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Simple Summary: Cassava (Manihot esculenta Crantz; Euphorbiaceae) plants have a long lifecycle.
They remain in the field for at least 10 months and are exposed to numerous pests. Seventeen groups
of pests that affect this crop have been identified. These include 35 species found in the Americas,
11 in Africa, and 6 in Asia, totalling approximately 200 arthropod species that feed on cassava.
Whiteflies are considered one of the main pests of cassava worldwide. In northeastern Brazil, the
most common whitefly species causing severe damage to cassava is Aleurothrixus aepim (Goeldi, 1886)
(Hemiptera: Aleyrodidae). Cassava plants emit volatile organic compounds and secrete extrafloral
nectar; these substances may be essential for developing biological control strategies against pests.
Herein, we describe variations in the blend constitution and individual concentrations of constitutive
volatile organic compounds released by two cassava genotypes. Additionally, we highlight the
activity of a monoterpene, considering that the resistant genotype emitted higher concentrations of
this compound.

Abstract: Cassava is an essential tuber crop used to produce food, feed, and beverages. Whitefly
pests, including Aleurothrixus aepim (Goeldi, 1886) (Hemiptera: Aleyrodidae), significantly affect
cassava-based agroecosystems. Plant odours have been described as potential pest management tools,
and the cassava clone M Ecuador 72 has been used by breeders as an essential source of resistance.
In this study, we analysed and compared the volatile compounds released by this resistant clone
and a susceptible genotype, BRS Jari. Constitutive odours were collected from young plants and
analysed using gas chromatography–mass spectrometry combined with chemometric tools. The
resistant genotype released numerous compounds with previously described biological activity
and substantial amounts of the monoterpene (E)-β-ocimene. Whiteflies showed non-preferential
behaviour when exposed to volatiles from the resistant genotype but not the susceptible genotype.
Furthermore, pure ocimene caused non-preferential behaviour in whiteflies, indicating a role for this
compound in repellence. This report provides an example of the intraspecific variation in odour
emissions from cassava plants alongside information on odorants that repel whiteflies; these data can
be used to devise whitefly management strategies. A better understanding of the genetic variability
in cassava odour constituents and emissions under field conditions may accelerate the development
of more resistant cassava varieties.
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1. Introduction

Cassava (Manihot esculenta Crantz; Euphorbiaceae) is a substantial source of carbohy-
drates in Latin America and Africa [1]. Despite being stigmatised as a ‘third-world crop’,
cassava has been the focus of research in critical areas such as better cultivars, resistance
to pests and diseases, and better-quality seeds, considering its importance as a food crop
and potential as a commodity in the broader economy [2–5]. Cassava is a subsistence
crop. However, it is rapidly evolving as a cash crop and raw material for the production
of starch, energy, and livestock feed in countries that are its major producers, such as
Nigeria, Thailand, Indonesia, and Brazil. It can also be used as a raw material in the baking,
food, and pharmaceutical industries [6]. Cassava is sensitive to low temperatures and is
predominantly cultivated in tropical and subtropical regions; it has been grown by millions
of small farmers in more than 100 countries [7]. This crop is well adapted to the climate and
soil conditions of these countries. For example, its cultivation is widespread throughout
Brazil [8], the fourth largest producer worldwide, with 18 million tons of cassava root
being produced annually over an area of 1.24 million hectares [8]. Cassava is grown in
different regions and has a long lifecycle; it remains in the field for at least 10 months
and is exposed to many pests. Seventeen groups of pests that affect this crop have been
identified. These include 35 species found in the Americas, 11 in Africa, and 6 in Asia,
totalling approximately 200 arthropod species that feed on cassava [9].

Whiteflies are one of the main pests of cassava worldwide, as they cause considerable
damage by piercing leaves and sucking sap, resulting in chlorosis, deformation, defoliation,
and sooty mould growth. The overall outcome of these effects is plant stunting and
a reduction in storage root yields [10–13]. The most impactful indirect damage is the
transmission of numerous plant diseases such as cassava mosaic disease (CMD) caused
by cassava mosaic geminiviruses (CMGs), one of the most devastating diseases of crops
and one of the main constraints to cassava cultivation, and cassava brown streak disease
(CBSD), a particularly devastating disease because it negatively affects the tuberous roots
of cassava, both quantitatively and qualitatively [10–13]. CMD and CBSD are the most
important cassava diseases in terms of economics, causing annual yield losses of over
USD 1 billion [13–15]. There are few chemical control options for whitefly species, and there
is little knowledge of their natural enemies. Hence, most of the limited research into whitefly
management has been exploratory and focused on potential and environmentally friendly
methods, such as biological control, crop management, and host–plant resistance [16,17]. In
the Neotropics, Aleurotrachelus socialis Bondar (Hemiptera: Aleyrodidae) and Aleurothrixus
aepim (Goeldi, 1886) (Hemiptera: Aleyrodidae) are the most devastating cassava pests [18];
in northeastern Brazil, the most common whitefly species causing severe damage to cassava
is A. aepim [19].

Plants generally have wide-reaching and highly dynamic biochemical defence mech-
anisms against herbivory, mediated by both direct and indirect pathways. Defensive
compounds are produced either constitutively or in response to plant damage, and they af-
fect herbivore feeding, growth, and survival [20–22]. Plant defence mechanisms involve the
release of volatile organic compounds (VOCs), which play essential roles in communication
between plants and other organisms [23–26]. VOCs are linked to defence against herbi-
vores and pathogens. Additionally, they are involved in the attraction of pollinators, seed
dispersers, and beneficial microorganisms, as well as in communication signals between
plants [26–29]. Fundamental processes, such as the effect of volatile compound blends
on the behaviour of specific insects, make plants attractive or repellent to herbivorous in-
sects [30,31]. Cassava plants also emit VOCs and secrete extrafloral nectar; these substances
may be essential for developing biological control strategies against pests [32,33]. For exam-
ple, Bemisia tabaci (Genn.) (Hemiptera: Aleyrodidae) can carry plant-derived detoxification
genes, which is a new evolutionary scenario whereby herbivores harness the genetic toolkit
of the host plants to develop resistance to plant defences; hence, this pest can be investi-
gated and exploited for crop protection [34]. Several cassava cultivars with varying levels
of whitefly resistance have been identified. Cassava varieties with different concentrations
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of cyanogenic glycosides are less preferred by B. tabaci whiteflies [35]. Nymph mortality
was found to be higher in the resistant cassava clone, M Ecuador 72, than in other clones.
When A. socialis and Bemisia tuberculata (Bondar, 1923) (Hemiptera: Aleyrodidae) whiteflies
fed on this genotype, they exhibited lower oviposition rates, extended developmental
periods, reduced size, and higher mortality compared to those feeding on other genotypes.
Breeding programs have used M Ecuador 72 as a source of resistance; moreover, many
resistant hybrids have been generated using this clone as the female parent [36–38]. In
this study, we investigated the role of VOCs in the resistance of M Ecuador 72 to A. aepim
whiteflies, the constitutive VOCs released by this clone and a susceptible cassava genotype,
and the influence of VOC extracts and an individual compound, (E)-β-ocimene, on whitefly
behaviour.

2. Materials and Methods
2.1. Plants

Cassava genotypes BRS Jari and M Ecuador 72 were collected from Embrapa Cassava
and Fruticulture (12◦40′48.2′′ S, 39◦05′21.1′′ W), Cruz das Almas City, Bahia State, Brazil, in
August 2018 during the dry season. The greenhouse (Van der Hoeven, Van der Hoeven
Estufas Agricolas Ltda, Artur Nogueira, SP, Brazil) growth conditions were a temperature
of 25± 2 ◦C with 70% relative humidity and a 14 h/10 h (day/night) photoperiod. All plant
materials were vegetatively propagated (stem cuts), grown in 0.5 L plastic pots containing
a commercial planting mix (Bioplant®, Bioplant Misturadora Agrícola Ltda, Nova Ponte,
MG, Brazil) substrate, and then manually watered every 1 or 2 days when necessary until
they reached an age of 40–45 days, the stage of VOC extraction, and had 6–7 leaves.

2.2. Insects

Adult whiteflies (A. aepim) undifferentiated by sex were collected from a cassava plan-
tation located in the municipality of Rio Largo, State of Alagoas, Brazil, at the geographical
coordinates of 9◦31′50.1′′ S 35◦48′1.3′′ W. After collection from the field, the insects were
sent to the laboratory, where they were identified, for behavioural bioassays. They were
kept in small glass tubes in an air-conditioned room at 25 ± 2 ◦C and 70% ± 10% relative
humidity (RH). The species was identified by PCR amplification of a partial mtDNA COI
gene and sequence comparison using BLASTN searches against a nonredundant DNA
database in GenBank (MT541892).

2.3. Dynamic Headspace Collection

Cassava plants were maintained in cages without whitefly infestation. VOCs were
collected using sterile plastic cooking bags (Qualitá cooking bags composed of polyester
[poly(ethylene terephthalate) or PET], 27 × 41 cm, max 200 ◦C [RMBPACK Machines
and Packaging Ltd., Colombo, PR, Brazil]). After cooking, identical precleaned polyester
bags were opened and baked in an oven (100 ◦C) for 2 h. The bags were inflated with
clean air and subsequently deflated (thrice) to remove any residual contamination, and
the VOCs were collected using a push–pull system. Six cassava plants in six identical
precleaned plastic bags were used for each extraction. The VOCs were trapped on a
Porapak Q (50/80 mesh, 0.05 g, Supelco Inc., Bellefonte, PA 16823, USA). The absorbent
was placed in a glass tube and inserted at the top of the bag. Air was filtered through
activated charcoal and then pumped into the plastic bag at a flow rate of 600 mL/min per
plant before being collected at a flow rate of 400 mL/min. After the collection was complete,
the trapped VOCs were desorbed with 500 µL of double-distilled hexane (HPLC grade),
and the samples were stored at −20 ◦C until analysis and bioassay. The samples were
collected in the laboratory for 60 h.

2.4. Gas Chromatography–Mass Spectrometry (GC-MS) Analysis

The volatile extracts were analysed by coupled GC–MS (mass spectrometry) us-
ing a GCMSQP 2010 Ultra instrument (Shimadzu, Kyoto, Japan), fitted with a gas
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chromatograph (column specifications: 30 m × 0.25 mm i.d., film thickness 0.25 µm,
J & W Scientific, Santa Clara, CA, USA). Helium was used as the carrier gas at a flow rate
of 1 mL/min. The samples were injected into a splitless injector at the temperature of
200 ◦C with the injections of 1 µL being performed in splitless mode. The oven temper-
ature was programmed to start at 50 ◦C for 5 min before rising to 250 ◦C at a rate of
5 ◦C/min, with a final hold time of 5 min and a 50 min total run time. Electron impact
ionisation was conducted at 70 eV, with the temperature of the ion source and detector set at
200 ◦C. The interface temperature was 250 ◦C, whereas the recorded fragmentation values
were scanned from 35 to 300 m/z. Plant VOCs were identified by analysing their mass
spectra and comparing them with those in the NIST 08 library and then those of authentic
standards (ocimene mix of isomers, trans-caryophyllene, and farnesol; Sigma-Aldrich, St.
Louis, MO, USA). The compounds were quantified based on the peak area relative to the
internal standard (nonacosane) provided by Sigma-Aldrich. Each treatment employed
six replicates.

2.5. Olfactometer Assays
2.5.1. Y-Tube Olfactometer

A Y-tube olfactometer comprising a glass tube with 1.5 cm internal diameter and
Y-section arms with lengths of 7.5 cm was used in the horizontal position. The angle
between the two Y branches was 60◦, whereas each arm of the ‘Y’ was 15 cm from the
junction. Purified air was drawn through each unit to the central arm at a flow rate of
50 mL/min.

2.5.2. Odour Treatments

The olfactory response of the whiteflies was investigated using VOC extracts in hexane
(genotypes: BRS Jari and M Ecuador 72) and at concentrations of 0.3, 3, 300, and 3000 ng/µL
(E)-β-ocimene, a compound found at higher levels among VOCs of the resistant genotype.
This procedure was similar to that described in previous reports [39,40]. Before performing
the behavioural bioassays, the field-collected whiteflies were left to settle for 2 h. All
doses of (E)-β-ocimene were prepared by diluting them in appropriate amounts of double-
distilled hexane (HPLC grade). Aliquots (10 µL) of each solution were used for testing.
Each sample to be tested was added to a filter paper (1.5 × 1 cm) and then placed in one of
the arms, and an aliquot of double-distilled HPLC-grade hexane (10 µL) was added to a
similar filter paper and placed in the other arm. Therefore, one arm was used to release the
treatment for each experiment, and the other was used as a solvent control. The solvent
was evaporated from the filter paper for 30 s before commencing the experiments.

After the airflow began, one adult whitefly was introduced into the olfactometer for
30 s. The choice was made when the whitefly crossed half the arm’s length of the odour
source or control. A ‘no-choice’ decision was made if the whitefly did not move for 5 min.
Each piece of filter paper was used only once and replaced with a new piece for each insect.
Every insect was used only once in the experiments. The sides on which the treatment and
control groups were presented were swapped to avoid positional bias. The olfactometer
was replaced after three whiteflies were tested. Each treatment group consisted of at least
30 adult whiteflies.

2.6. Chemometric Analysis

The data acquired for analysis were processed using GCMSsolution workstation
software, and the chromatograms were aligned. The metabolic profile data were organised
in a spreadsheet (Microsoft Excel 2021, Version 365) in which the identified compounds
were arranged in columns and sample names in rows, forming a data matrix. The peak
areas of the VOCs obtained from the chromatograms were then normalised to the sum
treated on the cube root transformation scale, which transformed the response variable
from y to y1/3. This provided a better normal distribution of the data. The data were also
scaled according to the Pareto scale using MetaboAnalyst 4.0. Multivariate chemometric
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analyses, including partial least squares–discriminant analysis (PLS-DA) and orthogonal
projections to latent structure–discriminant analysis (OPLS-DA), were performed, and heat
maps and hierarchical cluster analysis (HCA) graphs were constructed. The procedure was
repeated several times to calculate the performance and confidence intervals of each model.
The analyses were performed using MetaboAnalyst 5.0, a web-based tool, according to the
protocols provided in the literature [41].

2.7. Statistical Analysis

The cassava volatiles from both genotypes were analysed using the Kolmogorov–
Smirnov and Shapiro–Wilk normality tests, and since they were not normalised, they
were subjected to the Wilcoxon–Mann–Whitney test (p < 0.05). The behavioural bioas-
say responses were analysed using the chi-square test, considering significance levels of
p < 0.05 or p < 0.01. Analyses were performed using the GENES software [42].

3. Results
3.1. Different Genotypes Constitutively Express Different VOC Blends

Analyses of the VOC emission profiles of M Ecuador 72 (resistant) and BRS
Jari (susceptible) (Figure 1) revealed a variety of compounds from different chemical
classes and functions, such as terpenes, alkanes, branched alkanes, alkenes, ketones, alde-
hydes, and alcohols. Twenty-five volatile compounds were detected using GC-MS, of
which twelve were exclusive to M Ecuador 72 and five to BRS Jari (Table 1).
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Figure 1. Gas chromatography–mass spectrometry analyses of volatile extracts collected from cassava
plants (A) M Ecuador 72 (Resistant) and (B) BRS Jari (Susceptible). Volatiles were collected for 60 h
using Porapak Q as an adsorbent.

M Ecuador 72 produced 22 compounds, whereas BRS Jari produced 15 compounds.
The common compounds were n-alkanes (C15–C16), (E)-β-ocimene (4), linalool (6), (E)-
caryophyllene (17), and methyl salicylate (10). Some compounds, namely, 4-octen-3-one
(2), 3-ethylacetophenone (12), dodec-1-ene (11), tetradec-1-ene (16), farnesol (24), and (Z)-
β-ocimene (3), were exclusively found in M Ecuador 72 (Table 1) and may have been
responsible for the better resistance of this genotype to whiteflies. Compared with BRS Jari,
M Ecuador 72 produced significantly more (E)-β-ocimene (4). After 60 h of collection, this
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compound had a concentration of 250.20 ng per plant in M Ecuador 72 and 105.43 ng per
plant in BRS Jari.

Table 1. Compounds from the cassava genotypes M Ecuador 72 (resistant to whiteflies) and BRS
Jari (susceptible to whiteflies). Each compound was quantified using nonacosane internal standards
(mean ± SE in ng/µL) with the Wilcoxon–Mann–Whitney test, p < 0.05.

No Compounds RI M Ecuador 72 (ng/µL) BRS Jari (ng/µL)

1 4-Methyl-octane 857 26.02 ± 11.64 -
2 4-Octen-3-one 958 19.47 ± 8.73 -
3 (Z)-β-ocimene 1044 18.33 ± 8.20 -
4 (E)-β-ocimene 1046 250.20 ± 32.29 a 105.43 ± 16.98 b

5 5-Ethyl-2-methyl-octane 1052 27.43 ± 12.78 a 58.80 ± 11.76 a

6 Linalool 1094 21.04 ± 9.41 a 27.26 ± 8.71 a

7 2,6 Dimethyl-decane 1129 - 26.83 ± 12.89
8 5-Butyl-nonane 1152 19.28 ± 8.62 -
9 5-Methyl-undecane 1153 18.61 ± 8.32 a 22.48 ± 10.55 a

10 Methyl salicylate 1188 39.35 ± 8.32 a 21.35 ± 9.56 a

11 Dodec-1-ene 1193 19.29 ± 8.62 -
12 3-Ethylacetophenone 1281 22.42 ± 10.03 -
13 Tridecane 1300 18.59 ± 8.31 -
14 4,6-Dimethyl-dodecane 1321 26.84 ± 12.00 -
15 Cyclododecane 1328 18.60 ± 8.31 -
16 Tetradec-1-ene 1393 24.75 ± 7.82 -
17 (E)-β-caryophyllene 1417 38.16 ± 0.58 a 28.94 ± 9.71 a

18 Pentadecane 1500 33.28 ± 10.96 a 33.79 ± 13.01 a

19 Hexadec-1-ene 1586 18.76 ± 8.39 a 19.86 ± 8.90 a

20 Hexadecane 1600 20.20 ± 9.04 a 29.97 ± 15.92 a

21 Cyclotetradecane 1671 18.88 ± 8.44 -
22 Heptadec-3-ene 1676 - 42.25 ± 9.54
23 Heptadecane 1700 - 25.21 ± 12.44
24 Farnesol 1719 18.96 ± 8.47 -
24 Octadecane 1800 26.45 ± 8.39 a 20.25 ± 9.07 a

25 Phytane 1811 - 28.12 ± 9.31
26 Heneicosane 2100 - 25.68 ± 8.15

The amounts were calculated based on an internal standard (nonacosane). Means followed by different letters are
significantly different according to the Wilcoxon–Mann–Whitney test (p < 0.05).

3.2. Behavioural Responses of Whiteflies to Volatiles Emitted by Two Cassava Genotypes

The results obtained in the behavioural bioassays showed that the whiteflies pre-
ferred the control odour (hexane) to the extract from the resistant genotype, M Ecuador
72 (Figure 2). The VOCs from M Ecuador 72 exhibited significantly more repellent activity
(χ2 = 11.00; p < 0.01, N = 30) than those from BRS Jari (χ2 = 3.24; p > 0.05, N = 30) against
the same control (hexane). We also tested the repellent activity of a series of (E)-β-ocimene
(4), the main VOC in the resistant genotype. The flies showed the greatest preference for
the control arm (χ2 = 4; p = 0.0455) in the bioassay with 300 ng of the standard compound.
The Y-tube olfactometer results also demonstrated that the resistant genotype exhibited
repellent activity against A. aepim whiteflies (p < 0.000911). Considering its high emission
rates, we also tested pure (E)-β-ocimene (4) in the same bioassay. Our results showed that
(E)-β-ocimene (4) was avoided by the whiteflies tested, suggesting that it may be one of the
main active components responsible for the repellent activity of M Ecuador 72.
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Figure 2. Behavioural response of Aleurothrixus aepim whiteflies in a Y-olfactometer to VOCs collected
for a period of 60 h and to (E)-β-ocimene. Experiments 1 and 2 employed BRS Jari and M Ecuador
72 extracts. For Experiments 3–6, doses of 3, 30, 300, and 3000 ng of (E)-β-ocimene (4) standard were
used. Data were analysed using GENES software (* p < 0.05; ** p < 0.01).

3.3. Comparative Analysis of the VOC Profiles of M Ecuador 72 and BRS Jari

The OPLS-DA score; S-Plot; VIP score (Figure 3) showed differences between the
profiles of the VOCs emitted by the two genotypes over a period of 60 h of analysis;
there was a clear distinction between the samples from both genotypes in the two groups.
Samples of M Ecuador 72 exhibited negative values (red) for component 2. Samples of
BRS Jari exhibited positive values (green) for the same component. OPLS-DA models
were constructed to identify the VOCs responsible for the distinction between the two
genotypes. The OPLS-DA score graph (Figure 3a) explained 35.9% of the total variance
and showed that the genotypes behaved differently with regard to the biosynthesis and
emission of metabolites in non-infested plants. The values of the quality parameters for the
model were satisfactory (R2Y = 0.82 and Q2 = 0.607), suggesting a statistically significant
difference between the metabolic profiles of the analysed samples. The S-plot dispersion
graph (Figure 3b) also showed the variables responsible for the group separation observed
in the score graph. The compounds that characterised the resistant genotype (M Ecuador
72) were located on the negative axis. On the positive axis were metabolites related to
the susceptible genotype (BRS Jari). The VIP score (Figure 3c) corroborated the results
obtained from the OPLS-DA S-plot, which presented the VOCs with repellent activity
already reported in the literature [43–46]. The monoterpene (E)-β-ocimene (4) and the
hydrocarbons tetradec-1-ene (16) and hexadec-1-ene (19) were the most abundant in the
samples of the resistant genotype and were highlighted as biomarker candidates for its
resistance.



Insects 2023, 14, 762 8 of 14
Insects 2023, 14, x FOR PEER REVIEW 8 of 14 
 

 

 
(a) 

 
(b) 

Figure 3. Cont.



Insects 2023, 14, 762 9 of 14Insects 2023, 14, x FOR PEER REVIEW 9 of 14 
 

 

 
(c) 

Figure 3. Graphs obtained from a comparative analysis of the volatiles collected from non-infested 
plants of the M Ecuador 72 (resistant to whiteflies) (red) and BRS Jari (susceptible to whiteflies) 
(green) genotypes during a period of 60 h: (a) OPLS-DA score; (b) S-Plot; (c) VIP score. 

4. Discussion 
Plants have been reported to produce and release VOCs into the environment in re-

sponse to herbivory [47]; such emissions can help ward off herbivores by attracting their 
natural enemies [31,48,49]. Plants that emit VOCs can protect neighbouring crops belong-
ing to the same or different species by communicating through VOC receptors [50–52]. 

Herein, we described variations in the blend constitution and individual concentra-
tions of VOCs released by two cassava genotypes. The genotype M Ecuador 72 has been 
described as highly resistant to B. tabaci, A. socialis, and B. tuberculata [36,53,54]. Such re-
sistance has been explained based on insect biology and behavioural parameters, such as 
the higher nymphal development time, lower survival rate, and smaller size of B. tubercu-
lata [37], as well as the lower oviposition rates, reduced size and fecundity, and higher 
mortality of A. socialis, compared to those of other insects [36,53]. The higher mortality 
and extended development time of the immature phase of A. aepim have previously been 
observed in M Ecuador 72 [55]. However, the role of the metabolites involved in the re-
sistance of this genotype to whiteflies has received little attention, and studies on the ef-
fects of these metabolites on insect behaviour and biology are lacking. Cassava is a com-
mercial crop that exhibits resistance to whiteflies [53,56]; therefore, understanding the 
mechanisms and sources of such resistance is essential for whitefly management. The bi-
ology of whiteflies in their interaction with M Ecuador 72 suggests the involvement of 
semiochemicals. However, the ecological role of VOCs in cassava has rarely been ex-
plored. In this study, M Ecuador 72 was found to release a higher number of compounds 
and at a higher intensity than the BRS Jari genotype (Figure 1), as observed in different 
maize varieties. These genotypes also demonstrated intraspecific variations in odour qual-
ity and quantity [57]. The VOC blend from M Ecuador 72 plants showed a higher number 
of compounds with reported biological activity in other systems, such as linalool, farnesol, 
dodec-1-ene, 1-tetradec-1-ene, hexadec-1-ene, pentadecane, and 3-ethylacetophenone, in 

Figure 3. Graphs obtained from a comparative analysis of the volatiles collected from non-infested
plants of the M Ecuador 72 (resistant to whiteflies) (red) and BRS Jari (susceptible to whiteflies) (green)
genotypes during a period of 60 h: (a) OPLS-DA score; (b) S-Plot; (c) VIP score.

4. Discussion

Plants have been reported to produce and release VOCs into the environment in
response to herbivory [47]; such emissions can help ward off herbivores by attracting their
natural enemies [31,48,49]. Plants that emit VOCs can protect neighbouring crops belonging
to the same or different species by communicating through VOC receptors [50–52].

Herein, we described variations in the blend constitution and individual concentra-
tions of VOCs released by two cassava genotypes. The genotype M Ecuador 72 has been
described as highly resistant to B. tabaci, A. socialis, and B. tuberculata [36,53,54]. Such
resistance has been explained based on insect biology and behavioural parameters, such as
the higher nymphal development time, lower survival rate, and smaller size of B. tuber-
culata [37], as well as the lower oviposition rates, reduced size and fecundity, and higher
mortality of A. socialis, compared to those of other insects [36,53]. The higher mortality and
extended development time of the immature phase of A. aepim have previously been ob-
served in M Ecuador 72 [55]. However, the role of the metabolites involved in the resistance
of this genotype to whiteflies has received little attention, and studies on the effects of these
metabolites on insect behaviour and biology are lacking. Cassava is a commercial crop
that exhibits resistance to whiteflies [53,56]; therefore, understanding the mechanisms and
sources of such resistance is essential for whitefly management. The biology of whiteflies in
their interaction with M Ecuador 72 suggests the involvement of semiochemicals. However,
the ecological role of VOCs in cassava has rarely been explored. In this study, M Ecuador
72 was found to release a higher number of compounds and at a higher intensity than the
BRS Jari genotype (Figure 1), as observed in different maize varieties. These genotypes
also demonstrated intraspecific variations in odour quality and quantity [57]. The VOC
blend from M Ecuador 72 plants showed a higher number of compounds with reported
biological activity in other systems, such as linalool, farnesol, dodec-1-ene, 1-tetradec-1-ene,
hexadec-1-ene, pentadecane, and 3-ethylacetophenone, in addition to the monoterpene
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(E)-β-ocimene. Varietal and genotypic differences in herbivore-induced plant volatiles
(HIPVs) have been widely reported [58–61]. Constitutive VOCs play an essential role in
plant defence by attracting natural enemies of pests as part of the systemic defence response.
Herein, we have highlighted the constitutive variation in the VOC profiles of M Ecuador 72
and a susceptible genotype, BRS Jari. The latter emits volatile compounds such as phytane,
heneicosane, and heptadecane, similar to healthy Rosa chinensis Jacq. plants, which easily
contract powdery mildew [62]. Furthermore, the heneicosane and other long-chain alkanes
found in this cultivar are attractive to Callosobruchus maculatus (Fabricius) (Coleoptera:
Bruchidae), a critical seed pest of Lathyrus sativus L. [63], which can be connected to the
susceptibility of this cultivar to whiteflies. Plant VOCs are essential for parasitoids and
predators to locate hosts [31]. For example, dodecene attracts the parasitoid Chouioia cunea
Yang to control the pupae of the fall webworm, Hyphantria cunea (Drury) [64], whereas
tetradecane and hexadecene have been found in the faecal odours of the larvae of the
stored grain pest, Tribolium confusum du Val (Insecta: Coleoptera: Tenebrionidae), which
attracts the parasitoid Holepyris sylvanidis (Hymenoptera: Bethylidae) [65]. Caragana or-
dosica (Fabaceae) emits pentadecane and other compounds that repel the insect Chlorophorus
caragana (Coleoptera: Cerambycidae) [66]. 3-Ethylacetophenone is a VOC in aphid-infested
plants that attracts the adult multi-coloured Asian lady beetle, Harmonia axyridis (Pallas,
1773) (Coleoptera: Coccinellidae) [67]. The sesquiterpene, farnesol, emitted by Lantana
plants, acts as a synomone (produced and released by one species that benefits the emitter
and receiver) to attract an omnivorous predator, Campylomma chinensis Schuh (Hemiptera:
Miridae), which has considerable potential to suppress whiteflies [68]. Farnesol attracts
natural enemies of pests and has the potential to act as a repellent against Myzus persicae
(Sulzer) (Hemiptera: Aphididae) [69–71]. Further studies are necessary to investigate the
roles of farnesol and linalool in cassava plants. One strategy for the Integrated Pest Man-
agement (IPM) of whiteflies is to maintain the level of infestation below a certain economic
threshold [72]. Therefore, the identification of genotypes with repellent activity could be a
component of a more efficient IPM strategy.

In this study, we examined the activity of a monoterpene, given that this compound
was emitted in higher concentrations by the resistant genotype. The repellent properties
of M Ecuador 72 against A. aepim may have been a result of the individual actions of
one or more VOCs. (E)-β-ocimene acted as a repellent when tested individually. It is
a standard VOC released from the leaves and flowers of many plants [73] and can play
several biological roles by potentially mediating defensive responses to herbivory. As an
indirect defence mechanism, (E)-β-ocimene has been described as a chemical cue for natural
enemies of phytophagous insects, including parasitoids and predators [72]. Pre-exposure
to the natural compound, Z-jasmone, induces the emission of (E)-β-ocimene in Chinese
Cabbage (Brassica pekinensis Skeels) [43]. Bioassays have confirmed the attraction of the
parasitoid Aphidius ervi Haliday, 1834 to the (E)-β-ocimene standard [72]. This compound
also exhibits critical biological activity in plant–plant interactions. Exposure of Arabidopsis
thaliana (L.) Heynh plants to a blend of ocimene volatiles triggers defence responses via
signalling hormone pathways, such as the methyl jasmonate pathway [74]. When B.
pekinensis was treated with (E)-β-ocimene, both direct and indirect defence responses
were induced [43]. In that study, the growth and reproduction of the aphid M. persicae
were directly and significantly affected by the accumulation of defence-related metabolites.
Moreover, the parasitoid Aphidius gifuensis Ashmead, 1906 showed a preference for treated
plants and, in terms of olfaction and landings, performed more successfully on treated
plants than on healthy plants [43]. Ocimene is a monoterpene found in nature, and (E)-
β-ocimene is known to exhibit anticonvulsant, antifungal, antitumor, and pest-resistant
properties [75]. Medical cannabis has a high ocimene content. [76]. Brassica pekinensis
plants treated with ocimene negatively influence the feeding behaviour of M. persicae. In
addition, ocimene increases attraction from the parasitoid Aphidius gifuensis (Hymenoptera:
Braconidae) [43,45]. The results of behavioural bioassays using tea plants (Camellia sinensis
cv. Shuchazao) demonstrated that (E)-β-ocimene strongly repelled mated Ectropis obliqua
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(Prout, 1915) (Lepidoptera: Geometridae) females [46]. Ocimene is an acyclic compound
that, in addition to its biologically attributed functions in plant protection, affects floral
visitors and pest resistance by mediating defensive responses to herbivory. (E)-β-ocimene
is a crucial plant VOC with multiple functions in plants, depending on the organ and time
of emission, and plays relevant roles in establishing tri-trophic interactions.

The results of the Y-tube olfactometer assay in this study revealed that A. aepim
whiteflies showed non-preferential behaviour toward the extracts of the resistant genotype
but not those of the control. Similar results were obtained previously; several celery
varieties displayed strong repellence against B. tabaci, and (E)-β-ocimene was identified as
one of their main active compounds [41]. Most studies to date have focused on the attractive
properties of HIPVs rather than on the repellence activity of plant VOCs [77]. In the push–
pull strategy, the pest is repelled or deterred (pushed). Herein, we have demonstrated
the non-preferential response to the resistant cassava clones and suggested exploring the
potential of the constitutive VOCs based on genetic variability. Plant breeding may impair
beneficial interactions involved in VOC-mediated protection. Teosintes (wild maize species)
show higher resistance to many pests than cultivated maize [66,67]. Quantitative and
qualitative evaluation of 31 inbred maize lines indicated high levels of odour variability [78].
Additionally, 25 landraces, 30 hybrids, and 22 inbred maize lines were screened for HIPV
emissions after oviposition and activity in the egg parasitoid, Cotesia sesamiae (Cameron)
(Hymenoptera: Braconidae) [78]. The authors found high variability, especially among
landraces, and suggested that the introgression of such traits into commercial varieties
occurred because of their high protection potential.

The difference between the constitutive VOCs from the cassava genotypes selected
for this study suggests that further investigation of the variability in odours from cassava
genotypes and the verification of VOC emissions under field conditions are necessary.
The judicious use of insecticide is required to manage pests and vectors, and we have
shown that constitutive VOCs from cassava plants could serve as a component of IPM for
whiteflies, specifically A. aepim.
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