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Abstract
Yield is one of the most important traits of arabica coffee. Plant breeders seek to maximize yield directly or indirectly, using 
other related traits. The standard multi-trait genome-wide association study (MTM-GWAS) does not accommodate the net-
work structure of phenotypes, therefore, does not address how traits are interrelated. We applied structural equation modeling 
(SEM) to GWAS to explore interrelated dependencies between phenotypes related to morphology (fruit size and number 
of reproductive nodes), physiology (vegetative vigor), and productivity (yield) traits using 195 Coffea arabica individuals 
genotyped with 21,211 single-nucleotide polymorphism markers. We inferred the probabilistic phenotypic network by the 
Hill-Climbing algorithm to estimate the structural coefficients. The integration of multivariate GWAS and SEM (SEM-
GWAS) identified a positive interrelationship between vegetative vigor and yield, and vegetative vigor and the number of 
reproductive nodes. Among those traits, yield and number of reproductive nodes presented indirect SNP effects. There was 
no evidence of a single quantitative trait locus controlling all the traits jointly. We identified three genes (Stress enhanced 
protein 1, Abscisic stress-ripening protein 5, and SAR–SNI1) that acted directly on yield. In summary, SEM-GWAS offered 
new insights into the relationship between the traits linked to coffee yield, providing useful information for arabica coffee 
breeding programs.

Keywords Structural equation model · Bayesian network · Genome-wide association study · Single-nucleotide 
polymorphism · Coffea arabica

Introduction

Coffee is one of the most widely consumed beverages 
worldwide, which Brazil being the world’s largest pro-
ducer. Brazil produces 39.76% of all the coffee in the 
world (Coffea canephora and Coffea arabica). In particu-
lar, Brazil accounts for 40.83% of Arabica coffee world-
wide (Estados Unidos 2021). Due to the increase in cof-
fee consumption in countries that are not as traditional, 
such as China (DCCC 2019), climate change risks, the 
demand for coffees with ever-increasing beverage qual-
ity (Borém et al. 2021), among others, it is necessary to 
encourage targeted research studies of breeding strategies 
so that greater sustainability of the production chain can 
be achieved. Genetic-driven breeding is a tool that an ena-
ble such advances to meet market demands (Barka et al. 
2017; Wallace et al. 2018). However, the breeding process 
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takes time because Arabica coffee has a long cycle and 
juvenile period (Ferrão et al. 2016; Nonato et al. 2021). 
Thus, the integration of innovative tools, such as biotech-
nology coupled with quantitative genetic approaches and 
genetic-driven breeding, is needed to make the genetic 
progress of Arabica coffee and enable such advances to 
meet market demands (Ferrão et al. 2016; Nonato et al. 
2021; Mishra and Slater 2012).

Genome-wide association studies (GWAS) have become 
increasingly popular for elucidating the genetic architecture 
of economically important traits (Yu et al. 2006). In coffee, 
GWAS have been successfully used in identifying regions 
in the genome associated with essential traits, such as rust 
resistance (Romero et al. 2014; Sousa et al. 2020), fruit size, 
yield, plant height (Sousa et al. 2020), lipid biochemistry 
and diterpene content Sant’Anna et al. (2018), caffeine bio-
synthesis (Tran et al. 2018), and resistance to coffee berry 
disease (Gimase et al. 2020). Generally, methodologies 
developed in GWAS consider each trait individually. How-
ever, typically correlated traits are recorded in the same 
material in breeding programs. The univariate approach 
may be ineffective in examining the genetic interdepend-
ence of traits and may impose limitations on elucidating the 
genetic mechanisms underlying a complex system among 
traits (Momen et al. 2019). As an alternative, multivariate 
GWAS models (MTM-GWAS) can reduce the false positive 
rate and increases the statistical power of association tests 
(Zhou and Stephens 2012; Korte et al. 2012; O’Reilly et al. 
2012). This approach allows the identification of genomic 
regions with pleiotropic effects explaining genetic correla-
tion among the traits. Although MTM-GWAS is a useful 
approach, this methodology does not include how the traits 
are interrelated.

Some methodologies that deal with GWAS in a mul-
tivariate way, such as mvBIMBAM methodology (Shim 
et al. 2015), which is based on the Bayes factor, parti-
tioning the effects of markers directly and indirectly, in 
addition to this, Momen et al. (2018) proposed the use 
of structural equation modeling to perform MTM-GWAS 
(SEM-GWAS) and applied it to crop plants (Momen 
et al. 2019). This model was later extended to a Bayesian 
marker effect model (Wang et al. 2020). The SEM-GWAS 
approach captures complex relationships and delivers a 
more comprehensive understanding of single-nucleotide 
polymorphism (SNP) effects than MTM-GWAS. Specifi-
cally, it can partition the total SNP effects of a trait into 
direct and indirect effects, enhancing our understand-
ing of complex relationships among agronomic traits. 
Furthermore, SEM-GWAS has the potential to provide 
deeper insights into the underlying genetic architecture 
of important traits in breeding programs than what is cur-
rently possible with MTM-GWAS. Thus, our objectives 
were to (1) estimate genetic parameters for phenological 

traits in Coffea arabica; and (2) enhance the understanding 
of the genetic architecture of agronomic traits using the 
SEM-GWAS approach.

Materials and methods

Phenotypic and genotypic data

The data were collected from the C. arabica breeding 
program, which is a joint partnership among the Com-
pany of Farming Research of Minas Gerais (EPAMIG), 
the Federal University of Viçosa (UFV), and the Brazil-
ian Agricultural Research Corporation (EMBRAPA). An 
experimental area is maintained at the Department of Phy-
topathology—UFV (lat. 20°44′25′′ S, long. 42°50′52′′ W). 
The database contains 13 progenies from crosses between 
three parents of the Catuaí cultivar and three parents of the 
Híbrido de Timor (HdT). Fifteen full-sib families of prog-
eny mentioned above, totaling 195 individuals, were geno-
typed with m = 21,211 SNP markers. The DNA concentra-
tion of the samples was standardized and sent to RAPiD 
GENOMICS, Florida/USA, for probes construction, 
sequencing, and identification of SNP molecular markers 
(Sousa et al. 2017). The SNP quality control was carried 
out considering genotypic call rate and minor allele fre-
quency equal to or greater than 90% and 5%, respectively.

The genotypes were planted on February 11, 2011, 
using the spacing of 3.0  m between rows and 0.7  m 
between plants. Nutritional management was carried out 
following the requirements of the crop. From the cross 
between three parents of the Catuaí group and three par-
ents of Híbrido de Timor (HdT), which contrast in relation 
to resistance to coffee rust, 13 progenies were obtained 
from the C. arabica breeding program of Epamig/UFV/
Embrapa. These progenies are resistant backcrosses (BCr), 
susceptible backcrosses (BCs), and  F2 generations. Thir-
teen progenies, which were composed of 15 plants (rep-
etitions), were analyzed, totaling 195 individuals. The 
field trial included experiments in different years, with 
blocks and plot randomization. More details can be found 
in Sousa et al. (2019). The phenotypic database used was 
comprised of four traits: yield (YL), vegetative vigor 
(VV), number of reproductive nodes (NRN), and fruit size 
(FS). The importance of these traits has been reported in 
the literature. For example, according to Cilas et al. 2006, 
individuals with larger amounts of NRN tend to have 
higher YL. Ferrão et al. 2012 showed that FS is one of 
the main traits used to select production performance, and 
VV indicates the growth potential. Finally, the main target 
trait in the breeding program is YL, which is influenced by 
other traits, including VV, NRN, and FS.
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Phenotypic modeling

The phenotypic values of the traits were adjusted for years 
(2014, 2015, and 2016), plots, and years × plots interaction. 
The analyses were performed based on a mixed linear model 
(REML/BLUP) using the Selegen-REML/BLUP software 
[http:// www. ppest bio. ufv. br/ wp- conte nt/ uploa ds/ 2016/ 05/ 
Softw are_ Seleg en_ Genom ica. zip] (Resende 2016). The sta-
tistical model was

where � is the long vector of phenotype concatenated 
together, � is the vector of general average in each year of 
evaluation (fixed effect), � is the vector of progeny effects 
(random effect), � is the vector of permanent effects between 
individuals (random effect), � is the effects between back-
cross and  F2 population (random effect), � is the effects 
between plot (random effect), � is the progenies x years 
interaction effect (random effect), and � is a vector of model 
residuals (random effect) (Sousa et al. 2019). Here, � , � , 
� , � , and � are the incidence matrices related to � , p, r, 
b, i, and e, respectively and were assumed to follow a nor-
mal distribution � ∼ N(0, ��2

g
) , � ∼ N(0, ��2

p
) , � ∼ N(0, ��2

r
) , 

� ∼ N
(
0, ��2

b

)
, and � ∼ N(0, ��2

i
) , where � is the identity 

matrix. The adjusted phenotypes are given by �∗ = ��̂ + �̂ 
(de Los Campos et al. 2013).

Bayesian multi‑trait genomic best linear unbiased 
prediction

The adjusted phenotypes ( �∗ ) were used as input in a Bayes-
ian multi-trait genomic best linear unbiased prediction model, 
which can be described as follows:

where �∗ is the long vector of adjusted phenotypes concat-
enated together (YL, VV, FS, and NRN, t = four traits) , � is 
the incidence matrix of non-genetic effects, in this case the 
general mean; � is the vector of the non-genetic effects; � is 
the incidence matrix relating phenotypes and progenies; � is 
the vector of additive genetic effect; and � is the vector of 
model residuals. The � and e vectors were assumed to follow 
multivariate Gaussian distribution � ∼ N(0,Σg ⊗�) and 
� ∼ N(0,Σe ⊗ �) , respectively, where � is the genomic rela-
tionship matrix, � is the identity matrix, �g and �e are the 
t × t variance–covariance matrices of genetic effect and 
residuals, respectively, and ⊗ indicates the Kronecker prod-
u c t .  T h e  �  m a t r i x  w a s  c o m p u t e d  a s 
G = ��

�

∕2
∑m

j=1
pj(1 − pj) , where � is  the centered SNP 

marker matrix (VanRaden 2008). A flat prior was assigned 
to the vector of � . An inverse Wishart distribution, with 
hyperparameters ν (degree of freedom) and S (scale 

(1)� = �� + �� +�� + �� + �� + �� + �

(2)�∗ = �� + �� + �

parameter), was assumed for the covariances matrices �g and 
�e . The significance of the genetic correlations, residuals, 
and heritabilities was based on the relative highest 95% 
probability density (HPD 95%) intervals, where intervals 
containing zero it was concluded that the estimator is equal 
to zero. For intervals that do not contain zero, the estimator 
is non-zero.

Marginal posterior densities were obtained using a 
Markov Chain Monte Carlo (MCMC) method using the 
Gibbs sampling algorithm, with 1,200,000 MCMC itera-
tions, a burn-in of 50,000, and a thinning rate of 50 result-
ing in 23,000 MCMC samples for inference. The posterior 
means of the residuals were used as inputs for the follow-
ing Bayesian network analysis to infer a trait network. The 
convergence analysis is presented on Tables S2 to S9. The 
autocorrelations (Tables S2 and S6) and convergence tests 
were done via Geweke (Tables S3 and S7), Heidleberger 
and Welch Stationarity and Interval Halfwidth (Tables S4 
and S8), and Raftery and Lewis (Tables S5 and S9) for the 
residual and genetic chains of the model, respectively.

Bayesian networks

Bayesian networks are graphical models, where nodes rep-
resent random variables (phenotypes), and edges represent 
probabilistic dependencies between them (Korb and Nichol-
son 2010). The Hill Climbing (HC) score-based algorithm 
was used to construct a potential interrelationship among 
traits as implemented in the bnlearn R package (Scutari 
2010). The Bayesian information criterion (BIC) was com-
puted for each edge removal to infer their relative contribu-
tion to the overall BIC of the network. We estimated the 
strength and uncertainty of the direction of each edge prob-
abilistically by bootstrapping (50,000 bootstrap samples). 
An edge strength ≥ 80% was used to select high-confidence 
relationships.

The percentages reported adjacent to the edges and in 
parentheses indicate the proportion of the bootstrap samples 
supporting the edge (strength) and the direction of the edge, 
respectively. Strength is the probability that an arc exists 
between the nodes, independently of its direction. Direction 
is the probability that an arc has a certain direction. YL: 
yield; VV: vegetative vigor; FS: fruit size; NRN: number of 
reproductive nodes.

Multi‑trait association analysis (MTM‑GWAS)

MTM-GWAS analyses were performed using the SNP 
Snappy strategy (Meyer and Tier 2012) implemented in the 
mixed model WOMBAT program (Meyer 2007). This model 
does not consider the inferred network structure:

http://www.ppestbio.ufv.br/wp-content/uploads/2016/05/Software_Selegen_Genomica.zip
http://www.ppestbio.ufv.br/wp-content/uploads/2016/05/Software_Selegen_Genomica.zip
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where �∗∗ is the long vector of scaled phenotypes concatenated 
together (t = 4) , �j is the matrix of SNP codes for the j th 
marker, �j is the vector of j th SNP marker effect, and other 
terms were previously described. Variance–covariance struc-
tures were assumed the same as for Eq. (2). The MTM-GWAS 
was fitted for each SNP individually to obtain the marker effects 
for each trait, i.e., � = [sYL, sVV, sFS, sNRN] . A t statistic was 
used to obtain p− values: tij = sj∕se(sj) , where s is the point 
estimate of the j th SNP effect and se(sj) is its standard error. 
The q values were obtained by correcting the p values (Storey 
and Tibshirani 2003). In addition to the previously mentioned 
corrections, the SNP dosage matrix was also corrected for the 
population structure, where 4 principal components were used, 
resulting in approximately 80% of the genetic variability.

Structural equations modeling GWAS

The structural equation modeling (SEM) incorporates a trait 
network structure into the GWAS framework. Structural equa-
tions modeling GWAS (SEM-GWAS) was conducted using 
the SNP Snappy strategy (Meyer and Tier 2012). The SEM 
described in Gianola and Sorensen (2004) was extended to 
GWAS (Momen et al. 2019, 2018).

(3)�∗∗ = �j�j + �� + �

where � is a matrix of structural coefficients based on the 
learned structure from the Bayesian network:

The vectors � and � were assumed to have a joint distribu-

tion 
[
g

e

]
= N

{[
0

0

]
,

[
�� ⊗� 0

0 �

]}
 , and the residual 

covariance matrix was diagonal with

Using the results provided by the Bayesian network, the inter-
relationships between the four traits (YL, VV, NRN, and FS) 
were modeled using SEM. The structural equations to estimate 
SEM parameters and SNP effects can be expressed as follows:

(4)�∗∗ = ��∗ +�� + �� + �
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Fig. 1  Flowchart detailing the inputs and outputs of Bayesian multi-trait genomic best linear unbiased prediction, Bayesian network, multi-trait 
genome-wide association study (MTM-GWAS), and structural equations modeling genome-wide association study (SEM-GWAS)

y2VV = wjsj(y2VV) + Z2g2 + �2

y3FS = wjsj(y3FS) + Z3g3 + �3

y4NRN = �24y2VV + w
j
sj(y4NRN) + Z4g4 + �4

= �24[wjsj(y2VV) + Z2g2 + �2] + wjsj(y4NRN) + Z4g4 + �4
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Thus, the corresponding estimated � matrix was

The SEM-GWAS procedures are summarized in Fig. 1.
The effect sizes of edges between phenotypes in the 

Bayesian network were estimated as the structural coeffi-
cients. They were used to develop a set of structural equa-
tions to partition the total SNP effects into direct and indi-
rect components. While MTM-GWAS estimates the effect of 
SNP as a total effect, SEM further partitions it into the direct 
and indirect effects of SNP, considering the trait network. 
The calculation of indirect effects is based on the multiplica-
tion of path coefficients for each path linking the SNP to an 
associated variable and then adding all these paths (Momen 
et al. 2019, 2018). The knowledge of direct and indirect 
effects is of great importance for understanding total SNP 
effects, which is not possible using MTM-GWAS (Momen 
et al. 2019, 2018; Valente et al. 2013).

Pathway enrichment analyses

We first select relevant SNP from the MTM-GWAS 
results based on a nominal P value (< 0.01). The QTLs 
were associated with positions without considering win-
dow. Then, we used the genomic database of Coffea ara-
bica available at the NCBI (National Center for Biotech-
nology Information—https://www.ncbi.nlm.nih.gov/gen
ome/?term=txid13443[Organism:noexp]) to estimate the 
functionality of each gene identified and the significantly 
enriched GO terms and KEGG pathways.

Results

Descriptive statistics for the traits investigated are reported 
in Table 1. Their averages were 5.19 ± 0.21 L/plant (4.77, 
5.59) for YL, 7.35 ± 2.63 (1.99, 7.47) for VV, 2.32 ± 0.14 
(1.99, 2.37) for FS, and 8.62 ± 0.65 (7.19, 8.89) for NRN.

� =

⎡⎢⎢⎢⎣

0

IλVV→NRN

0

IλVV→YL

0

0

0

IλNRN→YL

0

0

0

IλFS→YL

0

0

0

0

⎤⎥⎥⎥⎦

Structure analysis

After carrying out the principal component analysis, a 
structure was detected in which four principal components 
explained 80.07% of the data variability. The first four com-
ponents explained 42.82%, 30.90%, 3.62%, and 2.73%, 
respectively. The figure corresponding to the above analysis 
for two principal components can be seen below (Fig. 2).

Genetic parameters

The estimates of narrow sense heritability were moderate 
for VV (0.39 ± 0.14) and FS (0.61 ± 0.12) and small for YL 
(0.14 ± 0.10) and NRN (0.13 ± 0.17) (Table 2). No genomic 
correlation was considered significant according to the high-
est 95% probability density intervals (Table 2). We found 
relevant positive correlations among residual correlations 
between FS and YL (0.30) and NRN and YL (0.38) (Table 2).

Bayesian network structure

The Bayesian network analysis showed that there is a 
directed path from VV to NRN (68% of bootstrap samples 
and 100% of strength), NRN to YL (100% of bootstrap 
samples and 81% of strength), VV to YL (100% of boot-
strap samples and 99% of strength), and FS to YL (100% 
of bootstrap samples and 82% of strength). The NRN medi-
ated the indirect path between VV and YL (Fig. 3). In the 
inferred trait network, YL was downstream, VV and FS were 
upstream, and NRN was the mediator trait.

The BIC was used as a goodness-of-fit statistic, which 
measures how well the paths mirror the dependence structure 
of the data. The greatest decrease in BIC was observed when 
removing the VV → NRN (− 15.19) and VV → YL (− 15.09) 
paths, suggesting that these paths may play the most impor-
tant role in the trait network (Table 3). The NRN → YL and 
FS → YL paths presented BIC equal to − 2.37 and − 2.54, 
respectively, showing that these are paths that would not 
have such an impact, if removed, on the fit of the model 
when compared to the first two.

Structural equation model

The estimated structural coefficients are shown in Table 4. 
The coefficients of the NRN → YL and FS → YL paths were 
negative, while VV → NRN and VV → YL were positive. 
The coefficient referring to the NRN → YL path had the 
highest value, while VV → YL had the lowest coefficient. 
However, all the coefficients were small, suggesting that the 
role of VV in mediating SNP effects on NRN and YL and 
the role of NRN and FS in mediating SNP effects on YL are 
marginal. The magnitude of structural coefficients suggested 

Table 1  Means, HPD95 (highest 95% probability density) intervals 
and standard deviations (SD) for yield (YL), vegetative vigor (VV), 
fruit size (FS), and number of reproductive nodes (NRN) measured in 
195 C. arabica genotypes

Trait Mean SD HPDlower HPDupper

YL 5.19 0.21 4.77 5.59
VV 7.35 2.63 1.99 7.47
FS 2.32 0.14 1.99 2.37
NRN 8.62 0.65 7.19 8.89
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Fig. 2  Principal components analysis of Coffea arabica panel. Scatter plot of the first two principal components (Comp.1 and Comp.2)

Table 2  Genomic (upper triangular) and residual (lower triangular) 
correlations, and genomic heritabilities (diagonal) and their respec-
tive HPD95 (highest 95% probability density) in parenthesis for yield 

(YL), vegetative vigor (VV), fruit size (FS), and number of reproduc-
tive nodes (NRN). Significant correlations (HPD95 not including 0) 
are highlighted in bold

YL VV FS NRN

YL 0.14 (0.01, 0.33) 0.44 (− 0.64, 0.92)  − 0.32 (− 0.81, 0.51) 0.57 (− 0.49, 0.98)
VV 0.47 (− 0.23, 0.58) 0.39 (0.13, 0.66)  − 0.30 (− 0.72, 0.64) 0.40 (− 0.67, 0.90)
FS 0.30 (0.03, 0.45)  − 0.01 (− 0.17, 0.28) 0.61 (0.33, 0.79)  − 0.25 (− 0.79, 0.49)
NRN 0.38 (0.27, 0.59) 0.40 (− 0.25, 0.53) 0.19 (− 0.17, 0.35) 0.13 (0.01, 0.56)
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that allelic substitutions in quantitative trait loci (QTL) for 
one trait might affect another trait. The positive coefficient 
�21 (0.0047) quantifies the effect of the VV in YL and �24 
(0.0351) quantifies the effect of the VV in NRN. This sug-
gests that a 1-unit increase in VV results in a 0.0047 unit and 

0.0351 unit increase in YL and NRN, respectively. Likewise, 
the negative effects �31 and �41 offer the same interpretation. 
The negative coefficients �41 (− 0.0438) and �31 (− 0.0338) 
quantify the effects of NRN in YL and FS in YL, respec-
tively, suggesting that a 1-unit increase in NRN results in 
a 0.0438 unit decrease in YL and a 1-unit increase in FS 
results in a 0.0338 unit decrease in YL.

Figure 4 shows a graphical representation of the trait net-
work and SNP effects using the structural equation modeling 
(SEM) model. Here, we can observe the direct effects of mark-
ers of YL [ sj(YL) ], VV [ sj(VV) ], NRN [ sj(NRN) ], and FS [ sj(FS) ], 
and also the indirect effects between VV and NRN ( λ24 ), VV 
and YL ( λ21 ), NRN and YL ( λ41 ), and FS and YL ( λ31).

Partitioning of SNP effects

Using SEM-GWAS, we partitioned the effects of SNP into 
direct and indirect effects. The results of the decomposition 
of SNP effects are presented for each trait separately.

Yield

The overall SNP effect of yield (YL) was partitioned into 
one direct and four indirect effects, according to Fig. 4. 
Specifically, VV, NRN, and FS affected YL through indi-
rect paths with structural coefficients equal to �21 = 0.0047, 
�41 =  − 0.0438, and �31 =  − 0.0338, respectively. VV also 
indirectly contributed to NRN, which in turn affected YL, 
represented by the product of the coefficients �41x �24 (− 0
.0438 × 0.0351 =  − 0.0015). The total effect of j th SNP on 
YL was equal to the sum of the direct and indirect effects.

Fig. 3  The trait network struc-
ture inferred by the Hill-Climb-
ing algorithm. The structure 
learning test was performed 
with 50,000 bootstrap sam-
ples. The percentages reported 
adjacent to the edges and in 
parentheses indicate the propor-
tion of the bootstrap samples 
supporting the edge (strength) 
and the direction of the edge, 
respectively. Strength is the 
probability that an arc exists 
between the nodes, indepen-
dently of its direction. Direction 
is the probability that an arc has 
a certain direction. YL yield, VV 
vegetative vigor, FS fruit size, 
NRN number of reproductive 
nodes

Table 3  Bayesian information criterion (BIC) of the network learned 
using the Hill-Climbing algorithm

(a) Bayesian information criterion score (BIC) of the entire net-
work; (b) BIC scores for pairs of nodes; the change in the score when 
removing the arc relative to the entire network score is shown. YL 
yield, VV vegetative vigor, FS fruit size, NRN number of reproductive 
nodes

BIC (a) Path BIC (b)

 − 1395.29 VV → NRN  − 15.19
VV → YL  − 15.09
NRN → YL  − 2.37
FS → YL  − 2.54

Table 4  Structural coefficients (λ) estimates derived from the struc-
tural equation model

YL yield, VV vegetative vigor, FS fruit size, NRN number of repro-
ductive nodes

Path Path coefficient ( �)

VV → NRN 0.0351
VV → YL 0.0047
NRN → YL  − 0.0438
FS → YL  − 0.0338
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The Manhattan plots of direct (A), indirect (B), and total 
(C) SNP effects on YL are presented in Fig. 5.

Number of reproductive nodes

The SNP effect on number of reproductive nodes (NRN) was 
decomposed into one direct and one indirect effect mediated by 
VV (VV → NRN) with the structural coefficient �24 (0.0351).

Directsj→y1YL
= sj(y1YL)

Indirect(1)sj→y1YL
= �21sj(y2VV )

Indirect(2)sj→y1YL
= �41sj(y4NRN )

Indirect(3)sj→y1YL
= �31sj(y3FS)

Indirect(4)sj→y1YL
= �41�24sj(y2VV )

Totalsj→y1YL
= Directsj→y1YL

Indirect(1)sj→y1YL

+ +Indirect(2)sj→y1YL
+ Indirect(3)sj→y1YL

+ Indirect(4)sj→y1YL
= sj(y1YL) + �

21
sj(y2VV )

+ �
41
sj(y4NRN ) + �

31
sj(y3FS) + �

41
�
24
sj(y2VV )

Directsj→y4NRN
= sj(y4NRN )

The Manhattan plots of direct (A), indirect (B), and total 
(C) SNP effects on NRN are presented in Fig. 6.

Vegetative vigor

The HC algorithm did not identify any mediator trait for veg-
etative vigor (VV) (Fig. 4). Therefore, the genetic architecture 
of VV was seemingly controlled only by the direct SNP effect. 
The total effect of the j th SNP on VV consists of its direct 
effect (Fig. 7).

The Manhattan plots of direct (A) and total (B) SNP 
effects on VV are presented in Fig. 7.

Fruit Size (FS)

Similar to VV, the HC algorithm did not identify a mediator 
trait for fruit size (FS) (Fig. 4). Therefore, the SNP effect for 
FS is given by only its direct SNP effect.

Indirect(1)sj→y4NRN
= �24sj(y2VV )

Totalsj→y1Y
= Directsj→y4NRN

+ Indirect(1)sj→y4NRN
= sj(y4NRN ) + �24sj(y2VV )

Directsj→y2VV
= sj(y2VV )

Totalsj→y2VV
= Directsj(y2VV )

= sj(y2VV )

Directsj→y3FS
= sj(y3FS)

Fig. 4  Path analysis of marker 
effects based on the inferred 
trait network. YL yield, NRN 
number of reproductive nodes, 
FS fruit size, VV vegetative 
vigor. The gray dashed arrows 
indicate the direction of rela-
tionships. �

24
 : VV → NRN; �

21
 : 

VV → YL; �
41

 : NRN → YL; 
�
31

 : FS → YL. The black arrows 
indicate the direct effect of the 
j th SNP
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The Manhattan plots of direct (A) and total (B) SNP 
effects on VV are presented in Fig. 8.

We observed that direct SNP effects were highly cor-
related ( R2> 0.98) with total SNP effects for all traits. The 
indirect SNP and total SNP effects were positively cor-
related for VV → NNR (0.02) and VV → YL (0.03) and 
negatively correlated for NRN → YL (-0.72), FS → YL 
(− 0.14) and VV → NNR → YL (− 0.03).

Totalsj→y3FS
= Directsj(y3FS )

= sj(y3FS)
Structural equation model genome‑wide association study

A total of 87 SNP were statistically significant (q < 0.01) 
for NRN and YL. Among those, 39 and 48 SNP showed 
a significant association for NRN and YL, respectively 
(Table S1). In addition, we explored the functionalities of 
regions associated with these significant SNP (Table S1). It 
is important to emphasize that C. arabica is an allotetraploid 
from C. canephora and Coffea eugenioides (Lashermes et al. 
1999). Therefore, the genome of C. arabica is divided into 

Fig. 5  Manhattan plots for direct (A), indirect (B), and total (C) single-nucleotide polymorphism effects on yield (YL) obtained using SEM-
GWAS based on the network structure learned by the Hill Climbing algorithm. VV vegetative vigor, NRN number of reproductive nodes
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Fig. 6  Manhattan plots for 
direct (A), indirect (B), and total 
(C) SNP effects on the number 
of reproductive nodes (NRN) 
obtained using SEM-GWAS 
based on the network structure 
learned by the Hill Climbing 
algorithm. VV vegetative vigor
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Fig. 7  Manhattan plots for direct (A) and total (B) SNP effects on vigor vegetative using SEM-GWAS-based model by including the network 
structure learned from the Hill Climbing algorithm
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Fig. 8  Manhattan plots for direct (A) and total (B) SNP effects on fruit size using SEM-GWAS based model by including the network structure 
learned from the Hill Climbing algorithm
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two subgenomes. For this reason, together with the informa-
tion of each SNP marker, a code was added for subgenome 
information, “c” and “e” referring to C. canephora and C. 
eugenioides, respectively (Table S1). Although there are few 
genetic mapping studies in coffee, most previous studies were 
carried out in C. canephora. Moncada et al. (2016) found six 
QTL for yield on chromosomes 2, 4, and 11 using C. arabica.

Pathway enrichment analyses

Several ontologies and pathways were enriched (P value < 0.01) 
for the traits investigated (Figs. 9 and 10). For instance, path-
ways connected hydrolase activity (1 gene), metal ion binding 

(3 genes), isomerase activity (1 gene), transferase activity (2 
genes), ADP binding (2 genes), ATP binding (4 genes), DNA 
binding (1 gene), catalytic activity (5 genes), ligase activity (1 
gene), oxidoreductase activity (4 genes), phospholipid scram-
blase activity (1 gene), ubiquitin protein ligase binding (1 gene), 
and  NAD+ binding (1 gene) for Y. For NRN, we have pathways 
connected isomerase activity (1 gene), protein dimerization 
activity (1 gene), calmodulin binding (1 gene), ATP binding (1 
gene), transferase activity (1 gene), metal ion binding (1 gene), 
and histone demethylase activity (1 gene).

For the YL KEGG analysis, we can observe that oxida-
tive phosphorylation pathway, NFU1 iron-sulfur cluster 
protein pathway, ubiquitin-mediated proteolysis pathway, 

Fig. 9  Significantly enriched 
GO terms for the investigated 
traits. A Yield (YL); B number 
of reproductive nodes (NRN). 
SNPs obtained from MTM-
GWAS (P value < 0.01)
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glycerophospholipid metabolism pathway, ubiquinone and 
other terpenoid-quinone biosynthesis pathway, spliceosome 
pathway, DNAJ heat shock N-terminal domain-containing 
protein pathway, putative receptor-like protein kinase 
At3g47110 pathway, carbohydrate metabolism pathway, 

phenylalanine, tyrosine, and tryptophan biosynthesis path-
way, sulfur relay system pathway, plant-pathogen interaction 
pathway, nicotinate and nicotinamide metabolism pathway, 
AP endonuclease pathway, nucleocytoplasmic transport 
pathway, glycolysis/gluconeogenesis pathway, glyoxylate 

Fig. 10  Significantly enriched KEGG pathways for the investigated traits. A Yield (YL); B number of reproductive nodes (NRN). SNPs obtained 
from MTM-GWAS (P value < 0.01)
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and dicarboxylate metabolism pathway, thylakoid lumenal 
protein pathway, ABC transporters pathway, plant hormone 
signal transduction pathway, RNA degradation pathway, 
ubiquitin mediated proteolysis pathway, phenylpropanoid 
biosynthesis pathway, linoleic acid metabolism pathway, 
steroid biosynthesis pathway, and pentose phosphate path-
way. For NRN KEGG analysis, we can observe that DNA-
binding pathway, nucleocytoplasmic transport pathway, 
spliceosome pathway, MAPK signaling pathway and phe-
nylalanine, tyrosine, and tryptophan biosynthesis pathway.

Discussion

Genetic parameters

The narrow sense heritability estimates for YL (0.14 ± 0.10) 
and VV (0.39 ± 0.14) were consistent with those reported in 
the literature. Specifically, the estimated heritability of YL 
was close to the estimates reported by Carvalho et al. (2019) 
and Bergo et al. (2020) based on 246 C. canephora genotypes 
(0.15) and 46 clones of C. canephora (0.16), respectively. 
For VV, our heritability estimate was close to those reported 
by Sousa et al. (2019) using 245 F2 plants of C. canephora 
(0.34). For FS (0.61 ± 0.12) and NRN (0.13 ± 0.17), the herit-
ability estimates differed from those in the literature, possibly 
due to the different method used and the population used. For 
example, Bikila and Sakiyama (2017) and Sousa et al. (2019) 
reported the FS heritability estimates of 0.42 and 0.36, respec-
tively. Sousa et al. (2019) found the heritability estimate of 
0.23 for NRN. Genetic correlation estimates were not signifi-
cant for any of the traits. Our finding agrees with Bikila and 
Sakiyama (2017), who reported no significant genetic correla-
tion between YL and FS. Even though there were no signifi-
cant genetic correlations, the multivariate methodology was 
used, as it is unprecedented in the culture of Coffea arabica.

Structural equation model genome‑wide 
association study

This study aimed to understand the genetic interdepend-
ence of evaluated traits (YL, VV, FS, and NRN) in Coffea 
arabica using the structural equations modeling genome-
wide association study (SEM-GWAS) approach. Accord-
ing to Momen et al. (2019), SEM-GWAS can help to bet-
ter understand the underlying biological mechanisms by 
distinguishing the source of SNP effects into direct and 
indirect effects. Additionally, Pegolo et al. (2020) empha-
sized that SEM-GWAS offers a powerful and flexible 
approach to capture interrelated structures missed through 
MTM-GWAS. In this study, the Bayesian network-aided 
SEM-GWAS allowed us to obtain the interrelated network 

and their path coefficients and to partition the total SNP 
effects. We observed the positive direct (VV → YL) and 
the indirect (VV → NNR → YL) association between VV 
and YL, two important economic traits in Arabica coffee. 
The positive interrelationship between VV and YL indi-
cates that the better the vegetative vigor status of the plant, 
the greater its production will be.

We used SEM-GWAS to decompose pleiotropic QTL into 
direct and indirect effects. The direct SNP effect was higher 
than the indirect SNP effect for YL and NRN (Figs. 5 and 6), 
indicating that the total SNP effects from YL and NRN are 
driven largely by genetic effects acting directly on them rather 
than indirect effects. We did not find a QTL that controls the 
traits together. In contrast, Momen et al. (2019) reported that 
the same QTL in rice controlled projected shoot area and 
water use efficiency. We found associations of 87 SNP for 
YL, NRN, FS, and VV, and the positional candidate genes for 
these traits around significant SNP were investigated.

Several candidate genes for YL were found 
based on the functional annotation. For example, (i) 
LOC113731461_e–Stress enhanced protein 1, Chloroplastic; 
(ii) LOC113714295_c–Abscisic stress-ripening protein 5; and 
(iii) LOC113726102_c–negative regulator of systemic acquired 
resistance (SAR) SNI1. According to Heddad and Adamska 
(2000), the Stress enhanced protein 1, chloroplastic may play 
a photoprotective role in the thylakoid membrane in response 
to light stress in Arabidopsis thaliana, thus providing greater 
photosynthetic efficiency and increasing the production. Chlo-
roplastic may play a photoprotective role in the thylakoid mem-
brane response to light stress. Li et al. (2017) identified the 
involvement of Abscisic stress-ripening protein 5 in drought 
tolerance in rice, potentially playing a positive role in response 
to water stress, regulating abscisic acid (ABA) biosynthesis, 
promoting stomatal closure, and acting as a protein similar to 
chaperone that possibly prevents the inactivation of proteins 
related to water stress. Durrant et al. (2007) reported a nega-
tive reduction in pathogenesis-related protein expression and 
DNA recombination during susceptible pathogen infection in 
SAR in Arabidopsis. Therefore, SNI1 is involved in short-term 
defense response and a long-term supply strategy. However, no 
mechanism was identified that directly influences NRN control.

In general, our findings indicate that using SEM-GWAS 
for analyzing a set of genetically related traits (YL, NRN, FS, 
and VV) in Coffea arabica resulted in a better understanding 
of the genetic interdependence of those traits. The evaluated 
four traits are mostly driven by genetic effects acting directly 
on those traits. The use of MTM-GWAS does not incorporate 
the interdependence between the traits since it only expresses 
overall genetic effects. In terms of breeding, knowledge of 
the interrelationships between traits can help design the best 
selection strategy, where high direct effects associated with a 
high correlation indicate that the trait in question is the main 



 Tree Genetics & Genomes           (2023) 19:23 

1 3

   23  Page 16 of 17

determinant of variations in the other variable, thus waiting 
that indirect selection is effective, if the opposite occurs (high 
direct effect and low correlation), it may indicate that the trait 
should not be completely discarded from use in indirect selec-
tions, as simultaneous selection may provide good results.

This study represents the first application of SEM-GWAS 
in coffee. In conclusion, SEM-GWAS decomposes the genetic 
interrelationships between four arabica coffee traits (YL, NRN, 
FS, and VV). Among those traits, only YL and NRN showed 
indirect effects. We detected significant genomic regions and 
identified candidate genes that act directly on YL. There was 
no evidence of a QTL controlling the same traits jointly.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11295- 023- 01597-8.
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