive values on LV1, while the lepidopteran,

aleyrodid and other aphidid (Uroleucon spp.) herbivores and dolichopodid, syrphid, chryso-

pid, staphylinid and Arachnida predators had negative values. None of the populations with

negative LV1 values had high population counts in the brassica fields. LV2 had immature coc-

cinellids, aphid mummies, microhymenopteran (primarily aphid parasitiods), and the brassica

aphids M. persicae, B. brassicae + L. pseudobrassicae with positive values. All other taxa had

negative or close to 0 values on LV2. Overall, the ordination suggested one module comprising

brassica aphids, aphid parasitoids (mummies and microhymenoptera) and all of the aphido-

phagous coccinellids, except for C. sanguinea adults, and another module comprising lepidop-

tera and aleyrodids along with dolichopodid, syrphid, chrysopid, staphylinid and Arachnida
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predators. Unexpectedly, ants (“Formic” in Fig 2) were not associated with the common

aphids, suggesting that they were not functioning mainly as aphid mutualists.

Randomized data into community components

The randomizations of the community with 2–5 modules and target correlations of 0.4 within

modules and 0.0 between modules generated data with the desired distributions of correlations

(S1 Fig). Unconstrained ordinations with two latent variables on the randomized data with 2

or 3 modules readily distinguished the 2 or 3 modules (Fig 3). The 2-module ordination had

two distinct modules but showed evidence of the arch effect that sometimes occurs in ordina-

tions. The 3-module ordination showed three distinct clusters of populations, similar to a

3-leaf clover. When randomized with 4 or 5 modules, however, the 2-dimensional ordination

for these additional modules was visually similar to the 3-module ordination. We repeated this

analysis for 2 and 3 modules with a lower within module target correlation = 0.25 (S2 Fig).

With the lower within module correlation, 2 and 3 modules were still readily distinguished,

and the arch effect in the 2-module ordination completely disappeared.

Fig 1. Diagnostics for selected boral model with two latent variables. (A) Residual plot for samples (colors are different populations); (B) Residual

plot for populations; (C) Q-Q plot; (D) Population dispersion for negative binomial versus population means.

https://doi.org/10.1371/journal.pone.0289103.g001
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Hypothesis tests

As the ordination of the actual data did not resemble a 3-module ordination, we used the ran-

domized 2-module ordinations for hypothesis testing with the more realistic target correla-

tions of 0.25 within modules and 0.02 between modules. The between module correlation

allows for some overlap of populations among modules. A higher between module correlation

would blend the two modules until modules could no longer be distinguished. The correlation

structure and distribution of p-values for the original data, the randomized 2-module data,

and the completely randomized data are shown in Fig 4. The original data had correlation

coefficients distributed around -0.03 with a long positive tail with some clustering around 0.10

and 0.25. The p-values had a large number with values<0.01 and another peak around 0.75.

The completely randomized data had correlation coefficients distributed around -0.03 and had

a positive tail that was lighter than the original data. The p-values were not uniformly

Fig 2. Unconstrained ordination of original data. Axes are latent variables from the selected boral model.

https://doi.org/10.1371/journal.pone.0289103.g002
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distributed, but the number with values<0.01 was halved and there was only a slight peak

around 0.65. Perhaps an additional process based on simulated annealing would have pro-

duced a data set with a uniform distribution of p-values, but this would no longer be a random

data set. Clearly, the present completely randomized data have p-values more uniformly dis-

tributed than the original data. The randomized 2-module data had correlation coefficients

with peaks around -0.04 and 0.25. Thus, the data randomizations approximated a completely

random community and a random 2-module community.

The eigenvalues of the correlation matrices for the three data sets (original, random and

randomized 2-module) showed marked deviations for the first two eigenvalues, and close simi-

larity for the remaining eigenvalues (Fig 5). This implies that two latent variables should cap-

ture most of the differences among the data sets and their respective boral models. The

Fig 3. Unconstrained ordinations of randomized data. Randomizations have 2–5 modules with target Pearson correlation within modules = 0.40 and

between modules = 0.00.

https://doi.org/10.1371/journal.pone.0289103.g003
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eigenvalue profile of the original data is intermediate to the other two but more similar to the

randomized 2-module data than the completely randomized data.

The ordinations comparing the original data with the randomized 2-module data and the

completely randomized data are shown in Fig 6. Visually, the ordination of the original data

(Fig 6A) appears different from the ordination of the completely randomized data (Fig 6B)

and similar to the ordination of the randomized 2-module data (Fig 6C). Normality tests of the

marginal distributions of the three ordinations did not reject the hypothesis that they were

normally distributed (Table 1), and the lowest p-value was 0.1920. Therefore, we considered

the ordinations to approximate bivariate normal distributions. We found that the marginal

distributions of the original data were significantly different from those of the completely ran-

domized data (p = 0.0031), while they were not statistically different from those of the random-

ized 2-module data (p = 0.1496, Table 1). The difference from the completely randomized data

was due to the difference in the variance in LV1, which was significantly smaller for the

completely randomized data. In other words, LV1 captured significant variation in community

composition in the original data. Similarly, the correlation between the LVs for the original

data was significantly different from the completely randomized data (p = 0.0175, Table 2), but

was not significantly different from the randomized 2-module data (p = 0.3099). Thus, the

community composition of original data is not random, but is consistent with the existence of

two modules in the community.

Fig 4. Histograms of all possible Pearson correlation coefficients and associated p-values for original data. (A, B), completely randomized data (C,

D), and randomized data with two components (E, F).

https://doi.org/10.1371/journal.pone.0289103.g004
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Temporal change and spatial effects

We examined the temporal change in community composition by graphing the centroids of

samples collected during the same week in each year. In both years, community composition

changed gradually from negative LV1 values to positive LV1 values (Fig 7). Biologically this

means that the composition shifted from a lepidopteran/aleyrodid community module with

their associated predators to a brassica aphid community module with their parasitoids and

associated coccinellid predators. This pattern was consistent among farms and between years

Fig 5. Eigenvalue plot. Original data (Data), randomized 2-component data (2 modules) and completely randomized data

(Random).

https://doi.org/10.1371/journal.pone.0289103.g005

Fig 6. Unconstrained ordinations, (A) original data, (B) completely randomized data and (C) randomized 2-component data using boral with

fixed site effects and negative binomial errors.

https://doi.org/10.1371/journal.pone.0289103.g006
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(S3 Fig). The major difference between the years was that in 2017 the dynamic was strongly

driven by the brassica aphids and associated natural enemies, while this did not occur as

strongly in 2018.

The random effect of farm was significant for LV1, LV2 and β0j (Table 3). The effects on the

latent variables indicated that the composition of the community varied among the farms,

which suggests that the surrounding species pool affected community composition. The effect

on β0j indicated that the total community abundance also varied among farms.

Discussion

Community composition

We hypothesized that the frequent periodic large disturbances associated with planting, weed-

ing and harvest in the organic brassica system in central Brazil may preclude the development

of strong interactions among populations, resulting in a random community structure in

which pest species could be studied in isolation. Our results rejected this hypothesis. Instead,

we found evidence supporting the hypothesis that the community quickly organized into

repeatable modules. The macroinvertebrate community associated with organic brassica farms

was structured into two multi-population modules organized around different herbivores and

associated natural enemies. One module comprised the brassica aphids and the aphidopha-

gous natural enemies, and the other module comprised lepidopteran and aleyrodid herbivores

and associated natural enemies. Model-based unconstrained ordination revealed that two

latent variables were sufficient to characterize the major variation in community composition.

This was shown both by model selection using AIC and by the convergence of the higher

Table 1. Marginal distributions of latent variables (LV1 and LV2) and comparison of original data with randomized data and two-factor random data.

Marginal distribution Normality test Mean comparison Variance comparison Fisher’s method

μ s2 W p-value t35 p-value F35,35 p-value χ2
8 p-value

Original data LV1 -0.274 1.008 0.98066 0.7672

LV2 -0.156 0.583 0.95925 0.2038

Randomized data LV1 0.010 0.331 0.97632 0.6204 1.473 0.1496 3.049 0.0014 23.230 0.0031

LV2 0.074 0.394 0.99027 0.9848 1.394 0.1721 1.480 0.2513

2-factor data LV1 -0.052 0.624 0.95842 0.1920 1.039 0.3059 1.616 0.1605 12.037 0.1496

LV2 0.100 0.877 0.97038 0.4361 1.270 0.2123 1.502 0.2334

Marginal distributions show sample means and variances. Normality test with Shapiro-Wilk test (W), mean comparison with t-test using pooled variances, variance

comparison using ratio of variances with 2-tailed p-value, and Fisher’s method for combining p-values.

https://doi.org/10.1371/journal.pone.0289103.t001

Table 2. Independence tests of latent variables.

r H0(r = 0) H0(rorig = rother)

z p-value zobs p-value

Original data 0.4198 2.283 0.0224

Randomized data -0.1899 -1.078 0.2811 2.377 0.0175

2-factor data 0.7562 3.719 0.0002 -1.015 0.3099

H0(r = 0) and comparison of correlation between latent variables with original data, H0(rorig = rother). Significant tests for the Pearson correlation coefficients use Fisher’s

z-transformation.

https://doi.org/10.1371/journal.pone.0289103.t002
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order eigenvalues for the original data, the completely randomized data and the random

2-module data. Comparing the ordination of the original data with that of the completely ran-

domized data, we determined that the first latent variable accounted for more variation than at

random and was the origin of the non-random organization of community composition.

When comparing the ordination with several alternative hypotheses with the community orga-

nized into 2–5 modules, we found that the observed community composition was not signifi-

cantly different from the two-module hypothesis and differed from the 3- to 5-module

hypotheses. In addition, the repeatable seasonal change of the arthropod community composi-

tion in the six farms and two years supported the existence of two community modules. Dur-

ing the growing season, there was a gradual shift from a lepidopteran/aleyrodid community

module with associated natural enemies to a brassica aphid community module with aphid

parasitoids and coccinellid predators.

These results provide strong support for the life systems approach [3] for analyzing arthro-

pod herbivore pests in agroecosystems, which focuses on the major herbivore pests and their

Fig 7. Temporal change in community composition in 2017 and 2018. Points are mean of 6 farms with SE. First

sample in the season is shown with the gray circle. Each subsequent sample was taken at 2-week intervals.

https://doi.org/10.1371/journal.pone.0289103.g007

Table 3. Significance tests of the random effect of farm.

Farm

LV1 53.629 (2.42 E-13)

LV2 14.676 (1.27 E-4)

β0j 7.834 (0.0051)

Likelihood ratio test with χ2 and p-value (in parentheses) for df = 1. LV is latent variable and β0j is the average ln

count for each sample.

https://doi.org/10.1371/journal.pone.0289103.t003
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associated natural enemies. Most recent work on macroinvertebrate communities associated

with annual agroecosystems in the neotropics has focused on a few pest species in isolation

[e.g., 39–42]. These investigations begged the question if a broader understanding of commu-

nity organization is essential for understanding pest biology in annual tropical agriculture. In

contrast to these narrowly focused studies, our study and Malaquias et al. [43] sampled the

entire aboveground macroinvertebrate community and used dimensional-reduction methods

to suggest that a simplified understanding of the community was sufficient. However, only our

study simplified the populations into modules. More broadly, our study and [43] together sug-

gest that a reduced, life systems focus can reveal important community dynamics in tropical

annual cropping systems. Moreover, this result implies that sustainable pest management solu-

tions can be found without having to consider all potential interactions in the macroinverte-

brate community.

Broader implications

Community organization is widely recognized to result from the filter of colonization [e.g.,

44], followed by the local abiotic and biotic filters that are typically historically contingent

[e.g., 45]. Our results have emphasized that the local filters are important and that biotic inter-

actions likely structured the macroinvertebrate community associated with organic brassica in

central Brazil. We also recognized the stochastic nature of colonization and found that the

communities were significantly influenced by the variation in the species pools surrounding

each farm. This biogeographic contingency is an important factor influencing community

organization and has been suggested to sometimes swamp the effects of the local abiotic and

biotic processes [e.g., 46]. In our case, despite the significant stochasticity, a repeatable signal

of community structure was detected. Thus, even in highly disturbed environments, such as

annual agriculture, local processes can dominate, leading to regularity in community

structure.
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