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Abstract: Baccharis articulata (Lam.) Pers., popularly known as carqueja, carquejinha or carqueja-doce, is 
a plant widely used in traditional medicine as a diuretic, digestive and antidiabetic. Due to its similar 
morphology with other species of the "carqueja group", especially Baccharis pentaptera (Less.) DC., it can 
be easily confused even by specialists. Thus, this study aimed to characterize micromorphology of the 
crystals present in B. articulata to show botanical markers that can help differentiate this species from other 

HIGHLIGHTS 
 

• Eleven crystalline morphotypes were found in Baccharis articulata. 

• Calcium oxalate is the chemical composition of the crystals. 

• Both monohydrate and dihydrate types were found in B. articulata crystals. 

• Crystal morphotypes can be used as anatomical markers. 

•  
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carquejas. Eleven crystalline morphotypes, including druses, styloids and various shapes of prismatic and 
sand crystals, were evidenced by scanning electron microscopy. In addition, the elemental chemical 
composition and the degree of hydration of the crystals were analyzed by EDS and Raman spectroscopy. 
The results of this study would aid in the authentication of B. articulata and serve as a basis for future studies 
of other species of Baccharis. 

Keywords: Anatomy; Baccharis; Carqueja; Raman spectroscopy; Energy dispersive X-ray spectroscopy; 

Polarization light microscopy; Scanning electron microscopy; Crystals; Calcium oxalate. 

INTRODUCTION 

The genus Baccharis L. comprises about 440 species, distributed from Canada to the southern region 
of South America, with 179 species occurring in Brazil [1,2]. This genus is economically important, and many 
species are widely used in folk medicine [3]. Among the most important species, Baccharis articulata (Lam.) 
Pers., popularly known as carqueja, carquejinha, or carqueja-doce, is widely used as a digestive and diuretic 
medicine in the southern regions of Brazil, Uruguay and Argentina, and as an antidiabetic in Paraguay [4]. It 
is a shrubby species, with erect stems and branches that are light green to grayish-green and have two wing-
like expansions. The cladodes are sessile, obovate in shape and obtuse at the apex [5]. It can be easily 
confused with other carqueja species, as is the case of Baccharis pentaptera (Less.) DC., which has two 
winged expansions in the apical portions of the branches [6, 7]. Considering the confusion due to the 
morphological similarities, similar therapeutic uses and same folk names applied to different species, this 
study aimed to provide microscopic and taxonomic data to support the characterization and authentication of 
the carquejas complex. 

MATERIAL AND METHODS 

Plant Material 

Vegetative aerial parts of B. articulata were collected in November 2009, in the region of Turuçu, Rio 
Grande do Sul and deposited in the Herbarium Clima Temperado of Embrapa Clima Temperado, under 
registration number ECT 154, and in June 2022 in the Metropolitan region of Curitiba and deposited in the 
Herbarium of the State University of Ponta Grossa (UEPG), under registration number HUPG 20595. Access 
to genetic heritage was authorized and licensed by the National System for the Management of Genetic 
Heritage and Associated Traditional Knowledge (SisGen) and is under the code AFEEC2B. 

After collection, the cladodes were fixed in FAA 70 solution (formalin, acetic acid and alcohol) for three 
days, washed with water and stored in 70% alcohol [6]. 

Light Microscopy (LM) 

Cross sections of cladodes of B. articulata were stained with Astra blue and basic fuchsin [9], placed on 
glass slides with 50% glycerin [10], covered with a glass slide and glazed with a transparent base for luting. 

Polarization light microscopy (PL) 

The samples were kept in sodium hypochlorite solution for 12 h, or until they became translucent. Then 
they were washed with distilled water, neutralized with 5% acetic acid [11] and stained with safranin. The 
slides were mounted with glycerin (50%) and photomicrographs were taken using a Nikon E600 POL 
polarized microscope equipped with a Nikon DSFiv camera system and Nikon Elements imaging software at 
the National Center of Natural Products Research (NCNPR), University of Mississippi, USA. 

Scanning electron microscopy (SEM) 

The cross sections made for SEM were dehydrated in a series of ethanol solutions of increasing 
concentrations and then dried in a critical point dryer [12]. The dried samples were mounted on aluminum 
stubs and coated with gold in a Quorum SC 7620 sputter coater. The samples were analyzed and imaged in 
a Mira 3 Teskan SEM in high vacuum mode with an accelerating voltage of 15 kV located in the Multi-users 
Laboratory Complex (C-LABMU) at UEPG. 
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Energy dispersive X-ray spectroscopy (EDS) 

The analyses concerning the elemental chemical composition of the crystals were performed using EDS, 
conducted in cells containing crystals and in empty cells for control [13]. The samples were subjected to an 
X-ray detector coupled to the SEM maintained under the same operating conditions used to capture the 
electromicrographs. 

Raman spectroscopy (RS) 

The hydration state of the crystals was observed using an Horiba LabRAM HR Evolution spectrometer 
with an excitation laser of 785 nm wavelength, 300 lines/mm grids, Synapse detector coupled to an optical 
microscope located in the laboratory of nanophotonics and imaging at the Federal University of Alagoas 
(UFAL). For each measurement, 30 averages were taken with an exposure time of 15 s,in the range of 100 
to 1600 cm-1 [14, 15]. 

RESULTS 

Eleven crystalline morphotypes were found in B. articulata using transmitted and polarized light 
microscopy (Figures 1 a-f; 4 c-f). The crystal micromorphologies were also evaluated and described using 
the SEM (Figures 2 a-h; 3 a-I; 4 a, b; 5 a-f). The crystal morphotypes found in the epidermis and glandular 
trichomes of cladodes are bipyramidal simple (Figure 2 a, b, d), bipyramidal rectangular (Figure 2 c, e, g), 
pyramidal rectangular (Figure 2 f, h), cuneiform (Figure 3 a, b), styloid (Figure 3 a, c, d, e), rhomboid (figure 
3 h, i), arrow-shaped (Figure 3 f, g), druse (Figure 4 a-f), crystalline sand rounded (Figure 5 a, b), crystalline 
sand styloid (Figure 5 c, d) and crystalline sand bow-tie-shaped (Figure 5 e, f). The definitions of the 
micromorphologies and their locations are summarized in Table 1. 

 

 
 

Figure 1. Cross-section of Baccharis articulata stem showing crystals under polarized light microscopy (a-f) [st - styloid 
crystal; bps - bipyramidal simple crystal, bpr - bipyramidal rectangular crystal; ar - arrow shaped] Scale bars: a-d = 10 
µm; e-f = 5 µm. 
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Figure 2. SEM images of the tetragonal crystal system found in Baccharis articulata stems [SEM (a-f)] [bps - bipyramidal 
simple; bpr - bipyramidal rectangular; pr - pyramidal rectangular] Scale bars: a = 10 µm; b-g = 5 µm; h = 2µm. 

 
 

Figure 3. SEM images of monoclinic crystal system found in Baccharis articulata stems (a-i)] [cn - cuneiform; st - styloid; 
ar - arrow-shaped; rb - rhomboid] Scale bars: a, c, e, i = 2µm; d, f-h = 5 µm; b = 10 µm. 
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Figure 4. Druses found in Baccharis articulata stem (a-b), leaf epidermis (c), and glandular trichomes (d-f) [SEM (a-b); 
LP (c-f)] [dr - druse; gt - glandular trichome] Scale bars: a-b = 2µm; c-f = 20 µm. 

 
 

Figure 5. SEM images of the crystalline sand found in Baccharis articulata stems (a-f)] [srd - crystalline sand rounded; 
sst - crystalline sand styloid; sbt - crystalline sand bow-tie-shaped]. Scale bars: a, b, e, f = 2µm; c, d = 5 µm. 
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Table 1. Crystal Morphotypes Observed in B. articulata: Definition and Location in the Species 

 

Morphotype Definition Location 
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Bipyramidal simple 
Crystals characterized by the direct union of two 
pyramids [16, 17]. 

Stem 

Bipyramidal rectangular 
Crystals with a considerably thick, rectangle base, 
which connects the two pyramids at the ends [17, 
18]. 

Stem 

Pyramidal rectangular 
They are presented as a pyramid with a rectangle-
shaped base [16]. 

Stem 

Cuneiform 
Crystals resembling a rectangular prism with 
tapered ends. They got this term because they 
resemble a wedge [13]. 

Stem 

Druse 
Spherical aggregate of crystals, individually 
deposited, which can take different shapes 
(Rhomboidal, styloid) [19, 20]. 

Stem, epidermis and 
apical cells of the 
glandular trichome 

M
o
n
o
c
lin

ic
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ry
s
ta

l 
s
y
s
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m
 

Styloid 
They appear as elongated crystals, with pointed 
ends in frontal view, or truncated on the lateral face 
[19, 21]. 

Stem, epidermis 

Rhomboidal Parallelogram with unequal adjacent sides [13]. Stem 

Arrow shaped 
It is characterized by having a pointed end and the 
opposite end with a "V" shaped indentation, 
resembling the tip of an arrow [22]. 

Stem 

Crystalline sand rounded 
Portrayed as a mass of small individual crystals, 
smaller than 3 µm. They can be of various shapes, 
as shown here: rounded, styloid and bow-tie-
shaped [19]. 

Stem 
Crystalline sand styloid 

Crystalline sand bow-tie-
shaped 

 
In B. articulata, the presence of calcium, carbon and oxygen in a 1:2:4 ratio evidenced the chemical 

composition of calcium oxalate for the analyzed crystals. Figure 6 (b-f) exemplifies the peaks found in some 
crystals. As a negative control, an empty cell was tested, showing only carbon and oxygen peaks 
representing the elements of the natural chemical composition of the cell, ensuring the reliability of the 
analysis (figure 6 a). 
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Figure 6. EDS of the crystals found in Baccharis articulata. [a - EDS of cell devoid of crystals as control; b-c - EDS of 
bipyramidal rectangular crystal; d-e - EDS of pyramidal rectangular crystal; f - EDS of arrow-shaped crystal. The 
prominent unlabeled peak near 2 keV represents gold (Au), the metal used to sputter-coat the samples]. 

Both hydration states were observed in B. articulata; the dihydrate state identified in bipyramidal (figure 
7 a, b) and pyramidal crystals, while the monohydrate state in styloid (figure 7 c,d), cuneiform, druse, 
rhomboid and arrow-shaped crystals. The sand crystals, on the other hand, could not be analyzed by the 
equipment due to their size being less than 5 µm. 
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Figure 7. Raman spectroscopy of crystals found in Baccharis articulata. a, b - dihydrate bipyramidal simple crystals 
(weddellite); c, d - monohydrate styloid crystals (whewellite). 

DISCUSSION 

The production of inorganic crystals can vary considerably in their morphology from species to species. 
From the point of view of genetics, a particular species may produce a specific type of crystal, or even a 
subset of different crystals and this may differentiate it from other species in the genus [23]. As well as 
morphology, genetics can act on the location of the crystal morphotype in the plant, varying considerably 
from species to species [23, 24]. As the genus Baccharis has many similar species [25-27], the more 
anatomical markers described in the literature, the easier the identification of these species will be. Thus, the 
eleven crystalline morphotypes observed in B. articulata act as a subset of different crystals observed in the 
species, and will serve as anatomical markers to distinguish it from other species in the genus. 

Besides genetic control, the proportion of calcium, or even the presence of contaminating substances, 
such as heavy metals, can influence the determination of crystal morphology [23]. In general, the chemical 
composition of the crystals may vary depending on the soil in which the plant is found. The presence of 
compounds such as sodium, potassium, calcium, aluminum, copper and sulfate can alter the development 
of crystalline morphotypes [28, 29]. Chemically, the formation of these crystals occurs from endogenously 
synthesized oxalic acid (C2H2O4). In general, the most commonly found chemical form crystals in plants is 
calcium oxalate (CaC2O4), but other forms can also appear, such as calcium carbonate (CaCO3) [28]. 

Recently, studies on various plants have evidenced the chemical composition of crystals by EDS which 
show a predominance of calcium oxalate crystals in the species [30-33]. These crystals appear in more than 
215 distinct botanical families, and are distributed in almost all plant organs and tissues, from stems to roots, 
leaf structures, and seeds. In most cases, they have well-defined shapes, except when they have other 
contaminants in their structures, and can assume an amorphous form [19]. 
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In addition to the chemical composition, the hydration state of the crystals can significantly influence the 
development of their morphology. There are two states of hydration that are commonly found, which are the 
monohydrate form (whewellite) and the dihydrate form (weddellite), which are dependent on the 
concentration of calcium present in the plant for their formation [19, 21]. 

The monohydrate form generally occurs in monoclinic crystal sistem, which are crystals that have three 
different length axes, such as styloid crystals, while the dihydrate form comprises crystals that are part of the 
tetragonal system, which are characterized by having three mutually perpendicular axes, such as 
bipyramidal, pyramidal, and prismatic crystals. In B. articulata, this correlation between the hydration state 
and the morphology of the crystals can be observed. Even though this correlation influences the development 
of some crystalline forms, others may present both states of hydration, as in the case of druses, which may 
present either monohydrate or dihydrate form [23, 34, 35]. 

Until recently, the presence of crystals in plant species was not considered a marker for species 
differentiation. Currently, although the mechanism of genetic control, chemical regulation and hydration in 
crystal formation are not clearly defined, it is known that there is strict genetic control in play and each species 
can produce a crystalline morphotype or a subset of morphotypes. In the case of B. articulata, the set of 
crystal morphotypes found can help in the morphoanatomical characterization of the species and help 
differentiate it from others. This study would also form a basis for future research involving other species of 
Baccharis. 

CONCLUSION 

Four major types of calcium oxalate crystals (druses, prisms, styloids and sand crystals) with eleven 
morphotypes were observed in B. articulata stems and cladodes. The prismatic crystals were observed in 
the forms of bipyramidal (simple and rectangular), pyramidal rectangular, cuneiform, tabular, and arrow-
shaped. Crystalline sands with three shapes of individual crystals such as rounded, styloid, and bow-tie-
shaped, were observed in the stems. Styloids were observed both in the stems and cladodes, while druses 
were found in the apical cells of the glandular trichomes, stems and cladodes. Bipyramidal and pyramidal 
crystals were dihydrated, and styloid crystals were monohydrated. 

The present study provides additional micromorphological characteristics to those previously described 
in the literature for B. articulata and can be used as anatomical markers, serving as a basis for future studies 
of the species of the "carqueja complex" of Baccharis. 
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