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ABSTRACT: Pedosphere-hydrosphere interface accounts for the association between 
soil hydrology and landscape, represented by topographic and Remote Sensing data 
support and integration. This study aimed to analyze different statistical radiometric 
and spectral data selection methods and dimensionality reduce environment-related 
data to support the classification of soil physical-hydric properties, such as soil basic 
infiltration rate (bir) and saturated hydraulic conductivity (Ksat); as well as to act in data 
mining processes applied to hydropedological properties digital mapping. Accordingly, 
research integrated information from Visible to Infrared (VIS-IR) spectral indices and 
Sentinel’s 2A mission Multispectral Instrument (MSI) sensor bands, terrain numerical 
modeling and aerogeophysics set to model soil-water content in two soil layers  
(0.00-0.20 m and 0.20-0.40 m). Pre-processed data were subjected to statistical analysis 
(multivariate and hypothesis tests); subsequently, the methods were applied (variation 
inflation factor - VIF, Stepwise Akaike information criterion – Stepwise AIC, and recursive 
feature elimination - RFE) to mine covariates used for Random Forest modeling. Based 
on the results, there were distinctions and singularities in spectral and radiometric data 
selection for each adopted method; the importance degree, and contribution of each one 
to soil physical-hydric properties have varied. According to the applied statistical metrics 
and decision-making criteria (highest R2 and lowest RMSE / MAE), the chosen methods 
were RFE (0.00-0.20 m layers) and Stepwise AIC (0.20-0.40 m layers) - both concerned 
with the assessed variables (bir and Ksat). This approach captured the importance of 
environmental variables and highlighted their potential use in hydropedological digital 
mapping at Guapi-Macacu watershed.
Keywords: geoprocessing, hydropedology, applied statistics, radiometry, remote 
sensing.
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INTRODUCTION
Remote Sensing techniques significantly contributed to the understanding and supporting 
environmental phenomena on Earth’s surface, especially in correct environmental 
resources management and sustainability studies (Brenner and Guasselli, 2015). The 
ability to collect information from different electromagnetic spectrum wavelengths 
(multiband) acquired by remote sensors is the main reason for this contribution, as it 
allows differentiating terrestrial targets and covering large areas (Brenner and Guasselli, 
2015). Therefore, soil basic infiltration ratio (vib) and saturated hydraulic conductivity 
(Ksat) could be map and modeled according to spectral and topographic relationships 
extracted from products obtained from remote sensing.

Also, a significant advancement in the environmental geophysics field is notable, which 
focuses on hydrogeological research accounting for combining airborne data gathered 
by geophysical sensors with field data related to soil and rocks lithology, mineralogy, 
physics, and chemistry. These studies can assess and model water resources distribution 
in groundwater reservoirs in sedimentary watersheds (Novakowski et al., 2006; Madrucci 
et al., 2008; Kirsch, 2009; Lee et al., 2012; Lee and Lee, 2015; Pires and Miranda, 2017). 

However, there’s still a lack of studies concerning geophysical maps potential integration 
in water favorability (determining areas presenting the greatest groundwater occurrence 
potential) and in hydropedological dynamics, as well as research treating such data as 
input variables in Digital Soil Mapping (DSM). This scenario has inspired the search for 
an in-depth evaluation of the potential of this tool in soil-water modeling studies.

The literature brings several references about topographic attributes selection and 
classification to map soil properties. These studies follow geomorphometric Digital Elevation 
Model (DEM) covariates to depict soil/landscape ratio in a given study site (McKenzie and 
Austin, 1993; Wilson and Gallant, 2000; Böhner and Selige, 2006; Oliveira et al., 2017; 
Santos et al., 2019). Nowadays, digital soil mapping applied to soil properties remains 
mainly based on soil morphometric parameters; however, given the advancements in 
remote sensing applied to spatial-spectral resolutions and data availability, adopting indices 
based on the spectral bands association in predictive spatial modeling techniques, such 
as machine learning, has become a common reality in the target variables quantification 
(Chagas, 2006; Pinheiro, 2012; Cunha, 2013; Zhang et al., 2017). 

Accordingly, although remote sensing using in digital modeling has grown, it is also 
possible that spectral indices’ individual influence remains poorly explored when it comes 
to soil physical-hydric attributes modeling. Studies have focused on soil physical-chemical 
properties mapping, climatic regionalization and forest species differentiation based on 
spectral indices (Carvalho Junior et al., 2011; Pinheiro et al., 2019; Rajah et al., 2019).

Consistent data collection and integration are fundamental requirements for modeling 
aiming to reflect a representative assessment of the water resources state (Baalousha, 
2010). However, the crucial point remains in treating these data to transform them into 
reliable information. The dynamic attributes of spatial variability related to physical-
hydraulic aspects are generally controlled by various properties and variables in soils, 
mainly conditioned by the natural landscape (excluding atypical or extreme landscape 
alterations), with different effects depending on the analyzed depth (Manzione and 
Castrignanò, 2019).

Linked to this, factors such as difficulty in measuring dynamic physical-hydric variables 
in the field (recognition of the area; high costs in carrying out field campaigns; team 
displacement in large areas for data coverage; sluggishness in sample collections in 
one or more depth levels), the collected data absence for these variables in Brazil 
traditional technical soils surveys (hydropedological tests non-performance in the field 
and laboratory analysis) and restrictions naturally imposed by the study region (accessing 
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regions infeasibility with large slopes and areas with dense forest), limit these properties 
mapping (Ottoni, 2005; Oliveira et al., 2017).

Considering that soil physical-hydric parameters are influenced by genetic soil properties 
associated with morphology, texture, and soil physics such as: particle size and aggregation 
degree, total porosity, soil density, soil surface cover type, profile moisture, organic matter 
amount, among others (Reichert et al., 1992; Everts and Kanwar, 1993; Bertoni et al., 
2017), and also due to study area spatial variability (Klar, 1984); evaluate the potential 
spectral and radiometric data inputs that contribute to these properties quantification 
in digital pre-modeling can make the mapping process more robust and reliable in the 
study area.

Few studies in Brazil focus on modeling the surface and subsurface behavior of water in 
the soil, particularly considering variable pre-selection protocols and data dimensionality 
reduction. Most current studies explore statistical methods and data analysis techniques 
for modeling physical-hydric properties, but they do not significantly explore the input 
variables of these models (Granata et al., 2022; Yamaç et al., 2022). Furthermore, they 
rely on established knowledge of soil morphology properties (such as texture, porosity, 
soil density, and particle size) as the main input variables in the modeling process 
(McKeague et al., 1982; Chapuis, 2012).

Studies like Manzione and Castrignanò (2019), Granata et al. (2022) and Yamaç et al. 
(2022), on the other hand, focus on exploring models based on regressive analysis, 
geostatistics and machine learning using Ksat measurement best practices. However, 
they do not discuss the importance of variable pre-selection in the pre-modeling phase 
and fail to identify potential interrelated attributes that could be used to predict physical-
hydraulic attributes beyond the previously mentioned soil properties. McBratney et al. 
(2003) suggest, among other topics, studies on potential environmental covariates for 
applications in DSM as an open topic for further discussions within the academic community.

On the contrary, certain studies, such as Fathololoumi et al. (2021), discuss a variable 
reduction in environmental covariates utilized in a soil moisture prediction Digital Soil 
Mapping (DSM) approach, incorporating satellite images and morphological covariates. 
However, this study solely relies on autocorrelation and collinearity analysis for variable 
reduction. It fails to explore model protocols within DSM to pre-select these variables (for 
instance, statistical hypothesis test applied in data set modeled by regression models like 
the cubist model used) or provide justification for their inclusion (previous environmental 
covariates analysis to understand all potential data that can be used to represent the 
area dynamics, not only the common explored ones in DSM). It is worth noting that the 
only topic addressed in the study is the feature importance obtained throughout the 
modeling process and predictive model performance step.

Adequate variability assessment of these properties can effectively aid in understanding 
the processes that cause attributes spatial variation, enabling proper water resources 
management in river basins and correct soil management. However, Atkinson and Tate 
(2000) and Gotway and Young (2002) infer that many statistical problems arise when 
integrating different data obtained at different scales and characterized by different 
support and uncertainty.

Conducting studies to define the most important input variables to represent soil physical-
hydric properties variability and to rule out modeling issues associated with multicollinearity 
inflation and autocorrelation in data sets is essential, especially those models based on 
regressive analyses-based models to integrate physical-hydric attributes, in a robust 
and refined way (O’Hagan and McCabe, 1975; Andrews, 1991; Carvalho et al., 1999; 
Mihola and Bílková, 2014). Thus, some methods can optimize input variables selection 
and reduce dimensionality in the assessed data set, ensuring robustness and refinement 
in the modeling process.
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Considering the Guapi-Macacu watershed as the study area target, the knowledge 
developed in these Digital Soil Mapping (DSM) stages enables sustainable management 
of water resources in the Rio de Janeiro State. This approach prevents issues such as 
aquifer depletion, reduction of groundwater levels and riverbeds, biodiversity loss, and 
negative impacts on agriculture due to water scarcity or reduced water availability.

Inspired by such a scenario, the present study aims to: (1) analyze different statistical 
methods based on multivariate analysis applied to select and reduce dimensionality, 
using topographic and remote sensing data related to vegetation, soil, and geology; and 
(2) map soil water properties spatial variability in Guapi-Macacu watershed in Rio de 
Janeiro, Brazil, based on Random Forest (RF) classifier and on using the most relevant 
variables selected in the previous data mining stage.

MATERIALS AND METHODS

Study area

Guapimirim-Macacu river basin was selected for the current study, which is located 
within Guanabara Bay Hydrographic Region V (HR-V) domain in Rio de Janeiro State 
Metropolitan Region (Figure 1). It encompasses Itaboraí, Guapimirim and Cachoeiras 
de Macacu counties political-managerial limits. The basin has 1,250.78 km² of capture-
area and 199.2 km of perimeter. Its relief is featured by elevation ranging 0-2,254 m, 
which was assessed through the region’s Digital Elevation Model (DEM), at 20 m spatial 
resolution (Figure 1).

The prevailing climate in the region is rainy tropical type, with dry winter. Mean annual 
temperature is close to 23 °C and mean annual rainfall ranges from 1,200 to 2,600 mm 
due to mountain buttresses (HWA et al., 2010). The region stands out for housing the 
Atlantic Forest biome, with tropical forest fractions and Mar de Morros environment 
vegetation characteristic with transition to Coastal Lowland (Pinheiro, 2015).

Regions geology is featured by Gráben da Guanabara: an elongated valley with plane 
bottom, with geological faults forming a sequence of sedimentary decomposition caused 
by the tectonic activity that had started in the Tertiary, at Macau Sedimentary Basin 
formation (Ferrari, 2001). Depositional events that have taken place in the region 
determine its geomorphological features, presenting alluvial, river and lacustrine features 
(Pinheiro, 2012).

Region soils present sedimentary deposition environment features given the local 
geomorphology’s lacustrine and river influence. The basin is surrounded by valleys and 
mountains due to Mar de Morros environment’s transition to high-altitude fields, reaching 
altitude up to 2,254 m, and leading to soils presenting great pedogenetic variability and 
taxonomic diversity such as: Ultisols, Cambisols, Gelisols, Oxisols and Neosols (Pinheiro, 
2012).

Macacu database and hydropedological tests

The pedological database provides the collected samples morphological descriptions and 
physical-chemical analyses. They are an important part of the study since it focuses on 
featuring the basins soil. Data were collected in the basin area based on the Conditioned 
Latin Hypercube Sample (cLHS) technique. This technique allows using computer resources 
to infer the selected points in the area. These resources are highly representative of 
Guapi-Macacu River basin’s environmental features (Mckay et al., 2000; Minasny and 
McBratney, 2006; Carvalho Júnior et al., 2014).
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Figure 1. Study area location map and spatial distribution of the 122 points associated with 
hydropedological information about the assessed data set.
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Therefore, a hundred and twenty-two (122) sampling points were collected in the Guapi-
Macacu river basin area, originated as follows: fourteen (14) were obtained from pedological 
survey with profiles described in Carvalho Filho et al. (2003) (Extra Rio, Rio 9, PRJ 1, PRJ 
2 id points) and a hundred and eight (108) points from pedological survey (ninety-nine 
obtained by the cLHS technique and nine using traditional survey method) with profiles 
described in Carvalho Júnior et al. (2014).

Soil basic infiltration rate (bir) data were collected through hydropedological survey 
campaigns (two in total, which occurred in September 2019 and February 2020), which 
were carried out in situ in the watershed; these campaigns used the Guelph permeameter, 
model 2800K1, by Soil Moisture, whose associated-measurement method was elaborated 
by Reynolds and Elrick (1985), and enhanced at University of Guelph, in Canada, back 
in 1985 (Elrick et al., 1989). The application of Darcy’s equation’s, and their evolutions 
(Darcy, 1856; Richards, 1931; Reynolds and Elrick, 1985) allowed finding the saturated 
water conductivity (Ksat) values, which were estimated based on bir by using formulas 
based on known parameters estimated in the laboratory.

The Ksat values can be transformed based on the measured bir data, according to the 
equipment’s parameters (water column, water load and water column diameter), soil 
features (porosity, genesis and storage coefficient), on Darcy’s equation and of their 
evolutions (Darcy, 1856; Richards, 1931; Reynolds and Elrick, 1985). In total, thirty-six 
(36) data values for both physical-hydric attributes were measured in the study site. 
The measured data were separated into four levels, one of them regarding the soil 
water condition (hydromorphic and non-hydromorphic) and the other the layer analyzed 
(surface, ranging 0.00-0.20 m in depth, and subsurface, ranging 0.20-0.40 m in depth).

Finally, data were subjected to pedotransfer functions calibration based on intrinsic 
soil features (particle size composition, soil density, water pH, water dispersed clay, 
porosity, particle density, organic carbon, and T-value). The remaining points (83 total) 
were estimated by pedotransfer functions applied in soils vertical modeling in the basin. 
This estimate resulted in 122 points with the surface (0.00-0.20 m) and subsurface  
(0.20-0.40 m) information about the analyzed properties (Figure 1). These points 
encompassed the analyzed data set in the current research. The previously described 
stages were conducted by the authors during analysis performed prior to the current study.
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Terrain numerical modeling: covariables extraction and association with 
basin’s landscape

SAGA GIS (Conrad et al., 2015), an Geographic Information System (GIS) focused on 
geo-scientific analysis, was used to plot topographic maps aimed at depicting surface 
morphometric parameters (primary and secondary covariables) deriving from hydrologically 
consisted digital elevation model of orthometric altitudes (altimetry) applicable to 
topographic surface aggregated to vector elements in the basin, such as vegetation 
cover. Vector data used to generate DEM resulted from Instituto Brasileiro de Geografia 
e Estatística (IBGE) Geosciences repository in partnership with Secretaria Estadual do 
Ambiente (SEA), constituting a continuous cartographic database of Rio de Janeiro State’s 
planialtimetric survey, at 1:25,000 scale.

Basin’s political-managerial region limit mask was acquire from geo-spatial data available 
at Instituto Estadual do Ambiente (GeoINEA) page for data clipping in the target areas, 
which were delimited based on compiled data from a series of topographic maps at 
1:50,000 scale, provided by National Cartographic System (NCS). The basin’s limit was 
also standardized based on datum and coordinate systems used to treat IBGE’s vector 
data. The next step involved proceeding with the DEM extraction by using TopoToRaster 
interpolator in ESRI ArcGIS 10.6 environment (Redlands, 2011). This tool was designed 
to create digital elevation models with hydrological consistency.

Vector data were interpolated at 20 m spatial resolution to create regions DEM. 
Subsequently, a hydrologic consistency analysis based on Flow Accumulation, Flow 
Direction and Fill tools was applied over DEM, turning the model into a Hydrologically 
Consisted Digital Elevation Model (HCDEM). Accordingly, the assessed region’s elevation 
map was obtained (Figure 1).  

Terrain covariables were carefully selected to design the basin’s landscape. This process 
considered pedological and landscape environmental elements (soil, vegetation, hydrology, 
and geology) observed in it. Radiometric matrix data and their features are shown in 
table 1.

The primary and secondary selected attributes (36 attributes) presented significant 
expressiveness in representing the landscape’s environmental properties and active 
processes, and it has featured the soil formation factors, mainly relief. Therefore, the 
basin-representative covariables selection was a priority because it concerned the 
continuous surfaces extraction based on Hydrology, Lighting, Visibility, Morphometry, 
Slope Stability and Channels tools application, as well as on SAGA GIS Terrain Analysis 
modulus, which can quantify mountains eco-systemic variables (altitude fields) and 
region’s native biome (Atlantic Forest biome).

Aerogeophysical data acquisition and processing of Sentinel-2A optical 
images

The Brazil’s Geological Survey Geosciences system (GeoSGB), an online repository 
maintained by Companhia de Pesquisa de Recursos Minerais (CPRM), provided the 
magnetometry and gamma spectrometry aerogeophysical data used in the current 
study (CPRM, 2012). This system provides Aerogeophysical Survey Projects aerial bases. 
These projects are conducted by CPRM and other institutions, and the database holds 
airborne sensor data used to detect magnetometric, gamma spectrometric, gravimetric, 
and radiometric parameter values, among other data about Brazil national territory.

Raw aeromagnetometric and gamma spectrometric digital data were collected in GeoSGB 
aerogeophysical projects database, at 500 m distancing between flight lines. These 
data were processed in Geosoft Oasis Montaj software. Aeromagnetometric data were 
treated to correct common aerial survey and equipment issues (parallax error correction, 
diurnal variation removal, profile leveling and micro-levelling, and geomagnetic field 
trend surface definition called International Geomagnetic Reference Field IGRF). These 
procedures were performed by CPRM in its final processing report (CPRM, 2012). 
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Corrected tabular data were spatialized in software for georeferencing and for the 
Anomalous Magnetic Field’s (AMF) radiometric bi-directional grid creation using 
tridimensional coordinates (x, y, z) and magnetometric value measured by IGRF. Values 
were interpolated at maximum of 1/5 of flight lines to avoid post-processing magnetometric 
signature losses (MagMap module). The lacking grid values were also filled through 
dummy interpolation based on square method (Grid and Image modulus). The anomalous 
magnetic field (AMF) map was generated by the radiometric grid, at spatial resolution of 

Table 1. Terrain covariables concerning the topographic physical-hydric and thermodynamic DEM’s primary and secondary attributes

Type Terrain attributes Physical process Description

Pr Digital Elevation Model (DEM) 
or Elevation (elev)

M

Landscape dynamics and its 
phenomena.

P
Slope, Aspect, Analytical 

Hillshade (AH), Profile 
Curvature (ProfC); Planar 

Curvature (PlanC)

Water flow dynamics; 
vegetation; geomorphology; 

sun radiation intensity; 
Failures in geological 

structures, soil particles and 
sediment deposition.

S

Tangential Curvature (TanC), 
Total Curvature (TotalC), 
Morphometric Features 

(MF), Topographic Position 
Index (TPI), Wind Exposition 
Index (WEI), Terrain Surface 

Convexity (TSC), Longitudinal 
Curvature (LonC), General 
Curvature (GC), Landforms 
(LF), Terrain Surface Texture 

(TST), Convergence Index (CI), 
Generalized Surface (GS), 

Morphometric Protection Index 
(MPI)

Rate of lateral accumulation 
in the landscape; water 

soil retention and storage; 
soil features; landscape 

morphometric parameters 
derivation approach.

S

Catchment Area (CA), 
Catchment Slope (CS), 

Multiresolution Index of Valley 
Bottom Flatness (MRVBF), 

Multiresolution Index of The 
Ridge Top Flatness (MRRTF), 
Terrain Classification Index 
for Lowlands (TCIL), Flow 

Accumulation (FA), Stream 
Power Index (SPI), Topographic 

Wetness Index (TWI), SAGA 
Wetness Index (SWI), Valley 

Depth (VD), Vertical Distance 
to Channel Network (VDCN), 
Channel Network Base Level 

(CNBL), Flow Path Length 
(FPL), Euclidian Distance (ED)

CH

Sediment deposits 
identification and featuring; 
saturation zones prediction; 

Hydrological studies on 
water flow and runoff; water 
concentration in connectivity 

channels.

S LS Factor (LSF), Wetness Index 
(WI) E

Erosion estimates for 
watersheds; sediments 

transport; rock permeability.

S Geomorphons (Gm) VI
Landscape classification 

based on landforms; region’s 
geomorphology description.

Pr: Principal; P: Primary; S: Secondary; M: Morphometry; CH: Channels and hydrology; E: Stability; VI: Visibility and light. Adapted from Beven 
and Kirkby (1979), Zevenbergen and Thorne (1987), Moore et al. (1991), Köthe et al. (1996), Montgomery and Dietrich (1994), Bock et al. (1996, 
2007), Guisan et al. (1999), Wilson and Gallant, (2000), Breuer (2001), Böhner et al. (2002), Florinsky et al. (2002), Yokoyama et al. (2002), Gallant 
and Dowling (2003), Romano and Chirico (2004), Böhner and Selige (2006), Iwahashi and Pike (2007), Seibert and McGlynn (2007), Stepinski and 
Jasiewicz (2011), Jasiewicz and Stepinski (2013), Gerlitz et al. (2015), Oliveira et al.  (2017).
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100 m, and plotted based on IGRF correction (Fourier fast change calculation to domain 
frequency). Subsequently, analytical signal amplitude (ASA) filter was applied to find 
the variation rate (gradient) on the three axes (x, y, z) and to reduce AMF’s interference 
on magnetometric domain identification, since it could be associated with aquifer rocks 
and mineralogy.

Reduction to pole (RTP) was simulated based on the derivative of axis x, by plotting the 
ASA map, because Rio de Janeiro State is in a low-altitude region. This simulation allowed 
to highlight the geologic profile limits (most superficial mining). Finally, spectral signature 
variation rate was expressed in shorter wavelength to scour smaller bodies (mineralogy 
and smaller rocks) represented in ASA map. Slope (-35.64), declination (-21.69) and the 
corrected amplitude (-54.36) were IGRF’s parameters necessary to reduce aerial survey 
data (January 8, 2012). The two first parameters were automatically calculated by Oasis 
Montaj, based on aerial survey’s data input.

As CPRM’s recommendations (CPRM, 2012), the minimum curvature interpolator was used 
for referred gamma data to create Uranium (U), Thorium (Th) and Potassium (K) grids. Also, 
the interpolation was based on one-fifth of flight lines to equate with aeromagnetometric 
data’s spatial resolution (100 m). Grid lacked information found was corrected based on 
the square method (Grid and Image modulus) through dummy interpolation. Finally, a 
radiometric ternary map was plotted in red, green, and blue composition (RGB) depending 
on radioelements bands (R-potassium, G-thorium, B-uranium) represented by the ternary 
triangle, using Oasis Montaj Grid and Image modulus.

Multispectral images from MSI/Sentinel-2 mission were selected based on data proximity 
and availability in Copernicus Sentinel Hub repository to meet the hydropedological data 
collection period (September 2019 and February 2020). The images acquisition dates 
were August 2, 2019 (for the first field survey) and February 10, 2020 (for the second field 
survey). The conducted treatment and processing were based on transforming radiance 
information into surface reflectance and allowing spatial resolution matching between 
sensor’s bands by transforming the 10 m bands resolution into 20 m ones to make pixels 
compatible for band algebra performance (index calculations). The spectral bands used 
in analysis were Sentinel-2A mission B2 to B8A, B11 and B12 bands to identify possible 
relational patterns with the physical-hydric attributes (ESA, 2020).

Spectral indices were calculated using visible-infrared (VIS-IR) bands. The spectral indices 
selection related to vegetation, soil and geology was carefully made, considering possible 
associations with the study variables, as shown in table 2.

All spectral data treatment and processing procedures were carried out through statistical 
routine implemented in RStudio environment (Rstudio Team, 2020), based on sen2R 
package used  to process Sentinel-2A images. The indices were also calculated in this 
environment by using images from nine spectral bands (VIS-IR) from Sentinel 2A mission 
based on bands mathematics.

Modeling: selection methods and data dimensioning reduction, random 
forest, and validation

Initially, the input data underwent analysis using four statistical adjustment techniques: 
autocorrelation analysis, multi-collinearity analysis, principal components analysis, and 
hypothesis tests. These techniques were employed to apply methods, minimize errors, 
and avoid information loss.

Subsequently, statistical methods based on regression analysis, multivariate analysis, and 
machine learning were used to select and reduce the data dimensionality. Specifically, 
the Variation Inflation Factor (VIF), Stepwise Akaike Information Criterion (Stepwise AIC), 
and Recursive Feature Elimination (RFE) were applied. These analyses were implemented 
using routines in the RStudio environment.
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The VIF method was used to address multicollinearity issues by quantifying the increase 
in variance of an estimated regression coefficient due to collinearity. This method consists 
of the quotient between a model’s variance with several terms and the model’s variance 
with a single term. It quantifies this variance severity based on ordinary least squares and 
provides an index to measure to which extent the variance (the square of the estimate’s 
standard deviation) of an estimated regression coefficient increases due to collinearity 
(Daniel and Wood, 1999).

Stepwise AIC is an automatic and iterative method used to select variables based on 
regression analysis. It evaluates each variable’s contribution to the model and determines 
whether it should be added or subtracted based on a pre-specified criterion (AIC). Based 
on a pre-specified criterion, AIC can interactively add or remove a variable from a set of 
explanatory variables. It is done by estimating the relative amount of information lost by 
a given model, in case an important variable is taken out of the analysis (Taddy, 2019; 
McElreath, 2020).The RFE is a selection method used in machine learning models and 
Data Mining universe. It aims to select predictor variables that best fit the desired model, 
whether regression, multivariate, or machine learning. The RFE optimizes the model by 
selecting the most relevant predictor variables (Blum and Langley, 1997; Bradley et al., 
1998). Accordingly, RFE results in predictor variables selection to better optimize the 
model one wishes to set (Svetnik et al., 2004).

Table 2. Vegetation indices deriving from multispectral sensor’s spectral bands of the Sentinel-2 mission

Index Indices formula based on MSI 
Sentinel-2 bands Reference

Enhanced Vegetation Index (EVI)  
 

 

  

 
 

    

band A band

band A band band

x
x x

 8  4

 8  4  2

2.5 
6    7.5     1

Huete et al. (2002); Hunt et al. (2011)

Clay Minerals Ratio (CM); Ferrous 
Minerals Ratio (FM); Ferruginous Regolith 
Ratio (FR); Iron Oxide Ratio (IO)

   

   
band band band A band

band band A band band

 11  11  8  4

 12  8  3  2

; ; ; Segal (1982); Drury (1987); Rowan and 
Mars (2003)

Grain Size Index (GSI)
 

 
 

  



 
band band

band band band

 4  2

 4  2  3

Perera et al. (2005); Xiao et al. (2006)

Normalized Difference Red-Edge Index 
(NDRE)

 
 
 

 




band A band

band A band

 8  5

 8  5

Clevers and Gitelson (2013)

Normalized Difference Vegetation Index 
(NDVI)

 
 
 

 




band A band

band A band

 8  4

 8  4

Rouse et al. (1973)

Normalized Difference Water Index 
(NDWI)

 
 
 

 




band band A

band band A

 3  8

 3  8

Brenner and Guasselli (2015)

Non-Linear Index (NLI)
 
 
 

 





band A band

band A band

2
 8  4

2
 8  4

Goel and Qin (1994)

Soil Adjusted Vegetation Index (SAVI)  
 

 

 

 
 

   

band A band

band A band

x  8  4

 8  4

1.5   
0.5

Huete (1988)

Transformed Difference Vegetation Index 
(TDVI)

 

 
 

 

 
 

    

band A band

band A band

x  8  4

2
 8  4

1.5   
0.5

Bannari et al. (2002)

Visible Atmospherically Resistant Index 
(VARI)

 
 

 

  



 
band band

band band band

 3  4

 3  4  2

Gitelson et al. (2001); Hunt et al. (2011)

Adapted from Sentinel-Hub Repository Satellite Indices (Sinergise, 2020).
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The predictors selection based on importance classifications follows a Backward Selection 
approach, often used in Random Forest models, aiming to integrate physical-water 
attributes in a robust and refined way. This approach leverages multicollinearity principles 
to limit the number of predictors and select variables based on their importance in 
decision trees, and, therefore, it also helps select the variables to be used in the final 
model by reducing predictors in target scores.

To reduce data dimensionality, Principal Component Analysis (PCA) was applied. Abdi 
and Williams (2010) defined PCA as a multivariate technique to describe data observed 
through several inter-correlated quantitative dependent variables that aim to extract 
important information. The technique represents the data as orthogonal variables 
called principal components, enabling the patterns and similarities identification among 
observations and variables as multi-dimensional vectors by grouping input variables 
responses without losses.

The Random Forest algorithm was chosen to classify water resources given its easy 
implementation and robustness (Blum and Langley, 1997; Bradley et al., 1998). Predictive 
property values obtained from the Random Forest model (quality parameters) were used 
to determine the method with the best performance in estimating physical-hydric data.

The input data were previously separated into training (70 %) for the Random Forest models 
implementation, and testing (30 %) for quality validation purpose. Quality criteria set for 
models encompassing the selected and reduced variables (from the database and based 
on the implemented methods) resulted from careful statistical analysis, including Mean 
Absolute Error (MAE), Root Mean Squared Error (RMSE), determination coefficient (R2), 
and Random Forest model importance evaluation. This statistical approach was used to 
assess the model’s accuracy and precision under bir/Ksat values estimated (Schaap and 
Leij, 1998; Schaap, 2004). In addition, the model with the best prediction performance 
and highest correctness degree was selected based on the validation results, because 
validation implementation used 30 % of the non-trained sampling data.

The selection methods and data dimensionality reduction allowed predicting bir and 
Ksat values for the Macacu basin entire area grid. The surfaces mapped based on both 
attributes resulted from data separation criterion into two soil layers: 0.00-0.20 and 
0.20-0.40 m. The final resulting cartographic products included four maps estimating bir 
and Ksat attributes at two soil layers (surface 0.00-0.20 m and subsurface 0.20-0.40 m)  
in the basin, based on the Random Forest classification.

The analyses were conducted using applied statistical routines in R language and RStudio 
software environment (R Core Team, 2020; Rstudio Team, 2020). Packages such as Raster, 
sp, sf, shapefiles, openxlsx, Sen2R (Sentinel-2A images treatment and process), caret, 
corrplot, usdm, FactoMineR, randomForest, and ggplot2 (graphic plotting) were utilized 
for data processing (manipulate geo-spatial data in tabular, matrix and vector formats), 
selection methods development, image processing, classification, and visualization. 
The cartographic products were produced using open-source software Quantum GIS 
(QGIS) (QGIS Development Team, 2020). The described methodological steps summary 
is presented in the figure 2 flowchart.

RESULTS AND DISCUSSION

Autocorrelation and principal component analysis

Autocorrelation method performs an initial examination of data behavior through 
meticulous analysis conducted by the researcher, considering prior knowledge about 
the database and utilizing the Pearson’s correlation matrix. Inman (1994) suggested that 
Pearson’s determination coefficient values (R) above 0.6 indicate a moderate to strong 
correlation (either positive or negative). Values lower than 0.6 indicate weak correlation 
(either positive or negative), while null values (zero) indicate correlation absence. Figure 3  
shows Pearson’s correlation matrix for the evaluated data.
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Based on the correlation matrix, spectral indices demonstrated a moderate correlation 
with Ksat and bir attributes. This correlation can be either positive or negative. The 
following spectral indices show a positive correlation: Clay Minerals, EVI, Ferruginous 
Regolith, NDRE, NDVI, NLI, SAVI, VARI, and TDVI. On the other hand, Ferrous Minerals, 
GSI, and Iron Oxide exhibit a negative correlation. Regarding the terrain covariables, 
DEM morphometry and primary variables (Slope, Aspect, and Elevation) exhibited a 
weak to moderate positive correlation (0.4< R <0.6). Similarly, hydrology channel 
covariables (such as MRRTF and MRVBF) presented a weak to moderate, albeit inverse, 
correlation. In other words, as physical-water attribute values increase, these variables 
values decrease. This analysis aligns with the local relief features and suggests effective 
water drainage, primarily driven by surface and/or vertical runoff throughout the basin. 
This finding should be thoroughly investigated in the prediction map. Visibility, light, 
and hydrology covariables showed a weak to moderate correlation (0.2< R <0.4) when 
compared to the overall dataset.

Spectral data within the matrix (Figure 3) exhibit interdependencies that may indicate 
the multicollinearity or high dimensionality presence, wherein multiple data points 
represent identical or highly similar features. Principal Component Analysis (PCA) was 
employed to assess the spectral data contribution, addressing this issue. The PCA 
analysis accounted variance of over 90 % in both principal components, enabling a 
comprehensive understanding of the model through a two-dimensional spectral variables 
analysis (Figure 4a).

Figure 2. Proposed methodology flowchart.
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Upon principal components spatial observation, it becomes apparent that the variables 
(Figure 4b) are separated into three distinct groups based on their spectral characteristics. 
Notably, the IO and GSI indices contributed proportionally less to group 1 in physical-
hydric variables explanation. Figure 4b illustrates the variables separation into group 1 
(10 variables), group 2 (3 variables), and group 3 (10 variables). It is worth noting that 
two variables from group 1, namely the IO and GSI indices, warrant closer examination 
during the modeling stage. These results underscore the spectral data significance 
derived from remote sensing in modeling, as they account for most of its variability. It 
is advisable to reduce the dimensionality of the data associated with these variables 
(Figure 4) to mitigate issues arising from multicollinearity. 

Further discussions about the variables analyzed in this step can be found in dos Santos 
et al. (2019) and Santos et al. (2020) studies. The Guapi-Macacu basin soil attributes 
characterization is wider discussed by Santos et al. (2022) and can be integrated with 
the analysis carried out by the cited authors.

Figure 3. Pearson’s correlation matrix about the set of assessed covariables (radiometry, geophysics, and spectral indices), whose 
ρ refers to Karl Pearson’s correlation coefficient.
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Figure 4. Spectral variables are represented based on the PCA model’s explanatory principal components, wherein (a) is the principal 
components’ importance in PCA; (b) is the principal components’ separation in PCA, with each contribution expressed in the right legend.
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Correlation and dimensionality analyses play a crucial role in multivariable studies. 
However, they serve as preliminary steps before a specific method application, to 
explore and identify patterns in the study site’s data. But they do not account for factors 
such as homoscedasticity (trends absence in error variances), multicollinearity, and 
normality. Neglecting these considerations can have a detrimental impact on drawing 
direct conclusions about the study outcomes. Addressing this, statistical requirements 
demanded by the chosen methods can be met by applying criteria such as the Breusch-
Pagan test (Breusch, 1978), Shapiro-Wilk test (Shapiro and Wilk, 1965), and Durbin-
Watson test (Durbin and Watson, 1950; Watson and Durbin, 1951; King, 1992); to the 
databases. These tests help adjust accordingly the data, ensuring compliance with the 
necessary statistical assumptions.

Multicollinearity, as indicated by Mansfield and Helms (1982), can introduce various 
undesirable effects on coefficients estimated through multiple regression analysis. Hence, 
it is essential for researchers to possess the skills to identify its presence. In this study, 
three distinct methods (VIF, RFE and Stepwise AIC) were examined. These methods 
aimed to select the appropriate variables for each assessed attribute, considering their 
respective depths (surface or subsurface). Furthermore, they aimed to evaluate the 
quality of the estimates obtained for these attributes using the Random Forest machine 
learning classifier. By employing these methods, researchers can make informed decisions 
regarding variable selection and assess the accuracy of attribute estimation achieved 
through the modeling process.

Hydropedological data spatial modeling

Based on database separation categorized according to soil layer (0.00-0.20 and  
0.20-0.40 m) and the variables under investigation (bir and Ksat), response variables 
were selected by calibrating three different spectral data dimensionality reduction 
methods and analysis. Each applied method (Table 3) yielded different output variables 
definitions (explanatory) that displayed significant positive or negative correlations (at 
a significance level of α = 5 %) with the physical-hydric variables.
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Table 3. Covariables selected after applying the proposed methods

Method Selected covariables (1) Total
Ksat0.00-0.20 m

VIF AH; Aspect; CI; CS; ED; FA; FPL; Gm; GS; LF; LSF; MF; MRRTF; PlanC; TanC; TotalC; TPI; TSC; 
TST; TWI; VD; VDCN; WEI; WI; Ferruginous Regolith; Iron Oxide; NLI; K; U; Mag 30

RFE CS; GS; CNBL; NDWI; elev; LSF; Ferruginous Regolith; SWI; Clay Minerals; TSC; SAVI 11

Stepwise AIC
elev; AH; Aspect; CA; CNBL; FPL; Gm; GS; LF; LonC; MF; MPI; MRVBF; ProfC; SWI; TanC; TCIL; 
TPI; TST; TWI; VD; WI; EVI; Ferrous Minerals; GSI; Iron Oxide; NDRE; NDVI; NDWI; SAVI; TDVI; 

VARI; K; Th; U; Mag
36

Ksat0.20-0.40 m

VIF MRRTF; MRVBF; PlanC; ProfC; Slope; TanC; TCIL; TotalC; TSC; VD; VDCN; WEI; Iron Oxide; NLI; K; 
U; Mag 17

RFE Mag; Ferrous Minerals; VARI; MRRTF; K; LSF; MPI; elev; SWI; GSI; AH; Iron Oxide; CNBL; GS; VD; 
EVI; NDVI; Slope; Clay Minerals; MF; GC; NLI; TDVI; SAVI; Aspect; WEI; NDRE 27

Stepwise AIC
elev; CA; FA; FPL; GC; GS; LonC; LSF; MF; MPI; ProfC; Slope; SPI; TCIL; TotalC; TPI; TSC; TST; 

TWI; VD; Ferrous Minerals; Ferruginous Regolith; GSI; Iron Oxide; NDWI; NLI; SAVI; TDVI; VARI; 
Th; U

31

Bir0.00-0.20 m

VIF AH; Aspect; CI; CS; ED; FA; FPL; Gm; GS; LF; LSF; MF; MRRTF; PlanC; TanC; TotalC; TPI; TSC; 
TST; TWI; VD; VDCN; WEI; WI; Ferruginous Regolith; Iron Oxide; NLI; K; U; Mag 30

RFE CNBL; GS; elev; VD; NDWI; CS; NLI; Clay Minerals; TDVI; TanC; NDRE; Ferruginous Regolith; 
SAVI; NDVI 14

Stepwise AIC
elev; CS; FA; FPL; GC; Gm; GS; LF; LSF; MF; MPI; MRRTF; MRVBF; ProfC; SWI; TanC; TotalC; TPI; 

TST; TWI; VD; WEI; WI; EVI; Ferruginous Regolith; GSI; Iron Oxide; NDRE; NDVI; NDWI; NLI; 
SAVI; VARI; K; Th; U

36

Bir0.20-0.40 m

VIF MRRTF; MRVBF; PlanC; ProfC; Slope; TanC; TCIL; TotalC; TSC; VD; VDCN; WEI; Iron Oxide; NLI; K; 
U; Mag 17

RFE
LSF; Mag; CS; VD; GS; CNBL; elev; MRRTF; TotalC; SWI; TCIL; U; TWI; GSI; Slope; WEI; MRVBF; 
AH; Clay Minerals; NLI; VARI; Th; NDVI; K; NDRE; TDVI; EVI; FPL; SAVI; SPI; TPI; LF; Iron Oxide; 

MPI; Aspect; PlanC; Ferrous Minerals
17

Stepwise AIC elev; AH; CA; CI; FA; FPL; GS; LonC; LSF; MRRTF; MRVBF; PlanC; ProfC; Slope; TanC; TCIL; TotalC; 
TPI; TST; TWI; GSI; Iron Oxide; NDVI; NDWI; TDVI; VARI 26

VIF: Variance Inflation Factor; RFE: Recursive Feature Elimination; AIC: Akaike Information Criterion. (1) Acronyms whose meanings are shown in table 1.

Based on the resulting findings (Table 3), most methods employed resulted in more 
than ten explanatory variables selection. Furthermore, these methods demonstrated 
a multicollinearity lack and strong interference in data correlation. Focusing on bir and 
Ksat estimates within the depth range of 0.00 to 0.20 m, it can be observed that the 
RFE selection method yielded the lowest number of response variables composing the 
model, with 11 and 14 variables estimated total, respectively. However, it is important 
to note that the methods employed different approaches in selecting covariates based 
on the four adopted criteria, thereby incorporating either the topographic or radiometric 
aspects of the study site. Figures 5a to 5d provide an analysis based on the RFE method 
to determine the optimal variables number that would result in the lowest residue in the 
Random Forest model (as indicated by the lowest RMSE).

Dashed lines in graphics depicted in figures 5a, 5b, 5c and 5d represent the optimal 
variables number required to achieve the lowest Root Mean Squared Error (RMSE) values 
when utilizing the Random Forest model. This criterion is specifically applied in analysis 
based on RFE method. Among the four attributes modeled, only the model based on  
vib0.00-0.20 m attribute demonstrated lowest RMSE value with the smallest variables number 
(11) after 99 iterations (Figure 5a). The remaining three attributes - Ksat0.00-0.20 m, Ksat0.20-0.40 m,  
and vib0.20-0.40 m (Figures 5b to 5d) were required 27, 14, and 37 variables, respectively, 
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to achieve the ideal adjustment in RF model. Notably, the RFE model applied to vib0.20-

0.40 m demanded the largest variables number in comparison to its explanatory set when 
compared to the other two implemented methods. Specifically, it required one more 
explanatory variable than the Stepwise AIC method evaluated for Ksat0.00-0.20 m and vib0.00-

0.20 m.

Breusch-Pagan, Durbin-Watson and Shapiro-Wilk tests were applied to the database. 
These tests yielded significant values necessary for the null hypothesis (H0) acceptance 
in favor of the alternative hypothesis (H1) at a 5 % significance level (α = 5 %, thus,  
β = 95 % confidence level). Shapiro-Wilk test was utilized to assess data normality residuals 
(H0: normality of residuals versus H1: non-normality of residuals). Breusch-Pagan test 
was employed to assess variances in residues homoscedasticity (H0: equal variances - 
homoscedasticity versus H1: different variances - heteroscedasticity). Lastly, Durbin-Watson 
test was applied to examine the correlation presence among residuals, which serves as 
a multicollinearity indicator (H0: autocorrelation among residuals equals zero - residues 
independence versus H1: autocorrelation among residuals different from zero - residues 
dependence). The test stage is crucial in ensuring that statistical assumptions will be 
fulfilled, especially considering that VIF and Stepwise models are based on regression 
analysis principles. The p-values obtained from tests were within the required interval 
in all methods (p-value < α = 5 %), indicating that no data corrections or treatments 
were necessary. The trained methods quality performance using 70 % of the database, 
which was previously separated through RF model, is shown in table 4.

Figure 5. The RFE method graphics (number of explanatory variables versus RMSE adjustment) of the assessed physical-hydric 
attributes and their respective layers: (a) Ksat0.00-0.20 m; (b) Ksat0.20-0.40 m; (c) bir0.00-0.20 m; (d) bir0.20-0.40 m. The dashed line highlights the 
reach of the optimum number of variables selected through RFE.
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All models reached an accuracy higher than 70 % (R2 >0.70) in predicting the target 
attributes (Ksat and bir) at 0.00-0.20 and 0.20-0.40 m soil layers (Table 4). These predictions 
were assessed using cross-validation criteria, indicating well-calibrated models within the 
RF method. The Random Forest model adjustment, across all three proposed methods, 
resulted in a RMSE error stability of approximately 300-350 random trees generated for 
the assessed physical-hydric variables (Figures 6 and 7). Among these RF models, the 
ones that exhibited the best accuracy in variables prediction, based on RFE method, 
are highlighted in colors in figures 6 and 7, with RMSE stability starting at 300 trees.

The Random Forest model’s performance evaluation (response) during validation, where 
the trained models were compared to test values (30 % of the separated database), 
revealed significant discrepancies between predicted values (by model estimation) 
and the actual values (measured in situ). This discrepancy is further supported by low 
R-squared (R2

test) values obtained during the testing phase, which were below 20 % for 
the implemented methods based on criteria analysis (depths and independent variables), 
except for the bir variable assessed for the 0.00-0.20 m layer which recorded higher R2 
values. The R2 values for bir variable assessed for the 0.00-0.20 m layer ranged from 28 
to 48 % (Table 5). These results highlight challenges in accurately predicting the target 
variables using the implemented methods.

The Random Forest model’s quality assessed the internal validation (Table 5) and revealed 
overall lower values for the applied evaluation metrics (RMSE, MAE and R2). These results 
indicate that the adjusted models have less than 20 % explanatory variability for Ksat 
and bir attributes in the assessed regions. This finding can be attributed to the lack of 
data values or their low significance, specifically in the elevation values within the basin’s 
lowland. This low significance is likely due to this region’s planar curvature (Figure 8) and 
its proximity to Guanabara Bay, which experiences constant sedimentation processes as 
water from the basin flows out through the river mouth. The observed result may also 
be associated with training data overfitting or random selection of validation values. To 
solve this problem, increasing the estimated variables sample size while considering 
criteria such as soil classification and measurement points homogeneity in the study 
site can be a potential solution.

Table 4. Random Forest model quality in physical-hydric data training stage based on the applied selection methods (70 % of the 
database)

Assessed variable Applied method
Quality metrics evaluated for Random Forest

RMSEtraining MAEtraining R2
training

Ksat
Z= 0.00-0.20 m

VIF 0.0054 0.0034 0.8755
RFE 0.0049 0.0032 0.8731

Stepwise AIC 0.0050 0.0035 0.8948

Ksat
Z= 0.20-0.40 m

VIF 0.0025 0.0019 0.8679
RFE 0.0025 0.0019 0.8657

Stepwise AIC 0.0025 0.0020 0.8663

bir
Z = 0.00-0.20 m

VIF 0.2743 0.1834 0.9336
RFE 0.3038 0.1980 0.8130

Stepwise AIC 0.2733 0.1879 0.9004

bir
Z= 0.20-0.40 m

VIF 0.2713 0.1867 0.7276
RFE 0.2710 0.1871 0.7306

Stepwise AIC 0.2767 0.1962 0.7220
Values based on Random Forest model crossed evaluation applied to data separated at training.
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Figure 6. Random Forest model adjustment graphics evidencing the amount of trees versus error minimization recorded for Ksat 
variable, based on the assessed layer: (a-c) Ksat0.00-0.20 m; (d-f) Ksat0.20-0.40 m; and the three analyzed methods: (a,d) VIF; (b,e) RFE; (c,f) 
Stepwise AIC.
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Despite careful survey planning, it was not feasible to collect data in regions characterized 
by high human interference levels and dense forest cover. These landscape features are 
present in Cachoeiras de Macacu, Guapi-Açu, Guapimirim, and Itaboraí counties, which 
are influenced by the Guapi-Macacu basin. These factors can significantly impact the 
Ksat and bir values estimation for the 122 sampled points using pedotransfer models, as 
indicated in previous research (Santos et al., 2022). As a result, there may be inherent 
randomness in errors and discrepancies arising from external mapping sources. However, 
it is worth mentioning that the 122 sample points estimated achieved high accuracy and 
precision in the mapping process. 
Considering the region’s sedimentary composition, it is expected that the physical-
hydric attributes exhibit varying values in areas with higher clay content, particularly 
dispersed clay. These areas are characterized by high activity, resulting from a balance 
between micro and macropores that favor capillarity and water retention. Additionally, 
the organic matter presence in the soils promotes the colloid formation, increasing the 
water particles specific contact surface and further enhancing water retention. 

Conversely, regions with high sand content and thick, poorly structured materials exhibit 
lower values for these physical-hydric attributes. This is explained by the macropores 
prevalence, which reduces the soil’s capacity to transfer water through capillarity and 
retain it long enough for aquifer recharge. 

Moreover, the region with mineral soils in the basin (feldspar and associated quartz 
fractions), as indicated by the 1:50,000 scale geological map (DRM, 2019), exhibits higher 
soil density, leading to reduced infiltration processes and water capillarity.
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Table 5. Random Forest model quality in physical-hydric data validation test stage (30 % of the database)

Assessed variable Applied method
Quality metrics evaluated for Random Forest

RMSEtest MAEtest R2
test

Ksat
Z= 0.00-0.20 m

VIF 0.0083 0.0071 0.0525
RFE 0.0065 0.0056 0.1433

Stepwise AIC 0.0084 0.0076 0.0461

Ksat
Z= 0.20-0.40 m

VIF 0.0077 0.0045 0.0199
RFE 0.0074 0.0044 0.0375

Stepwise AIC 0.0069 0.0042 0.1088

bir
Z = 0.00-0.20 m

VIF 0.4586 0.3594 0.4057
RFE 0.4171 0.3394 0.4735

Stepwise AIC 0.4799 0.3910 0.2801

bir
Z= 0.20-0.40 m

VIF 0.3704 0.2771 0.1439
RFE 0.3617 0.2748 0.1629

Stepwise AIC 0.3531 0.2747 0.2003
Values based on Random Forest model validation of data separated at the test stage.

Figure 7. Random Forest model adjustment graphics evidencing the amount of trees versus error minimization recorded for Ksat 
variable, based on the assessed layer: (a-c) bir0.00-0.20 m; (d-f) bir0.20-0.40 m; and the three analyzed methods: (a,d) VIF; (b,e) RFE; (c,f) 
Stepwise AIC.

(a)

Re
si

du
al

s

0.6

0.4

0.2

0.0

0                100              200              300              400              500

Number of trees

(b)
0.6

0.4

0.2

0.0

0                100              200              300              400              500

Number of trees
(d)

Re
si

du
al

s

0.6

0.4

0.2

0.0

0                100              200              300              400              500

Number of trees

(e)
0.6

0.4

0.2

0.0

0                100              200              300              400              500

Number of trees

(c)
0.6

0.4

0.2

0.0

0                100              200              300              400              500

Number of trees
(f)

0.6

0.4

0.2

0.0

0                100              200              300              400              500

Number of trees



Santos et al. Hydropedological digital mapping: machine learning applied to…

19Rev Bras Cienc Solo 2023;47:e0220149

Values highlighted in the map follow bir and Ksat variables interval scale (Figure 8). 
Both variables exhibited lower values in the transition zone between profiles (surface to 
subsurface). This observation suggests a reduced capacity for infiltration and capillary 
flow, indicating lower water retention in the deeper basin soil profiles.

Conversely, the mountainous region surrounding the basin, encompassing Petrópolis, 
Teresópolis, and Nova Friburgo counties, displays the highest bir and Ksat values in 
subsurface profiles. This can be attributed to the dense vegetation, specifically the Atlantic 
Forest biome. These finding evidences these areas as priority sites with significant potential 
for water resource conservation within the basin. It is important to recognize that soil 
degradation and deforestation in these regions can contribute to water scarcity issues. 
Therefore, the preservation and restoration of these sites are crucial for maintaining 
water availability in the basin.

Considering the geological characteristics of the herein-assessed region, the Center-
Northwestern fraction of the basin exhibits notable features in the aeromagnetic map, 
indicating a higher concentration of water due to the presence of deeper rocks. This 
specific area encompasses the Rio de Janeiro Petrochemical Complex (COMPERJ), which 
represents the region with the highest urban density and includes the flooded lowland 
areas of the basin. Consequently, these regions display distinct spectral responses. 
The airborne gamma spectrometry map highlights elevated levels of Potassium in the 
Center-Northwestern and Center-Southeastern sections and a notable Potassium and 
thorium combination (high concentration values) on the surface, particularly in other 
regions of the basin.

Figure 8. Bir and Ksat variability maps in Guapi-Macacu river basin, Rio de Janeiro, estimated 
through the Random Forest model and based on the respective depths and selection methods: (a) 
bir0.00-0.20 m – RFE; (b) Ksat0.00-0.20 m – RFE; (c) bir0.20-0.40 m – Stepwise AIC; (d) Ksat0.20-0.40 m – Stepwise 
AIC. Validation scale of 1:500,000.
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The flight conducted by CPRM revealed a dummy correlation effect, explicitly observed 
in the COMPERJ restricted area. This effect impacted on data interpolation and showed 
noise in the middle portion of the basin, characterized by a faint linear feature (tenuous 
lineament) extending towards the East-Western basin part. Nevertheless, this procedure 
was crucial to feasible the modeling process, as it required a complete matrix structure 
for value prediction using the Random Forest algorithm.

CONCLUSIONS

The three evaluated methods demonstrated distinct selection responses, resulting in 
a reduction of 53 initial input variables during the pre-modeling stage. Specifically, the 
number of variables was reduced to 30, 11 and 36 for Ksat at Z = 0.00-0.20 m; 17, 27 
and 31 for Ksat at Z = 0.20-0.40 m; 30,14 and 36 for bir at Z = 0.00-0.20 m; 17, 37 and 
26 for bir at Z = 0.20-0.40 m, respectively. The Iron Oxide index was the most frequently 
selected variable by the applied methods among all analyzed data set variables, except 
for RFE applied to bir and Ksat attributes in soil surface layers (0.00-0.20 m), where this 
variable was not returned.

The VIF and RFE methods yielded the smallest number of explanatory variables for the 
0.00-0.20 m (RFEKsat0.00-0.20 m = 11 variables; RFEbir0.00-0.20 m = 14 variables) and 0.20-0.40 m 
(VIFKsat0.20-0.40 m = VIFbir0.20-0.40 m = 17 variables) assessed variables layers, respectively. This 
reduction in data dimensionality by removing redundant variables contributed to more 
informative components for the overall predictive models. Consequently, the final models 
adopted for data modeling and spatialization (mapping), based on separation per soil 
profile and study variable, were VIF and RFE for Ksat and Stepwise AIC and RFE for bir, 
respectively, considering both surface and subsurface variables profiles. These models 
played a crucial role in selecting and reducing input data dimensions at the pre-modeling 
stage, especially for water resources digital mapping in the studied basin’s soils.

In terms of modeling quality, RFE and Stepwise AIC methods consistently yielded 
the best results for Random Forest models, regardless of the study variable (RFE:  
Ksat0.00-0.20 m = 14.33 % and bir0.00-0.20 m = 47.35 %; Stepwise AIC: Ksat0.20-0.40 m = 10.88 %  
and bir0.20-0.40 m = 20.03 %) and layer depth (applied to layers 0.00-0.20 m and  
0.20-0.40 m). The explained variability by these models ranged 10.88-47.35 %, with the 
highest values achieved for bir at a depth of 0.00-0.20 m. However, it is worth noting 
that the RF models showed better adjustment for Ksat in both surface and subsurface 
profiles compared to bir, due to the higher spatial variability of the latter, which affects 
the algorithm modeling process.

The results provided a deeper comprehension of saturated water conductivity (Ksat) and 
basic soil infiltration velocity rate variability in the study area. The spectroradiometric 
and topographic data derived from Digital Elevation Models (DEM) integration led to more 
robust models, as evidenced by the high-quality digital soil physical-hydric attributes 
representation. Radiometry played a significant qualitative role in analyzing the soil 
particle sizes composition at the surface level. However, there were limitations that 
hindered a comprehensive analysis and prevented the determination of the potential of 
these data for numerical modeling using machine learning algorithms.

The approach herein adopted proved valuable in enhancing inherent relationship 
understanding among surface spectroradiometry, topography, soil composition, and water 
response at the soil surface, involving all the assessed databases. It raised important 
considerations regarding the selection of variables, showing how tenuous variables 
selection based on the Ksat and bir classification process is in the overall digital soil 
mapping context.
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