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Abstract: Cratylia argentea is a leguminous shrub that has the potential for use as livestock feed in 

tropical areas. However, time-consuming and labor-intensive methods of chemical analysis limit 

the understanding of its nutritive value. Near-infrared spectroscopy (NIRS) is a low-cost technology 

widely used in forage crops to expedite chemical composition assessment. The objective of this 

study was to develop prediction models to assess the crude protein (CP), neutral detergent fiber 

(NDF), acid detergent fiber (ADF), and dry matter (DM) of Cratylia based on NIRS and partial least 

squares analysis. A total of 155 samples were harvested at different maturity levels and used for 

model development, of which 107 were used for calibration and 48 for external validation. The 

cross-validation presented a root mean square error of prediction of 0.77, 2.56, 3.43, and 0.42; a ratio 

of performance to deviation of 4.8, 4.0, 3.8, and 3.4; and an R2 of 0.92, 0.92, 0.87, and 0.84 for CP, 

NDF, ADF, and DM, respectively. Based on the obtained results, we concluded that NIRS accurately 

predicted the chemical parameters of Cratylia. Therefore, NIRS can serve as a useful tool for live-

stock producers and researchers to estimate Cratylia’s nutritive value. 
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1. Introduction 

Cratylia argentea (Cratylia) is a leguminous shrub species, native to the South Ameri-

can Savanna [1], but also observed in the Amazon and Caatinga biomes [2]. Some im-

portant characteristics of this leguminous shrub are its ability to thrive in acidic soils char-

acterized by high aluminum saturation and low fertility [3], as well as its great palatability 

for ruminants [4]. Cratylia stands out as a forage source with great potential for tropical 

areas with extended dry seasons [5]. Cratylia also has vigorous root development and a 

symbiotic capacity for biological nitrogen fixation (BNF). This enables the maintenance of 

green leaves over water-deficient periods [6] and could be an alternative to expensive 

protein concentrates for livestock [7]. 

Studies have found advantageous animal performance [8,9] and optimal nutritive 

value [10,11] with Cratylia. Braga et al. [11] evaluated the ruminal degradability of Cratylia 
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argentea, Flemingia macrophylla, and Stylosanthes guianensis harvested at 55 and 75 days and 

fed to growing sheep. The results showed a greater performance for sheep fed with C. 

argentea and F. macrophylla, which were recommended as protein banks and supplements 

for ruminants. The same study showed the bromatological composition of Cratylia sam-

ples harvested at 55 days, which had DM (dry matter), CP (crude protein), neutral deter-

gent fiber (NDF), and acid detergent fiber (ADF) contents of 19.32%, 27.6%, 63.3%, and 

55.6%, respectively. Andersson et al. [10] assessed the bromatological composition param-

eters such as CP, ADF, and NDF of 38 Cratylia accessions harvested at 8 weeks of re-

growth and reported mean CP of 20.6% and 22%, NDF of 44.5% and 46.2%, and ADF of 

26.6% and 30.6% for the rainy and dry seasons, respectively. 

Reference methods for chemical analysis of forages are essential for the development 

of adjusted livestock diets and the inclusion of necessary feed supplements. Wet chemis-

try methods are typically used to analyze the chemical composition of biomass [12]. How-

ever, this method is time-consuming, labor-intensive, expensive, and requires many rea-

gents [13]. In addition, the wet chemical method produces considerable chemical waste, 

decreasing the analysis’s environmental sustainability [14]. 

Near-infrared spectroscopy (NIRS) is a technology that has successfully been used to 

predict the quality parameters of different forage crops [15–17]. This method is considered 

fast, low-cost, and minimizes labor requirements [18] once accurate prediction models 

have been developed. With adjusted algorithms for the chemical parameters of Cratylia, 

the quality variation due to plant architecture, climate, and season could be monitored 

within a shorter timeframe [19]. Given that, a greater frequency of sample analysis, ac-

cording to changes in plants’ chemical composition, could result in adjusted livestock di-

ets within a shorter timeframe [20]. 

To employ the NIRS for laboratory analysis, the development of multivariate calibra-

tion models is required. Thus, standardized laboratory procedures such as destructive 

harvest, drying, grinding, and bench analysis are still needed [18]. 

Unfortunately, NIRS prediction models have not been developed for Cratylia argentea 

and are very limited for other leguminous shrubs. To date, there has been no report of 

using NIRS to predict the chemical composition of dried C. argentea samples. 

The objective of this research is to assess the potential for utilizing near-infrared spec-

troscopy (NIRS) combined with chemometric techniques to forecast the levels of DM, CP, 

ADF, and NDF in C. argentea. The intended result of this research was a system designed 

to expedite the acquisition of Cratylia argenta`s chemical composition and the adjustment 

of ruminants' diets. 

2. Materials and Methods 

2.1. Site Description 

The study was conducted at the Brazilian Agricultural Research Corporation—Em-

brapa Maize and Sorghum (Sete Lagoas, Minas Gerais, Brazil; 19°28′ S; 44°15′ W, at 732 m 

altitude), where Cratylia was planted and the NIR equipment was located. Cratylia was 

cultivated in a region with a Cwa climate type according to the Köppen classification sys-

tem, i.e., savanna climate, with dry winters (May to September) and humid, rainy sum-

mers (October to April) [21]. The average annual temperature is 22.9 °C, with 24.4 °C in 

the wet season and 22 °C for the dry season, and an average annual precipitation of 1340 

mm [22]. 

A soil sample was collected on 28 March 2013. Soils corresponded to the Latossolos 

(Oxisols) category [23], with a pH of 5.5, H + Al (7.11 dm3), OM (3.44 dag kg−1), NO3-N (18 

mg kg−1), P (2.18 mg kg−1), CEC (10.23 dm3), Ca (2.73), Mg (0.28), and K (39.26 mg kg−1). 

2.2. Cratylia Cultivation 

On 11 December 2009, Cratylia seedlings were transplanted from a greenhouse to a 

450 m2 experimental site at Embrapa Maize and Sorghum. The seedlings were 55 days old 
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and planted in burrows spaced by 0,5 m in dual rows of 1.0, 2.0, 3.0, 4.0, and 5.0 m, which 

was equivalent to 20,000, 10,000, 6667, 5000, and 4000 plants ha−1, respectively. Several 

studies were conducted in the area since its establishment, and no fertilization was made 

in the area during this time. 

The area was managed with a recurrent harvest. At the beginning of the current re-

search, on 20 July 2021, Cratylia plots and inter-rows were mowed to establish uniform 

regrowth and weed control, respectively. The destructive harvest for the determination of 

agronomic parameters left a 50 cm stubble height, and the collected material was com-

posed of leaves and stems that were smaller than 5 mm, which was considered the edible 

feed fraction [24]. Each harvest happened at 21, 42, 63, 84, 105, and 126 days of regrowth 

on 2 February, 10 July, 7 August of 2021, and 9 January and 14 April of 2022, respectively. 

Although all plants were on vegetative stage, the goal with different harvest dates was to 

create different maturity levels and increase the robustness of the model. The samples 

were harvested with a gardening scissor (Kotto, Santa Clara, CA, USA). 

2.3. Research Material and Preparation 

The samples were placed in paper bags and underwent a 72-h drying process at a 

temperature of 55 °C. Afterward, the specimens were ground using a Wiley mill (Thomas 

Scientific, Swedesboro, NJ, USA) until they could pass through a 1 mm sieve in prepara-

tion for wet chemical laboratory analysis of DM, CP, NDF, and ADF. The wet chemical 

analysis for DM was determined based on [25] methodology. Crude protein was deter-

mined based on the Kjeldahl method [26], and ADF and NDF were determined based on 

the method of Van Soest et al. [26]. For NIRS spectra collection, 15 g of milled Cratylia 

were placed on Petri dishes of borosilicate to obtain the spectrum of each sample in trip-

licate. The sample spectra were obtained with the NIRFlex 500 (Buchi Labortechnik, 

Flawil, Switzerland) in the region of 1000–2500 nm (4000 to 10,000 cm−1) at a resolution of 

32 scans per spectra [27]. To ensure accuracy, the obtained spectra were corrected against 

a background spectrum. 

2.4. Model Development 

A total of 155 samples were used, of which 107 were employed to construct the cali-

bration model with the spectral data. For the external validation model, 48 samples of 

Cratylia were used to predict the chemical properties (DM, CP, ADF, and NDF). There-

fore, the Kennard–Stone algorithm guarantees that the calibration set contains the most 

representative samples [28]. The model’s performance was assessed on the external vali-

dation dataset. 

The spectral data underwent preprocessing using two methods, namely the standard 

normal variate (SNV) and the Savitzky–Golay first derivative technique. These prepro-

cessing steps were applied to remove variations such as baseline shifts and light scattering 

from the data, thus enhancing the quality of the spectral information. The final prepro-

cessed spectral data were mean-centered before partial least squares (PLS) analysis. All 

models were internally and externally validated. The internal validation was based on full 

cross-validation (CV) using the random method. 

The average spectrum of three measurements (Figure 1) was used as the final spec-

trum of each sample to assess the potential of prediction by NIRS. The PLS algorithm 

yielded the optimal models, characterized by a limited number of latent variables, low 

RMSEcv, high R2cal values, and superior predictive capabilities. A few outliers were iden-

tified through an analysis of leverage and studentized residuals, and these outliers were 

subsequently removed. 

In this study, variable importance in projection (VIP)-based variable selection meth-

ods were employed, and custom routines were developed for this purpose using 

MATLAB v. 23.2 (The MathWorks, Natick, MA, USA). 
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Figure 1. The mean FT-NIR spectra of Cratylia materials. Raw reflectance (R) data were converted 

to absorbance units (1/R). Each color represents a spectrum of Cratylia argentea samples. 

2.5. Model Evaluation and Statistical Analysis 

To assess the reliability of the PLS models, a cross-validation procedure was em-

ployed. This involved utilizing the leave-one-out method, where a single sample is re-

moved, and the model is rebuilt without the sample. The assessment of the optimal cali-

bration model between chemical reference values and NIRS data was conducted by con-

sidering the highest coefficient of determination (R2c) and the smallest root mean square 

error of calibration (RMSEc). The RMSEc was computed by considering the sample size, 

the reference analysis results, and the estimated outcomes obtained from the NIRS model. 

Furthermore, for external validation, the model was evaluated based on the values of R2p 

and RMSEp, with the goal of achieving the best possible model performance. The perfor-

mance and accuracy of the models were evaluated by calculating the residual prediction 

deviation (RPD), as defined by Williams and Norris [29]. The RPD is computed as the ratio 

of the standard deviation of reference values to the RMSEc. 

The calibration and validation datasets were randomly formed to quantify its R2 and 

RMSE as metric evaluations. To obtain real predictability, this performance evaluation 

was repeated five times for each dataset. 

A comparison between the means of the observed and NIRS-predicted datasets was 

performed using a Student’s t-test at a 5% level of significance. The confidence interval 

was calculated as the mean ± standard error of the mean. Average of five determinations. 

The analysis was carried out using RBio software v.17 [30]. For CP, NDF, ADF, and DM, 

models were produced that predicted concentrations on a DM basis. 

3. Results and Discussion 

3.1. General 

The wide variation within the evaluated chemical properties (CP, NDF, ADF, and 

DM) was used to develop NIRS calibration and prediction models based on NIRS and 

chemometric analysis. The calibration and validation results of NIRS for the chemical pa-

rameters of Cratylia are shown in Table 1 and Figure 2. 

Table 1. Calibration and validation results of estimating the chemical properties of Cratylia argentea 

plants from NIR reflectance spectra using partial least squares regression. 
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Chemical 

Properties (%) 
N cal SD Min Max LV R2cal RMSEc N val R2val RMSEp 

CP 108 3.27 11.59 ± 0.24 28.51 ± 0.76 6 0.94 0.66 ± 0.01 47 0.93 0.83 ± 0.01 

NDF 105 8.66 33.89 ± 0.41 64.15 ± 0.57 10 0.93 2.15 ± 0.15 45 0.91 2.71 ± 0.09 

ADF 107 10.87 29.55 ± 0.32 72.69 ± 1.05 10 0.92 2.85 ± 0.25 45 0.88 3.55 ± 0.38 

DM 82 1.21 91.59 ± 0.01 96.05 ± 0.01 3 0.91 0.36 ± 0.05 35 0.89 0.39 ± 0.01 

CP = crude protein, NDF = neutral detergent fiber, ADF = acid detergent fiber, DM = dry matter, N 

cal = calibration samples, SD = standard deviation, Min = minimum value, Max = maximum value, 

LV = latent variable, R2cal = determination coefficient of calibration, RMSEc = root mean squared 

error of calibration, N val = validation samples, R2val = determination coefficient of validation, 

RMSEp = root mean squared error of prediction. 

 

Figure 2. Scatter plots of near-infrared reflectance spectroscopy (NIRS) predicted values vs. refer-

ence methods for calibration (blue) and cross-validation (red) samples in parameters of (A) crude 

protein (CP) %, (B) neutral detergent fiber (NDF) %, (C) acid detergent fiber (ADF) %, and (D) dry 

matter (DM) % in Cratylia argentea. 

3.2. Calibration and Validation: R2, RMSEc and RMSEp 

The RMSEc values were 0.73, 2.2, 2.85, and 0.35, while the RMSEp was 0.84, 2.59, 3.55, 

and 0.38 for the CP, NDF, ADF, and DM models, respectively (Figure 2). The results from 

the coefficient of determination (R2) for calibration (R2cal) and validation (R2val) also con-

tributed to demonstrating the predictive ability of the evaluated models to estimate the 

chemical parameters. The R2 results for calibration were 0.94, 0.93, 0.92, and 0.91, whereas 

the results for validation were 0.93, 0.91, 0.88, and 0.89 for CP, NDF, ADF, and DM, re-

spectively (Table 2). Williams et al. [31] determined that R2 results between 0.66 and 0.81 

are considered approximate, 0.82 and 0.90, good, and above 0.91, excellent. Based on the cal-

ibration results of this research, CP, NDF, ADF, and DM fall in the excellent category. Nev-

ertheless, the validation results were considered excellent for CP and NDF and good for 



Agronomy 2023, 13, 2525 6 of 12 
 

 

ADF and DM. Even though the R2val was lower on ADF and DM, the results were still 

positive. Overall, the variables resulted in a low relative RMSEp, which was less than 10% 

of the mean observed values, and there were no significant differences between the mean 

values that were observed and those that were predicted (Table 3). 

Table 2. Optimized results of estimating the chemical properties of Cratylia argentea plants from NIR 

reflectance spectra using partial least squares regression after variable selection. 

Chemical Prop-

erties (%) 
N cal SD Min Max LV R2cal RMSEc N val R2val RMSEp 

CP 108 3.27 11.59 ± 0.24 28.51 ± 0.76 5 0.94 0.73 ± 0.01 47 0.93 0.84 ± 0.01 

NDF 105 8.66 33.89 ± 0.41 64.15 ± 0.57 8 0.93 2.20 ± 0.12 45 0.91 2.59 ± 0.08 

ADF 107 10.87 29.55 ± 0.32 72.69 ± 1.05 8 0.92 2.85 ± 0.23 45 0.88 3.55 ± 0.35 

DM 82 1.21 91.59 ± 0.01 96.05 ± 0.01 3 0.91 0.35 ± 0.03 35 0.89 0.38 ± 0.01 

CP = crude protein, NDF = neutral detergent fiber, ADF = acid detergent fiber, DM = dry matter, N 

cal = calibration samples, SD = standard deviation, Min = minimum value, Max = maximum value, 

LV = latent variable, R2cal = determination coefficient of calibration, RMSEc = root mean squared 

error of calibration, N val = validation samples, R2val = determination coefficient of validation, 

RMSEp = root mean squared error of prediction. 

Table 3. Validation results were used to test the prediction accuracy of NIRS models for the chemical 

composition of Cratylia samples (%). 

 
Measured 

Mean 
Predicted Mean Bias * p Value + 

Relative 

RMSEp (%) 
RPD 

CP 20.12 ± 0.03 20.04 ± 0.19 −0.17 0.1399 3.85 4.8 ± 0.3 

NDF 41.62 ± 0.62 42.07 ± 0.63 −0.98 0.6026 4.31 4.0 ± 0.1 

ADF 44.25 ± 0.10 44.68 ± 0.18 −0.37 0.8543 6.34 3.5 ± 0.3 

DM 94.19 ± 0.01 94.20 ± 0.01 0.17 0.5077 0.38 3.4 ± 0.3 

CP = crude protein, NDF = neutral detergent fiber, ADF = acid detergent fiber, DM = dry matter, 

Bias is the measured mean minus the predicted mean; therefore, negative values indicate overesti-

mation, and positive values indicate underestimation of the equation. * The probability of there be-

ing no significant difference between the measured mean and the predicted mean was analyzed 

using the student’s t-test. + Root mean square error of prediction is presented as a percentage of the 

measured mean for standardization. RPD = ratio of performance to deviation. 

Results for the optimized VIP score−PLS models built with preprocessed spectra 

(SNV + first derivative Savitzky−Golay) are shown in Table 2. The VIP score is one of the 

most frequently used methods in chemometrics for variable selection. The number of var-

iables utilized in constructing the models was significantly reduced, going from 1501 (rep-

resenting the full spectra) down to a range of 50 to 130, which varied depending on each 

specific parameter. All VIP models were improved compared to full-spectra models, pre-

senting lower LV and RMSEp. The potential to eliminate signals that lack information or 

are redundant can result in models that exhibit enhanced accuracy, resilience, and chem-

ical interpretability, aligning with the principle of parsimony. This can be observed by 

comparing Tables 1 and 2. 

The regression vectors of PLS models were analyzed to determine the functional 

groups responsible for the relationships between each property and sample spectra. The 

process of calculating spectral frequencies based on optimal wavelengths aims to pinpoint 

and identify the crucial molecular bond regions within the spectrum. Thus contributing 

to establishing strong relationships between spectral data and the chemical composition 

of Cratylia. Although the allocation of molecular features to NIR spectra may cause some 

band overlapping, it was possible to identify the wavenumbers with the most positive 

coefficients and contribution to each model, as shown in Figure 3. 
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Figure 3. Regression coefficients of the PLS models for (A) CP, (B) NDF, (C) ADF, and (D) DM. 

In the CP model (Figure 3A), the important spectral bands were identified at 7056, 

6623 cm−1 (corresponding to the first overtone of N–H stretching), and 1734 cm−1 (repre-

senting the first overtone of C–H stretching), representing protein content. 

The NDF, ADF, and DM consist of three main structural units: cellulose, hemicellu-

lose, and lignin. Cellulose is a crystalline polymer of glucose [32], hemicellulose is an 

amorphous polymer of xylose and arabinose [33], and lignin is a complex polymer of ar-

omatic alcohols [34]. Vibration bands associated with these chemical biomass components 

can be observed in Figures 3B–D. The spectral regions between 7200 and 6600, 6000 and 

5500, 5400 and 4600, and 4600 and 4000 cm−1 can be attributed to O–H stretch first over-

tone, C–H stretch first overtone, O–H combination bands, and C–H combination band 

regions, respectively. 

For NDF (Figure 3B), prominent peaks were observed at approximately 7000 cm−1 

(related to the first overtone of O–H stretching), 5884 cm−1 (first overtone of C–H stretch-

ing), 4924 cm−1 (a combination of C–H stretching and CH2 deformation), and 4060 cm−1. 

Concerning ADF (Figure 3C), the most critical spectral variables included a wide band 

spanning from 7152 to 4240 cm−1 (associated with the first overtone of O–H stretching) 

and peaks at around 5940 cm−1 (first overtone of aromatic C–H stretching), 5292 cm−1 (a 

combination band of O–H stretching and O–H deformation), 4415 cm−1 (a combination of 

O–H and C–O stretching), 4290 cm−1 (a combination of C–H stretching and CH2 defor-

mation), and 4230 cm−1 (a combination of C–H deformation and C–H stretching). In the 

DM model (Figure 3D), the most important bands were observed at 4436 cm−1 (a combi-

nation of O–H and C–O stretching), 4290 cm−1 (a combination of C–H stretching and CH2 

deformation), 4230 cm−1 (a combination of C–H deformation and C–H stretching), and 

peaks at about 5940 cm−1 (first overtone of aromatic C–H stretching). 
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The coefficients for NDF, ADF, and DM models showed an obvious positive contri-

bution at the peak of 4405 cm−1, which indicated that the distinct spectral region is possibly 

related to a C–H + O–H combination band attributed to cellulose and sugar. 

3.3. Ratio of Performance to Deviation 

The RPD results were higher than 3.0 for all the chemical properties evaluated (Table 

3). This ratifies the accuracy and good predictive ability these models showed in external 

validation. Based on the literature, RPD equations greater than 2.4 are desirable, and equa-

tions lower than 1.5 are unusable [29]. The RPD measures the relationship strength be-

tween a constituent value and the error of the results predicted by NIRS [35]. Thus, the 

greater the RPD, the lower the predictive error [36]. The RPD results obtained were 4.8, 

4.0, 3.5, and 3.4 for CP, NDF, ADF, and DM models, respectively. Thus, the results were 

considered excellent [31] for all developed models. 

Mazabel et al. [37] built a chemometric model from Brachiaria humidicola and reported 

an RPD of 2.56 for CP in Colombia. The result was lower than other evaluated parameters, 

such as ADF (4.4), NDF (3.62), and IVDMD (3.63). However, the result was considered 

desirable based on the Williams and Norris [29] scale. The authors associated the lower 

prediction with a smaller sample size (n = 20) used for external validation. Nevertheless, 

the overall results were positive. 

3.4. External Cross-Validation 

The external validation for CP showed an R2 of 0.92 (and an RMSEp of 0.81 for Figure 

4A). It is important to reemphasize that CP showed the highest RPD (Table 3), R2 (cal and 

val), and second-lowest RMSEc and RMSEp (Tables 1 and 2, Figure 2A) among the four 

evaluated chemical properties. A similar characteristic was observed by Norman et al. [38] 

when evaluating 102 forage species in Australia. The authors associated better results for 

CP with the fact that there were different plant biotypes within the tested model. This was 

similar to the current research since the Cratylia plant materials used did not go through 

any breeding process and, therefore, had high genetic variability, which was visually ob-

served in the field. Andueza et al. [39] also showed an increased predictive capacity of CP 

when evaluating plant materials with greater diversity in France (n = 1034). 

The NDF had an external validation R2 of 0.89 and an RMSEp of 2.83 (Figure 4B). 

Norman et al. [38] found similar R2 (0.94) and RPD (3.9) when evaluating annual legumes. 

The same research observed an R2 (0.96) and RPD (5.8) for ADF. Although the R2 results 

for ADF and RMSEp (Figure 4C) in our research were a little lower for external validation, 

the current results fall in the category of good and excellent [31] for NDF and ADF, respec-

tively. Serrano et al. [40] found external validation results with R2 (0.91) and RPD (3.48) 

for NDF, and R2 (0.93) and RPD (4.01) for CP when evaluating several pasture mixes (leg-

umes and grasses) in Portugal. Both research works mentioned above align with the cur-

rent results, supporting our findings. 

Regarding the external validation in DM, the R2 result was 0.84 and the RMSEp was 

0.42 (Figure 4D), considered in the good category of William’s scale [31]. The increased 

dispersion might be related to the lower number of samples used (n = 35) compared to the 

other chemical parameters (n = 45 ~ 47). Therefore, a lower plant variability was covered. 

Andrade Ribeiro et al. [41] evaluated the ability of NIRS to predict DM, CP, NDF, and 

ADF of Brachiaria brizantha cv. Piatã grass and found an R2val of 0.75, 0.94, 0.92, and 0.85 in 

Southern Brazil. Apart from the low R2 for DM, their RPD values were 2.01, 3.98, 3.49, and 

2.56 for DM, CP, NDF, and ADF, respectively, which were also lower than our research. 

The authors associated the lower prediction capacity of the model with a lack of uni-

formity in the ground samples and the number of samples (n = 84). Oluk et al. [42] found 

an R2 of 0.76 when validating NIRS models to predict DM of Dalisgrass (Paspalum dilata-

tum) in Turkey. The RPD was somewhat lower (2.15) at validation and 2.66 at calibration. 

The authors found the same R2 (0.76) for DM when calibrating the model. Based on Wil-

liams et al. [31], these DM results would be considered approximate. 
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Figure 4. Scatter plots of near-infrared reflectance spectroscopy (NIRS) predicted values vs. refer-

ence methods for external cross-validation (black) samples in parameters of (A) crude protein (CP) 

%, (B) neutral detergent fiber (NDF) %, (C) acid detergent fiber (ADF) %, and (D) dry matter (DM) 

% in Cratylia argentea. 

The selection of an optimum number of LV in the current research was achieved us-

ing the CV approach, which essentially solves two main purposes in PLS analysis. The 

first is the simplified assessment of the optimal PLS complexity, and the second is the 

measure for evaluating the PLS model performance when applied to a validation dataset 

[43]. In the cross-validation procedure, a portion of the samples (referred to as the test set) 

is taken out of the calibration set, and the PLS model is built using the remaining samples, 

which form the model building set [43]. Following its development, the model is utilized 

to predict the concentrations of the specific analytes of interest in the samples within the 

dataset. 

Several factors, such as laboratory error, plant stage, maturity, and edaphoclimatic 

conditions, play an important role in developing NIRS models. The low error involved in 

the chemistry analysis and plant variability (genetic and of different growth stages) of the 

harvested material might have been the main factors leading to the success of the current 

models. 

4. Conclusions 

The obtained calibration models for CP, NDF, ADF, and DM showed validation er-

rors like those obtained for the wet chemistry method, indicating the suitability of NIRS 

and the reliability of our developed models to predict the chemical properties of Cratylia 

argentea. 

Once the model is fully composed and implemented into a laboratory routine, the 

time required to perform an analysis and obtain all results (CP, NDF, ADF, and DM) is 

(A)

(C)

(B)

(D)
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less than 1 min. Therefore, adding more samples should improve the robustness of the 

model. 

These results could assist livestock producers to expedite and cheapen the process of 

estimating the nutritive value of Cratylia argentea for cattle diet adjustment, as well as for 

researchers and breeding programs to assess the chemical parameters of Cratylia argentea 

in a timely manner. 

Future research may evaluate the performance of current equations in different 

Cratylia cultivars to validate and establish new prediction models. 
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