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Abstract: An oil palm (Elaeis guineensis Jacq.) bud rod disorder of unknown etiology, named Fatal

Yellowing (FY) disease, is regarded as one of the top constraints with respect to the growth of the

palm oil industry in Brazil. FY etiology has been a challenge embraced by several research groups

in plant pathology throughout the last 50 years in Brazil, with no success in completing Koch’s

postulates. Most recently, the hypothesis of having an abiotic stressor as the initial cause of FY has

gained ground, and oxygen deficiency (hypoxia) damaging the root system has become a candidate

for stress. Here, a comprehensive, large-scale, single- and multi-omics integration analysis of the

metabolome and transcriptome profiles on the leaves of oil palm plants contrasting in terms of FY

symptomatology—asymptomatic and symptomatic—and collected in two distinct seasons—dry

and rainy—is reported. The changes observed in the physicochemical attributes of the soil and

the chemical attributes and metabolome profiles of the leaves did not allow the discrimination of

plants which were asymptomatic or symptomatic for this disease, not even in the rainy season,

when the soil became waterlogged. However, the multi-omics integration analysis of enzymes and

metabolites differentially expressed in asymptomatic and/or symptomatic plants in the rainy season

compared to the dry season allowed the identification of the metabolic pathways most affected by

the changes in the environment, opening an opportunity for additional characterization of the role

of hypoxia in FY symptom intensification. Finally, the initial analysis of a set of 56 proteins/genes

differentially expressed in symptomatic plants compared to the asymptomatic ones, independent

of the season, has presented pieces of evidence suggesting that breaks in the non-host resistance

to non-adapted pathogens and the basal immunity to adapted pathogens, caused by the anaerobic

conditions experienced by the plants, might be linked to the onset of this disease. This set of genes

might offer the opportunity to develop biomarkers for selecting oil palm plants resistant to this

disease and to help pave the way to employing strategies to keep the safety barriers raised and strong.

Keywords: bud rot; hypoxia; molecular plant biology; pathogen; palm oil; fatal yellowing; molecular

mechanisms; transcriptomics; metabolomics; multi-omics; non-host resistance; immunity

1. Introduction

Throughout the last decade, oil palm (Elaeis guineensis Jacq.) has been the source of
the most consumable vegetal oils on the planet [1]. Palm oil and palm kernel oil increased
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in consumption from 64 to approximately 85 million metric tons between the 2013/14
and 2022/23 seasons. In the top oil palm production countries, the palm oils yield an
average of four metric tons per hectare, far better than soybean, canola, peanuts, and other
known oilseed crops in terms of oil yield [2,3]. Indonesia, Malaysia, Nigeria, Thailand, and
Colombia are the top five countries in the world in terms of oil palm harvested area [3].

Brazil has about 200,000 hectares harvested with oil palm nowadays, even though
there are over seven million hectares of preferential area for oil palm cultivation in the so-
called Legal Amazon Area, an area of more than five million square kilometers comprising
nine states, and larger than the Amazon biome itself [4]. In 2010, a Sustainable Palm
Oil Production Program was launched that aimed to strengthen the palm oil industry in
the country. Such program had as guidelines: (a) the protection of the environment, the
conservation of biodiversity, and the rational use of natural resources; (b) the respect for
the social function of property; (c) the expansion of oil palm cultivation exclusively in
areas already occupied by man; (d) encouraging cultivation to recover degraded areas; (e)
social inclusion; and (f) the environmental regularization of rural properties [5]. More than
a decade after launching that program, the problem of FY study is very real, especially
in Brazil.

A closer look at the reasons behind the failure to succeed in this endeavor will reveal
a complex and multi-factor scenario where the Fatal Yellowing (FY) disease, a bud rod
disorder of unknown etiology, is one of the top constraints affecting the growth of the oil
palm industry in the country [6]. FY symptoms initiate with the yellowing of the leaflets at
the base of the intermediate leaves and progress to necrosis of the edges, which spreads to
the other leaves. Subsequently, necrosis and dryness of the spear leaf occur, which evolves
towards the meristem region, causing decay and culminating in the death of the oil palm
plant. Generally, symptoms progress to oil palm death in a few months (acute form) to
three years (chronic) [7,8].

The etiology of FY has been a challenge embraced by several research groups in
plant pathology throughout the last 50 years, with no success in completing Koch’s third
postulate—inoculation of a healthy plant with the cultured microorganism must recapit-
ulated the disease [6]. Furthermore, the exponential growth of cases and the undefined
pattern of spread of the disease weaken a possible biotic primary cause [9]. Most recently,
the hypothesis of having an abiotic stressor as the initial cause of FY has gained ground [6].
Silveira et al. [10] showed surface compaction of the soils in the area where FY occurs. This
condition can lead to soil saturation with water where oxygen deficiency (hypoxia) possibly
damages the root system. An imbalance of nutrients such as Copper, Iron, Manganese, and
Zinc has been suggested as a possible cause [11]. Silveira et al. [10] found that the evolution
of FY symptoms was more pronounced when there was a reduction in Boron and Copper
in the soil. On the other hand, the application of iron sulfate in the study conducted by
Viégas et al. [11] ruled out Fe deficiency being involved. Muniz [12] reaffirms the same,
and also observed that poor aeration reduces the redox potential of the soil, increasing the
concentration of reduced ions, such as Fe3+, NO3+; Mn3+, predisposing oil palm to toxicity
(abiotic effect) and leaving it vulnerable to opportunistic pathogen attacks (biotic effect).

Recent studies using single omics analysis (SOA), such as genomics/meta-genomics,
transcriptomics/meta-transcriptomics, proteomics/meta-proteomics, metabolomics, epige-
nomics, ionomics, and phenomics, have shown that these new techniques can take the
etiological studies regarding FY in oil palm to another level [13–15]. Costa et al. [13] used
a metagenomics approach to rule out the hypothesis that Phytophthora palmivora could
be the causal agent of FY in Brazil, as has been shown to be the case for Pudricion del
Cogollo in Colombia, a disease characterized by the rotting of all the new tissues, pre-
serving the leaves that were formed before infection. This oomycetes is responsible for
the first symptoms, and opens doors for several opportunistic pathogens that promote
the intensification of the rotting [16,17]. Rodrigues-Neto et al. [14] applied untargeted
metabolomics analysis to characterize the leaves of FY asymptomatic and symptomatic oil
palm plants, and identified two metabolites (glycerophosphorylcholine and 1,2-dihexanoyl-
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sn-glycero-3-phosphoethanolamine) with no known direct relation to plant stress, and
which are presented as potential biomarkers. Nascimento et al. [15], used a proteomics
approach to describe protein alterations associated with FY in oil palm roots, and found
enzymes that suggested an anaerobic condition before or during FY. According to [15],
their finding suggests that changes in abiotic factors may precede the occurrence of FY,
paving the way for opportunistic pathogens.

In the present study, we carried out a comprehensive, large-scale, single- (SOA) and
multi-omics integration (MOI) analysis of the metabolome and transcriptome profiles on the
leaves of oil palm plants contrasting in terms of FY symptomatology—asymptomatic and
symptomatic—and collected in two distinct seasons—dry and rainy. We also performed
an analysis of leaf chemical and soil physicochemical composition. The initial goals of
such a study were to obtain insights into the possible occurrence and role of oxygen
deficiency (hypoxia) in the onset of FY and to search for molecular symptoms (gene- and
metabolic pathway-based) that could reveal opportunities for genetic control of this disease
of unknown etiology.

2. Results

2.1. Soil Physicochemical and Leaf Chemical Analysis

In Figure 1, to facilitate the understanding, a design of this study is presented. Figure 2
and Table S2 summarize the results of the ionomics analysis of the soil and oil palm leaves
collected in the dry period (DP) and wet period (WP). Asymptomatic and symptomatic
plants were compared within each period and between periods.

tt

 

≤

ff ≤
tt ≤

≤

Figure 1. Experimental design for sample collection, and the general work-flow of the strategy of the

analysis carried out in four scenarios—symptomatic vs. asymptomatic in the dry period; symptomatic

vs. asymptomatic in the wet period; wet vs. dry period in symptomatic plants; and wet vs. dry in

asymptomatic ones.

In the soil, Carbon, Chlorine, Sodium, Phosphorus, and Zinc showed significant
differences (p ≤ 0.05) between FY asymptomatic and symptomatic plants in the DP, with
all showing reduced values in the DP. In soils sampled in the WP, only Calcium and Zinc
showed significant differences p ≤ 0.05), with increased amounts in the symptomatic plants.
Soil organic matter and pH showed significant (p ≤ 0.05) lower values in samples from
symptomatic plants in the DP but not in the WP. On the other hand, cationic exchange
capacity, acidity, and clay showed significant (p ≤ 0.05) lower values in soil samples from
symptomatic plants. Finally, Ca/CEC (cation-exchange capacity) and K/CEC showed
higher values in soil samples from symptomatic plants.
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Figure 2. Physical–chemical characteristics of the soil (A) and chemical from the leaves (B) of FY

asymptomatic and symptomatic oil palm plants sampled in two time-points: Dry period—DP and

Wet period—WP. The ns means non-significant. The asterisks indicate a significant difference between

the two groups (t-test). * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** p ≤ 0.0001.

When comparing the soil samples collected in DP and WP conditions, K, Ca, Cu, Fe,
Mn, Zn, Na, Al, pH, CEC, OM, silt, and clay showed significantly distinct values (p ≤ 0.05).
K, Cu, Mn, Zn, Al, OM, and silt showed higher values in WP conditions, while Ca, Fe, Na,
pH, CEC, and clay showed lower values in that condition (Figure 2 and Table S2).

In the case of the leaves from FY asymptomatic and symptomatic oil palm plants in
the DP, only Phosphorus and Iron showed significantly distinct values (p ≤ 0.05), lower in
the latter plants. Meanwhile, Calcium was the only element showing a different (and lower)
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value in the symptomatic plants in the WP. When comparing the leaf samples collected in
DP and WP conditions, N, P, K, Mg, Cl, Cu, and Mn showed significantly distinct values
(p ≤ 0.05), with N, Mg, and Mn being lower in WP, and P, K, Cl, and Cu higher (Figure 2
and Table S2).

A principal component analysis (PCA) was performed, revealing the clustering of
micro- and macro-nutrients from soil and leaf samples, as well as soil complex and gran-
ulometry, accordingly to the collection period (Figure 3). When performing PCA within
each period, no clustering of FY asymptomatic and symptomatic plant groups appeared
(Figure S1).

≤

 

− −

ff

ff

≤ ff

ff
≤

Figure 3. Principal component analysis (PCA) of the micro− and macro−nutrients from soil (A) and

leaves (B), assorted complex (C) and granulometry (D) including all samples of FY asymptomatic

and symptomatic oil palm plants sampled in Dry and Wet period.

2.2. Metabolomics Analysis

The Statistical Analysis module of the MetaboAnalyst 5.0 returned 1924, 576, 2469,
and 272 peaks for the positive and negative polar and lipidic fractions, respectively, when
using the dry period (DP) samples. There were 29 peaks differentially expressed in the
positive polar fraction, and 22 in the negative polar fraction. Regarding the lipidic fractions,
29 and 9 were differentially expressed in the positive and negative ones, respectively.
Accordingly to the Functional Analysis module of the MetaboAnalyst 5.0, 89 differentially
expressed peaks are below the minimal number for functional interpretation using the
combined meta-analysis of the mummichog and GSEA pathways. However, when using
false discovery rate (FDR) ≤ 0.06, the number of differentially expressed peaks rose to 121,
above the minimal number necessary for the functional interpretation analysis. In this case,
it was possible to identify 15 differentially expressed metabolites (DEMs) with FDR ≤ 0.05
(Table 1).
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Table 1. List of metabolites identified in the leaves of oil palm affected by fatal yellowing in the dry

period, after submitting the differentially expressed (DE) peaks to the pathway topology analysis

module in MetaboAnalyst 5.0. FDR: False Discovery Rate; FC: Fold Change.

Query
Mass

Matched
Compound

Matched Form Mass Diff Compound Name Log2(FC) FDR Profile

792.12440 C00024 M-H2O+H[1+] 1.95 × 10−3 Acetyl-CoA −5.37 0.0004 Down

742.22112 C03541 M+K[1+] 2.18 × 10−3 THF-polyglutamate −5.17 0.0012 Down

293.21349 C06427 M-H+O[-] 1.28 × 10−3 alpha-Linolenic acid −1.11 0.0026 Down

312.16523 C16448 M-C3H4O2+H[1+] 1.43 × 10−3 Dihydrozeatin-O-glucoside 1.93 0.0111 Up

836.28348 C05275 M-HCOOK+H[1+] 2.18 × 10−3 trans-Dec-2-enoyl-CoA −2.53 0.0220 Down

409.38261 C01054 M-H2O+H[1+] 2.33 × 10−4 (S)-2,3-Epoxysqualene −4.13 0.0305 Down

425.37851 C22116 M-HCOOH+H[1+] 6.34 × 10−4 3beta-Hydroxy-4beta −2.62 0.0305 Down

309.20812 C04785 M-H[-] 9.86 × 10−4
(9Z,11E,15Z)-(13S)-

Hydroperoxyoctadeca-
9,11,15-trienoate

−1.33 0.0346 Down

361.20077 C18016 M+HCOO[-] 7.15 × 10−4 3beta-Hydroxy-9beta-pimara-
7,15-diene-19,6beta-olide

−1.20 0.0346 Down

426.38263 C22121 M(C13)+H[1+] 1.45 × 10−3 Cycloeucalenone −2.26 0.0359 Down

407.36819 C03313 M-HCOOH+H[1+] 8.83 × 10−4 Phylloquinol −1.90 0.0372 Down

87.00852 C00258 M-H2O-H[-] 2.12 × 10−4 D-Glycerate 0.75 0.0384 Up

446.16191 C00101 M(Cl37)-H[-] 1.00 × 10−3 Tetrahydrofolate −0.64 0.0398 Down

129.01926 C06032 M-H2O-H[-] 3.35 × 10−5 D-erythro-3-Methylmalate 1.00 0.0401 Up

173.00911 C00311 M-H2O-H[-] 1.61 × 10−5 Isocitrate 1.00 0.0447 Up

In the case of the wet period (WP) samples, the ultra-high performance liquid chro-
matography and tandem mass spectrometry (UHPLC–MS/MS) statistical analysis returned
1976, 771, 2824, and 461 chromatography peaks for the positive and negative polar and
lipidic fractions, respectively. None of them presented differentially expressed peaks using
the statistical analysis criteria (FDR ≤ 0.05). When applying the principal component anal-
ysis (PCA) to detect any inherent patterns within the data in the DP and WP samples, one
could not completely separate the groups between the asymptomatic and the symptomatic
plants in all fractions analyzed (Figure S2).

When looking for DEMs between FY asymptomatic oil palm plants from DP and WP,
the statistical analysis returned 2267, 836, 2675, and 487 chromatography peaks for the
positive and negative polar and lipidic fractions, respectively. Altogether, 2749 differentially
expressed chromatography peaks were identified among the asymptomatic plants and
subjected to functional interpretation via analysis in the Functional Analysis module of
MetaboAnalyst 5.0 (see Section 4), and the combined meta-analysis of the mummichog
and GSEA pathways resulted in a list of 303 DEMs (Supplementary Table S3). Likewise,
for the FY symptomatic plants from DP and WP, the statistical analysis returned 2259, 789,
2549, and 487 peaks for the positive and negative polar and lipidic fractions, respectively.
Altogether, 2446 differentially expressed peaks were identified among the symptomatic
plants, and subjected to functional interpretation as before, resulting in a list of 259 DEMs
(Table S4). These two groups of DEMs had 179 metabolites in common (Table S5), while
their behavior in the asymptomatic and symptomatic oil palm plants showed a very weak
positive correlation (Figure 4).
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Figure 4. Histogram and correlation analysis of the Log2(FC) of common differentially expressed

metabolites from Dry vs. Wet periods of FY asymptomatic and symptomatic plants by pairwise

comparison. Dots represent metabolites positively regulated in FY symptomatic plants; x’s represent

metabolites negatively regulated in FY asymptomatic plants. Blue dots and x’s represent metabo-

lites positively regulated in FY symptomatic plants, and orange dots and x’s represent metabolites

negatively regulated under FY asymptomatic plants. FC = Fold Change.

2.3. Transcriptomics Analysis

When comparing the leaf transcriptome of asymptomatic and symptomatic plants
collected in the dry period, 274 proteins were differentially expressed (DEPs) when using an
FDR ≤ 0.05, and an FC 6= 1, with 103 upregulated and 171 downregulated. In the wet period,
the number of DEPs increased to 1087, with 456 upregulated and 631 downregulated. That
amount of differentially expressed proteins—274 and 1087—correspond, respectively, to
just 0.63% and 2.50% of all 43,551 proteins present in the reference genome of E. guineensis
(Singh et al., 2013). A group of 70 DEPs appeared in both DP and WP, and a correlation
analysis was performed to compare their expression profiles under two scenarios, allowing
the visualization of 56 proteins with similar expression profiles in the leaves of oil palm
plants due to the FY disease, independently of whether it was the dry or wet period
(Figure 5).

On the other hand, when comparing the leaf transcriptome of asymptomatic plants in
both periods, 6058 proteins were differentially expressed when using an FDR ≤ 0.05, and
an FC 6= 1, with 3071 upregulated and 2987 downregulated. Likewise, when comparing
the leaf transcriptome of symptomatic plants in both periods, the number of DEPs was
5426, 2781 upregulated, and 2645 downregulated. A group of 3806 DEPs appeared in
both the asymptomatic and symptomatic plants, and a correlation analysis was performed
to compare their expression profiles under the two scenarios studied, showing a strong
positive correlation (Figure 6). Such transcriptomics results show that the leaf transcriptome
of oil palm plants becomes more affected by the change in the environment—from the dry
to rainy seasons—than by the presence of the FY disease. Meanwhile, the disease effects
were more prevalent in the WP compared to the DP.
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Figure 5. Histogram and correlation analysis of the Log2(FC) of common differentially expressed

metabolites by pairwise comparison from Dry and Wet periods of FY asymptomatic vs. symptomatic

analysis. Dots represent metabolites positively regulated in the Dry period; x’s represent metabolites

negatively regulated in the Wet period. Blue dots and x’s represent metabolites positively regulated

under the Dry period, and orange dots and x’s represent metabolites negatively regulated in the Wet

period. FC = Fold Change.

After removing the 3806 DEPs that appeared in both the asymptomatic and symp-
tomatic plants from the above-mentioned group of 5426 ones, a set of 1620 that appeared
only in the symptomatic plants underwent gene ontology analyses. This set represents
those genes/proteins affected by the change from the dry to rainy season, but only in the
FY symptomatic plants; there was a direct link between the disease and the environment.
In terms of enzyme category, the two most prevalent groups of enzymes were transferases
and hydrolases, followed by translocases and oxidoreductases (Figure 7A). In the case of
biological process (BP), protein phosphorylation and regulation of transcription, both had
approximately 80 positive hits. Protein, ATP, and RNA binding were the most prevalent
molecular functions (MF), in that order. Finally, in terms of cellular component (CC),
membrane had almost 700 positive hits all together (Figure 7B).
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Figure 6. Histogram and correlation analysis of the Log2(FC) of common differentially expressed

genes by pairwise comparison from Dry vs. Wet periods of FY asymptomatic and symptomatic

analysis. Dots represent genes positively regulated in FY symptomatic plants; x’s represent genes

negatively regulated in FY asymptomatic plants. Blue dots and x’s represent metabolites positively

regulated in FY symptomatic plants, and orange dots and x’s represent metabolites negatively

regulated in FY asymptomatic plants. FC = Fold Change.
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Figure 7. Amount of full-length transcripts present only in FY-affected oil palm based on Gene

Ontology (GO) annotation from 1602 differential expresses genes/proteins that appear only in FY

symptomatic oil palm plants; enzyme classification (A) and biological process, molecular function,

and cellular component (B). Only the ten most populated groups per GO term are shown.
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2.4. Multi-Omics Integration Analysis

The MOI analysis was employed three times in this study. First, it integrated DEMs and
DEPs identified when comparing symptomatic and asymptomatic plants within an specific
scenario—dry period or wet period. Here, 15 DEMs and 30 differentially expressed enzymes
(out of the 274 DEPs identified when evaluating the differences between symptomatic and
asymptomatic plants in the dry period) underwent integration using the Omics Fusion
platform. The results revealed that two pathways had five or more of those enzymes
differentially expressed; they were Carbon fixation pathways in prokaryotes (p00720)
and Methane metabolism (map00680), both with two DEPs and three DEMs. On the
other hand, as there were no DEMs identified in the wet period, only the 51 differentially
expressed enzymes (out of the 1.087 DEPs identified when evaluating the differences
between symptomatic and asymptomatic plants in the wet period) were analyzed using
the above-cited platform. The results revealed Glycolysis/Gluconeogenesis (map00010) as
the only pathway with five differentially expressed enzymes.

Then, in a second moment, MOI was employed to integrate 96 enzymes—found
among the 1620 DEPs that appeared only in the symptomatic plants and underwent
gene ontology analyses—and the 80 DEMs present only in symptomatic plants when
comparing WP and DP. The results revealed three pathways with ten or more enzymes and
metabolites differentially expressed; they were Glycolysis/Gluconeogenesis (map00010),
Methane metabolism (map00680), and Cysteine and methionine metabolism (map00270),
respectively, with 12, 10, and 10 features (Table 2).

Table 2. List of the pathways most affected in symptomatic plants, or in both symptomatic and

asymptomatic plant at once, obtained via Multi-Omics Integration (MOI) using Omics Fusion, and

with 10 or more enzymes and metabolites common to both phenotypes.

Pathway Pathway ID

Common
(Symptomatic and Asymptomatic)

Only in Symptomatic

Enzymes &
Metabolites

Enzymes Metabolites
Enzymes &
Metabolites

Enzymes Metabolites

Purine metabolism 230 32 15 17 9 4 5
Porphyrin and chlorophyll

metabolism
860 29 10 19 4 3 1

Phenylpropanoid biosynthesis 940 20 4 16 4 2 2
Starch and sucrose metabolism 500 19 17 2 5 4 1
Glycolysis/Gluconeogenesis 10 17 14 3 12 9 3
Carbon fixation pathways in

prokaryotes
720 17 5 12 8 2 6

Cysteine and methionine metabolism 270 16 8 8 10 7 3
Ubiquinone and other

terpenoid-quinone biosynthesis
130 16 2 14 5 1 4

Pentose phosphate pathway 30 15 9 6 8 5 3
Aminoacyl-tRNA biosynthesis 970 14 12 2 3 3 0

Methane metabolism 680 14 8 6 10 7 3
Glyoxylate and dicarboxylate

metabolism
630 14 7 7 5 3 2

Pyruvate metabolism 620 13 8 5 7 5 2
Glycerophospholipid metabolism 564 12 10 2 5 4 1

Glutathione metabolism 480 12 7 5 7 5 2
Citrate cycle (TCA cycle) 20 12 7 5 4 3 1

Glycine, serine and threonine
metabolism

260 12 7 5 4 3 1

Galactose metabolism 52 11 6 5 5 4 1
Pyrimidine metabolism 240 11 4 7 4 1 3
Carotenoid biosynthesis 906 11 0 11 6 0 6
Flavonoid biosynthesis 941 11 0 11 4 0 4

Amino sugar and nucleotide sugar
metabolism

520 10 9 1 5 4 1

Carbon fixation in photosynthetic
organisms

710 10 7 3 7 5 2
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Table 2. Cont.

Pathway Pathway ID

Common
(Symptomatic and Asymptomatic)

Only in Symptomatic

Enzymes &
Metabolites

Enzymes Metabolites
Enzymes &
Metabolites

Enzymes Metabolites

Sulfur metabolism 920 10 6 4 4 1 3
Terpenoid backbone biosynthesis 900 10 5 5 4 2 2

Steroid biosynthesis 100 10 1 9 8 1 7
Biosynthesis of various secondary

metabolites—part 2
998 10 0 10 2 0 2

Finally, the group of 5426 DEPs present in the symptomatic plants, and that also
including the 3806 DEPs present in the asymptomatic ones, underwent analysis for en-
zyme selection—there were 320 enzymes—and subsequent integration with the 259 above-
mentioned DEMs. In Table 2, a list of 27 metabolic pathways affected only in symptomatic
plants, or in both the asymptomatic and symptomatic plants at once, by the change of
season—from dry to rainy—is presented. Three pathways had 20 or more enzymes and
metabolites differentially expressed; they were Purine metabolism (map00230), Porphyrin
and chlorophyll metabolism (map00860), and Phenylpropanoid biosynthesis (map00940),
respectively, with 32, 29, and 20 enzymes and metabolites.

3. Discussion

Throughout the 50 years since this disease first appeared in Brazil, several initiatives
in Brazil and abroad tried to elucidate the etiology of this disease. Not a single one was able
to fulfill Koch’s third postulate. With no knowledge about the causal agent(s), nothing was
done to develop a diagnostic system or a control measure. For those interested in knowing
more about this disease, we encourage you to read [6].

The initial goal of this study was to obtain insights into the possible occurrence and
role of oxygen deficiency (hypoxia) in the onset of FY. In that sense, the results showed
that the soil underwent much more profound changes in its physicochemical attributes
as a function of the season—the change from the dry to rainy season—than as a function
of the cultivation of oil palm plants symptomatic or asymptomatic for FY. In the rainy
season, the wet soil increased the availability of K, Cu, Mn, Zn, and Al, while decreasing
the availability of Ca, Fe, and Na. Concomitantly, it caused a reduction in the pH, clay
contents, and cation-exchange capacity, in addition to an increase in the organic matter.

The increase in the availability of cationic micronutrients (Cu, Mn, Zn) and Al in the
wet soil, in general, may be related to the decrease in pH. It is known that the lower the soil
pH, the greater the availability of cationic micronutrients. Soil pH dropped from a value
close to 5.0 (dry period) to 4.1 (wet period). With excess water in the soil, in addition to K,
an increase in the availability of other bases, such as Ca and Mg, was expected. However,
we saw a decrease in Ca, Fe, and Na, while Mg did not change. The drop in pH may have
affected the availability of Ca, Mg, and Na. It is also necessary to consider the changes that
occur with the alternation between aerobic and anaerobic conditions, which is reflected in
the oxide reduction potential of the soil. For example, organic matter breakdown is slower
under anaerobic conditions than under aerobic conditions [18]. And effectively, organic
matter increased in the wet period in the oil palm field that supplied the samples for the
present study. Additionally, much of the Fe2+ formed during reductive dissolution is likely
to have been chelated with soil organic matter and, possibly, eluted from the soil; some will
have been held by cation exchange in the constituent clay minerals [19].

In summary, the differences in physicochemical attributes of the soil where the sampled
oil palm plants grew did not justify the difference in phenotypes—symptomatic and
asymptomatic regarding FY—and the same was true for the chemical attributes of the
leaves from such plants. So, independently of whether the plants were under hypoxia due
to excessive rain and soil waterlogging, no differences regarding leaves and soil attributes
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justified the distinct FY phenotypes seen among the plants sampled for this study. Would
that be different in the leaf metabolome?

Surprisingly, only 15 differentially expressed metabolites (DEM) appeared between
symptomatic and asymptomatic plants in the dry period. In the wet period, it was even
worst, with no DEM found when using FDR ≤ 0.05 as the statistical analysis criteria. In
synthesis, the metabolomes from the leaves of oil palm plants did not present pathways
highly affected by the disease. The same was not true for those cases where the metabolomes
were from plants with the same phenotype but at different seasons. Here, it was possible to
select 80 metabolites that only differentially expressed in the symptomatic plants, not in the
asymptomatic; and those metabolites allowed the identification of four pathways affected
in sick plants by the rainy season; they were Steroid biosynthesis (map00100), Carbon
fixation pathways in prokaryotes (p00720), Carotenoid biosynthesis (map00906), and Purine
metabolism (map00230). Such pathways represent a direct link between the disease and
the environment and might help to understand, at the molecular level, the intensification
of the FY symptoms seen in the leaves in the rainy season. It is common sense that in
the rainy season, the visual FY symptoms intensify (Denpasa’s staff—Dendê do Pará S/A
company—www.denpasa.com.br (accessed on 30 June 2023), personal communication).

As mentioned in Bittencourt et al. [20], untargeted metabolomics allows the search
for novel metabolic perturbations in various biological systems. However, as seen in the
present study, when using the profile of hundreds or thousands of peaks with varying
chemical properties, just a few dozen metabolites are identified. The reasons behind this are
the still limited capacity to identify novel compounds of interest and the need for advanced
and more robust databases [21]. Would that be different in the leaf transcriptome?

RNA-Seq uses deep-sequencing technologies to characterize the transcriptome pro-
filing of a cell, a tissue, an organ, or even the entire organism, and provides a far more
precise measurement of levels of transcripts and their isoforms than any other methods [22].
Accordingly to Wang et al. [22], characterizing the transcriptome allows us to catalog all
types of transcripts present in that cell/tissue/organ/organism at a specific moment, and
to quantify the changes in expression levels of each transcript under distinct scenarios;
moreover, it allows us to determine the transcriptional structure of genes, in terms of their
start sites, 5′ and 3′ ends, splicing patterns and other post-transcriptional modifications.

RNA-seq became a powerful tool to study host–pathogen interactions, enlarging
the horizon of opportunities for the development of early diagnosis tools, as well as for
the identification of candidate genes to be employed in the development of improved
genotypes resistant to a specific disease [23–26]. In the present study, RNA-Seq allowed
not only the identification of genes/proteins differentially expressed in the leaves of FY
symptomatic oil palm plants in comparison to the asymptomatic ones—either in the dry or
rainy seasons— but also the identification of those differentially expressed in plants with
similar FY-based phenotypes between seasons.

A set of 56 genes/proteins differentially expressed in the leaves of oil palm plants
symptomatic for FY compared to asymptomatic ones, either in the dry or rainy seasons, was
selected after transcriptomics analysis. They are molecular symptoms in the plant directly
linked to the disease, which are positively (33 proteins) or negatively (23 proteins) expressed
in the symptomatic plants—in comparison with the asymptomatic ones—independently of
the season. Here, three of them underwent discussion, and the remaining 53 genes/proteins
will undergo further analysis, and the results will be reported in the future. The protein
most negatively regulated among those 56 selected (Figure 7) codes for a ribosomal protein
large (RPL) subunit. RPLs are the components of the ribosome machinery and, to a certain
extent, are required for protein synthesis. The ribosomal proteins names follow the subunit
of the ribosome to which they belong—the small (S1 to S31) and the large (L1 to L44) [27].

This oil palm RPL belonged to the Ribosomal protein L19 protein family (IPR001857)
and the Ribosomal protein L19 homologous superfamily type (IPR038657). In symp-
tomatic plants, the expression level of that gene was reduced to 1.7% and 0.27% of the
initial level seen in the asymptomatic plants in the dry and rainy seasons, respectively.
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Nagaraj et al. [28] showed that when NbRPL19 was silenced in Nicotiana benthamiana, the
non-host resistance became compromised, and the same was true in Arabidopsis mutants
for AtRPL19. More recently, Ramu et al. [29] reported that RPL10-silenced N. benthamiana
plants showed compromised disease resistance against the non-host pathogen Pseudomonas
syringae pv. tomato T1.

Non-host resistance (NHR) is a safety barrier that protects plants from a large and
diverse array of potential phytopathogens. Non-host species present an innate immunity
that cannot be overcome by potential pathogenic microbes, resulting from a series of
physical, chemical, and inducible defenses. NHR is a very durable type of resistance,
which has raised great interest everywhere regarding its genetic basis and functionally
transferring it to plant species of commercial interest [30–32].

Besides being linked to resistance against non-host pathogens, RPL19 also showed
high RNA-chaperone activity in a trans-splicing assay where the pre-mRNA of the thymidy-
late synthase (td) gene containing a group I intron was spliced into two halves [33].
Kovacs et al. [34] showed that RPL19 from E. coli is partially unstructured and/or has
molten globule-like characteristics once without the support of rRNA, and exhibited potent
chaperone activity with the substrates alcohol dehydrogenase (ADH) and lysozyme in
three different chaperone assays. Finally, Gorelova et al. [35] demonstrated that one of
the bifunctional dihydrofolate reductase/thymidylate synthase (DHFR-TS) isoforms of
A. thaliana (At2g21550) operates as an inhibitor of its homologs, regulating DHFR and TS
activities. Such regulation affects folate abundance. Gorelova and colleagues also pro-
posed a novel function of folate metabolism in plants, which is the maintenance of the
redox balance by contributing to NADPH production through the reaction catalyzed by
methylenetetrahydrofolate dehydrogenase, thus allowing plants to cope with oxidative
stress [35].

At2g21550 codes for NP_001324557.1, and using that protein sequence once to Blastp
against the reference genome of oil palm [36], six positive hits appeared. Five were from a
gene (LOC105048636) in chromosome seven. The former did not differentially express in
the transcriptome of oil palm plants, but the latter did. There, the latter showed reduced
expression in the rainy season, compared with the dry season, in both the asymptomatic
and symptomatic plants, but was not differentially expressed in symptomatic plants com-
pared with asymptomatic plants in the dry or rainy seasons. According to InterPro [37],
XP_029121477.1 (coded by LOC105048636) is a representative of the bifunctional dihy-
drofolate reductase/thymidylate synthase (IPR012262) family, is positive for the dTMP
biosynthetic process (GO:0006231), the one-carbon metabolic process (GO:0006730), the
tetrahydrofolate biosynthetic process (GO:0046654), the biological process, and for thymidy-
late synthase activity (GO:0004799), dihydrofolate reductase activity (GO:0004146), and
transferase activity, for transferring one-carbon groups (GO:0016741), and for molecular
function. Altogether, the results in the present study show that the negative regulation of
XP_029121477.1 is due to the changes in the environment—from dry to rainy season— and
is not linked to the change in phenotype from asymptomatic to symptomatic.

This specific oil palm RPL is under the regulation of twelve genes, according to a
gene regulatory network available in our lab [38] featuring epigenetic regulators and
transcription factors from the oil palm genome and built based on the strategy reported by
McCoy et al. [39]. Such analysis was performed by applying GENIE3 to mine 306 public oil
palm transcriptome datasets. Such a study used 1333 unique regulators and 27,642 target
genes from the oil palm reference genome [36]. The expression profiles of the twelve genes
showed seven of them not present or not differentially expressed in the four scenarios
evaluated in the present study. The scenarios are: (a) symptomatic vs. asymptomatic
in the dry period; (b) symptomatic vs. asymptomatic in the wet period; (c) wet vs. dry
period in symptomatic plants; and (d) wet vs. dry in asymptomatic ones. Among the
remaining five, three were not differentially expressed in the two first scenarios but were
positively regulated in the two last. Finally, two were only differentially expressed in the
third scenario; one positive and one negative. In summary, such results do not allow us to
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point out any direct effect of any of those 12 regulatory genes in the changes of expression
observed in EgRPL19-2 in the two first scenarios.

The whole genome sequence of the American oil palm (E. oleifera) [40] revealed four
positive hits for ribosomal protein L19-2. A Blastp analysis of those four positive hits
against the oil palm reference genome [36] allowed the identification of two proteins in
the African oil palm with expression profiles highly different from each other in the four
above-mentioned scenarios. The E. guineensis RPL19-2 protein, whose expression level was
highly reduced in FY-symptomatic plants in the dry and rainy seasons, compared to the
asymptomatic ones, has very high identification with three of the above-mentioned positive
hits for ribosomal protein L19-2 protein in E. oleifera, a species known to be resistant to
FY [6].

Among those 33 proteins down-regulated there were two WAK-like proteins (WAKLs).
Wall-associated kinases (WAKs) and WAKs-like proteins (WAKLs) belong to a plant-specific
subfamily of the receptor-like kinase family (IPR045274), and some of them have been
implicated in resistance to bacterial and fungal diseases [41,42]. When investigating the
defense role of a pathogen-induced WAK gene from wheat chromosome 7D, designed as
TaWAK7D, Qi et al. [41] suggested that such a gene positively participates in the defense
against infection by the soilborne and necrotrophic fungus Rhizoctonia cerealis, through
activating the expression of several pathogenesis-related (PR) genes, including Chitinase3,
Chitinase4, PR1, PR17 and β-1,3-Glucanase.

Plants have either plasma membrane-localized receptor kinases (RKs) or receptor-like
proteins that perceive pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs),
as well as damage-associated molecular patterns (DAMPs). Recognizing such patterns
triggers immunity, which contributes to basal immunity to adapted pathogens and NHR to
non-adapted pathogens by the induction of both local and systemic immune responses [43].

The expression levels of the two WAKLs proteins—differentially expressed in the
leaves of FY-symptomatic oil palm plants in the present study—were reduced to 25–45%
of the initial level seen in the asymptomatic plants. The genes that code XP_010934766.2
(LOC105054847), a wall-associated receptor kinase 2-like protein, and XP_010934767.1
(LOC105054848), a putative wall-associated receptor kinase-like 16, are located side by side
in chromosome 12 of the oil palm reference genome [36]. According to InterPro [37], they
are representative of the Receptor-like kinase WAK-like (IPR045274) family, positive for
protein phosphorylation (GO:0006468) and for cell surface receptor signaling (GO:0007166),
for biological process, and ATP binding (GO:0005524), protein kinase activity (GO:0004672),
calcium ion binding (GO:0005509), polysaccharide binding (GO:0030247), and molecular
function. Moreover, they showed 85% of identity measured across approximately their
entire amino acid sequence.

Again, the gene regulatory network in our lab [38] showed that no unique regula-
tor regulates the LOC105054848 (XP_010934767.1) gene/protein, and the LOC105054847
(XP_010934766.2) might be under the regulation of 16 genes. The transcriptome generated
in the present study revealed that 13 genes out of the 16 were not present in the transcrip-
tome or did not differentially express in any of the four scenarios evaluated. Among the
remaining three, two were negatively and one positively regulated in the last scenario.
Finally, two were differentially expressed only in the third scenario; one positively and one
negatively. In summary, such results also do not allow to us to point out any direct effect of
any of those 16 regulatory genes in the changes of expression observed in LOC105054847
in the first two scenarios.

The pathway-based MOI analysis performed in this study using the Omics Fusion
platform brought together enzymes (from transcriptomics studies) and metabolites that
expressed differentially in the leaves of oil palm plants under distinct conditions (dry and
wet periods or dry and rainy seasons). First, the analysis integrated differentially expressed
metabolites and enzymes found only in symptomatic plants and then those found in both
asymptomatic and symptomatic plants. By doing that, our results revealed those pathways
affected by the environment—independently of the FY phenotype—but also allowed us to
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map those enzymes and metabolites that play a role only in the symptomatic plants. For
instance, in the case of Purine metabolism (map00230), five metabolites (out of seventeen)
appeared only in the symptomatic plant, and the same was true for four enzymes (out
of fifteen). Moreover, two of the remaining twelve metabolites had distinct qualitative
expression profiles, while all remaining proteins had similar qualitative expression profiles
in asymptomatic and symptomatic plants. At the same time, this allowed the identification
of metabolites and enzymes with similar qualitative expression profiles but with differences
in the quantitative one. For instance, Inosine monophosphate (IMP—C00130) was positively
regulated 113 times in the symptomatic plants and only 3 times in the asymptomatic ones;
meanwhile, Inosine diphosphate (IDP—C00104) was positively regulated 88 times in the
symptomatic plants, and negatively in only 7% of the asymptomatic ones (Tables 2–4).

Table 3. List of genes/proteins integrated in the purine metabolism (map00230), the top most affected

pathway, and their behavior in FY asymptomatic and symptomatic oil palm plants, obtained via

Multi-Omics Integration (MOI) using Omics Fusion.

Protein ID
UniProt

Accession
EC Number

FC
Symptomatic

Profile
Symptomatic

FC
Asymptomatic

Profile
Asymptomatic

XP_010912022.1 A0A6I9QPT3 1.17.4.1 −4.0 DOWN −2.3 DOWN
XP_010938967.1 A0A6I9S8I9 2.7.1.25 −2.5 DOWN −3.0 DOWN
XP_010911123.2 A0A6I9QKC5 2.7.1.40 −5.9 DOWN −3.6 DOWN
XP_010930617.1 A0A6I9RQ67 2.7.1.40 −1.8 DOWN −2.8 DOWN
XP_010919863.2 A0A6I9R3I3 2.7.1.40 −2.9 DOWN −2.2 DOWN
XP_010924524.1 A0A6I9RE71 2.7.4.6 −2.5 DOWN −2.7 DOWN
XP_010937073.1 A0A6I9S4K9 2.7.4.8 −4.2 DOWN −3.3 DOWN
XP_010910297.1 A0A6I9QJ47 2.7.6.5 −4.0 DOWN −3.6 DOWN
XP_010933384.1 A0A6I9RX86 2.7.6.5 −2.6 DOWN −2.9 DOWN
XP_010932410.1 A0A6I9RU27 2.7.6.5 −2.8 DOWN −2.7 DOWN
XP_010921622.1 A0A6I9R798 2.7.6.5 −4.9 DOWN −5.4 DOWN
XP_029119510.1 A0A8N4F2W4 2.7.7.4 −3.6 DOWN −4.7 DOWN
XP_010932834.1 A0A6I9RV40 2.7.7.4 −2.2 DOWN −2.4 DOWN
XP_010920819.1 A0A6I9R728 3.5.4.6 −3.3 DOWN −3.7 DOWN
XP_010937877.2 A0A6I9S697 3.5.4.6 −4.6 DOWN −2.2 DOWN
XP_029116569.1 A0A8N4EWM4 5.4.2.2 −2.0 DOWN −3.0 DOWN
XP_010934074.1 A0A6I9RXY5 5.4.2.2 −1.9 DOWN −2.1 DOWN
XP_010911922.1 A0A6I9QMW6 2.4.2.7 1.8 UP −1.3 NDE
XP_010920467.1 A0A6I9R4T4 2.7.1.20 1.9 UP 1.2 NDE
XP_029117373.1 A0A8N4ID85 2.7.4.6 1.5 UP −1.2 NDE
XP_010933513.1 A0A6I9RXJ3 2.7.1.40 −6.4 DOWN No No
XP_010905734.1 A0A6I9QAR4 1.7.3.3 2.1 UP 1.6 UP
XP_010907802.1 A0A6I9QFG8 1.7.3.3 3.2 UP 2.8 UP
XP_010941354.1 A0A6I9SCA5 2.7.4.3 1.7 UP 1.7 UP
XP_010908713.1 A0A6I9QHG6 2.7.4.3 1.8 UP 1.9 UP
XP_010935173.1 A0A6I9RZH1 2.7.4.3 4.6 UP 3.9 UP
XP_010919758.1 A0A6I9R9M7 2.7.4.6 2.4 UP 1.5 UP
XP_010933580.1 A0A6I9RXP4 2.7.4.6 3.6 UP 2.6 UP
XP_010943858.1 A0A6I9SHJ3 2.7.6.5 3.9 UP 2.8 UP
XP_010914531.2 A0A6I9QT08 6.3.3.1 1.7 UP 1.8 UP
XP_010910143.1 A0A6I9QKR6 6.3.4.13 2.2 UP 1.9 UP

The groundwater at the oil palm field where the plants sampled in the present study
were growing was almost on the soil surface during the rainy season (Figure 8E), indicating
that those plants were growing in waterlogged soil and likely experiencing oxygen defi-
ciency (hypoxia), which was possibly affecting their root system. The soil physical–chemical
and leaf chemical analyses pointed out differences due to changes in the environment but
not due to the FY phenotype. It is common sense that in the rainy season, the visual
symptoms of this disease intensify, and the results of the present study show that the num-
ber of differentially expressed genes/proteins and metabolites is much higher when one
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compares plants with the same phenotype in different seasons than between symptomatic
and asymptomatic plants in a specific season.

Table 4. List of metabolites integrated in the purine metabolism (map00230), the top most affected

pathway, and their behavior in FY asymptomatic and symptomatic oil palm plants, obtained via

Multi-Omics Integration (MOI) using Omics Fusion.

KEGG ID Compound
Matched Form
Symptomatic

Fold Change
Asymptomatic

Profile
Asymptomatic

Fold Change
Symptomatic

Profile
Symptomatic

C00104 IDP M-HCOOK+H[1+] 0.07 DOWN 87.59 UP

C06197
P1,P3-Bis(5′-adenosyl)

triphosphate
M+NaCl[1+] 0.16 DOWN 0.05 DOWN

C00212 Adenosine M+Cl[-] 0.30 DOWN 4.97 UP
C00387 Guanosine M+Na[1+] 0.52 DOWN 2.54 UP

C04640
2-(Formamido)-N1-(5′-

phosphoribosyl)
acetamidine

M+HCOONa[1+] 0.27 DOWN 0.20 DOWN

C12248

5-Hydroxy-2-oxo-4-
ureido-2,5-dihydro

1H-imidazole-5-
carboxylate

M[1+] 0.42 DOWN 2.88 UP

C00242 Guanine M+Na[1+] 0.12 DOWN 9.74 UP
C00224 Adenylyl sulfate M-NH3+H[1+] 0.19 DOWN 2.74 UP
C00655 Xanthosine 5′-phosphate M+NaCl[1+] 0.37 DOWN 2.98 UP

C04823

1-(5′-Phosphoribosyl)-5-
amino-4

(N-succinocarboxamide)-
imidazole

M-HCOOH+H[1+] 0.20 DOWN 7.89 UP

C00301 ADP-ribose M-H2O-H[-] No No 0.22 DOWN
C00385 Xanthine M+Na-2H[-] No No 7.90 UP
C00206 dADP M+3H[3+] No No 14.49 UP
C02091 (S)-Ureidoglycine M[1+] No No 2.51 UP
C00059 Sulfate M(S34)-H[-] No No 2.27 UP

C04677
1-(5′-Phosphoribosyl)-5-

amino-4
imidazolecarboxamide

M-H[-] 10.95 UP 66.60 UP

C00130 IMP M-H4O2+H[1+] 2.93 UP 112.58 UP

Oxygen deficiency in plants affects several metabolic pathways, and under such con-
ditions substantial changes in the expression levels of transcripts, proteins, and metabolites
have been observed [44,45]. However, the initial cellular response to a decrease in O2

availability, regardless of whether the species is tolerant or not, is the promotion of the
anaerobic metabolism of pyruvate, which is highly conserved in plants and animals [46,47].
Perhaps for this reason, glycolysis and the Krebs cycle are the most-studied metabolic
pathways under conditions of hypoxia/anoxia, as pyruvate is the end product of the first
and the initial substrate of the second.

The MOI results from this present study showed that all three metabolites identified
in the Glycolysis/Gluconeogenesis (map00010) pathway were differentially expressed only
in the symptomatic plants, and all were positively regulated in the rainy season. Beta-D-
Fructose 6-phosphate (C05345) was the metabolite with the top increase in expression level,
12×, followed by beta-D-Fructose 1,6-bisphosphate (C05378), with 5×, and Acetaldehyde
(C00084), with 3×. In the case of the TCA Cycle (map00020) pathway, just one (S)-Malate
(C00149) was differentially expressed only in symptomatic plants, with a 6× increase in
expression level. Isocitrate (C00311), cis-Aconitate (C00417), and 2-Oxoglutarate (C00026)
are negatively regulated in asymptomatic plants and positively regulated in symptomatic.
In terms of proteins, Malate dehydrogenase and Succinate--CoA ligase [ADP-forming]
subunit beta (mitochondrial) experienced a 50% increase in expression, and phospho-
enolpyruvate carboxykinase (ATP) expression level was reduced to 25% of the level in
symptomatic plants during the rainy season, without any change in expression level in the
asymptomatic plants.
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Figure 8. Overview of the sample site, soil condition and FY general phenotype; oil palm symptomatic

(A) and asymptomatic (B) for FY; second leaf after spear leaf collected from a symptomatic (C) and

asymptomatic (D) oil palm individual; waterlogged soil in the sample site from Dry period (E);

sample site in Santa Bárbara do Pará, Pará, Brazil (F).

4. Materials and Methods

4.1. Soil and Leaf Samples—Collection and Chemical and Physicochemical Analysis

The soil and plant material used in this study came from a commercial oil palm
plantation belonging to Denpasa—Dendê do Pará S/A company (www.denpasa.com.br,
accessed on 30 June 2023) located in Santa Bárbara do Pará, state of Pará, northern Brazil
(1◦13′25′′ S and 48◦17′40′′ W, 21 m above sea level). This oil palm field started in 2011 and
has shown a high incidence of FY, with about 19% of plants affected in 2021, according to
Denpasa’s staff (personal communication) (Figure 8).

Soil and leaf samples were collected from asymptomatic and symptomatic plants in
the intermediate stages of the disease [48] in two distinct periods: in October 2021—the
dry period (DP)—and in June 2022—the wet period (WP). The selected asymptomatic
individuals had never shown symptoms of AF, according to Denpasa’s staff (personal
communication). The same individuals were sampled in the DP and WP, with only one
symptomatic plant replaced (Table S1).

Soil samples collected from three equidistant points around the plant stem—one meter
from it and at 10 cm in diameter and 30 cm deep holes—were homogenized and stored in a
plastic bag. Six asymptomatic and six symptomatic plants were sampled in DP, totaling
twelve samples, and eight in WP, per treatment, totaling sixteen. Before being sent for
analysis, all soil samples were dried at room temperature. Leaves from six asymptomatic
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and six symptomatic plants were sampled in DP and WP, totaling 24 samples. Leaf samples
were dried in an oven at 65 ◦C, ground using a Wiley mill (Model TE 680, Tecnal, Piracicaba,
SP, Brazil), and passed through a 1 mm (20-mesh) sieve. Soil and leaf samples underwent
analysis at Soloquímica (www.soloquimica.com.br)—DP samples—and at Terra Análises
para Agropecuária (www.laboratorioterra.com.br)—WP samples.

4.2. Experimental Design and Statistical Analysis

A completely randomized design was adopted to investigate the influence of two
factors and their interaction on the selected soil and leaf variables. The four groups (‘treat-
ments’) were then constituted of combinations of the state of the soil of the experimental
area (DP and WP) and the status of plants regarding the FY disorder (symptomatic or
asymptomatic). Analyses considered two methods: (a) a separate analysis for each period
state, and (b) a conjoint analysis using data from both periods.

We investigated the influence of plant state (symptomatic or asymptomatic) on each of
the response variables classified into four groups: soil/leaf macro and micronutrient, soil
sorption complex, and soil granulometry. The one-way analysis of variance (ANOVA) was
used in this study. Because the factor plant status has only two levels, the ANOVA F-test
was applied to compare the factor means. Then we also performed a principal component
analysis (PCA) for each of the four groups of variables, as a graphical complementary way
of investigating whether plant status was a factor for separating plant groups.

The two-way repeated measures ANOVA quantified the influence of period status
and plant status, and their interaction on each response variable. The means corresponding
to each period status within plant status were compared via the F-test for contrasts and
the means for each plant status were determined by ANOVA F-tests. The PCA was also
performed for each of the four groups of variables, but using measurements made during
the wet and dry periods and including all samples. We used those measurements that were
present in both periods.

In both situations, the statistical software SAS/STAT® was employed; PCA was
carried out using the PRINCOMP Procedure for PCA analyses, and the GLM (General
Linear Model) Procedure for the ANOVAs (SAS Institute Inc., 2020, Tokyo, Japan). Data
were standardized before running PCAs to avoid conflicts due to the different magnitudes
of the response variables within each group. The significance level adopted for ANOVAs
was 0.05.

4.3. Transcriptomics Analysis

The second apical leaf, counted after the arrow leaf, was collected for transcriptomic
analysis, and a total of six leaflets from each side of the intermediate portion of the leaf
were harvested and sectioned into 10 cm portions from their base. The leaflet sections were
stored in RNA later™ solution (Invitrogen, Waltham, MA, USA) on ice, transported to the
laboratory, removed from the RNA later™ solution, and kept at −80 ◦C until extraction. Six
biological replicates were collected from symptomatic and six from asymptomatic plants in
DP and WP, totaling 24 samples.

Total RNA was isolated from oil palm leaves using the Qiagen RNeasy® Plant Mini
kit (QIAGEN, Redwood City, CA, USA), following the manufacturer’s protocol. The
quantity and quality of RNA were measured using a Nanodrop Qubit 2.0 fluorometer (Life
Technologies, Carlsbad, CA, USA). Library preparation and RNA-Seq were performed
by the GenOne Company (Rio de Janeiro, RJ, Brazil) using an Illumina platform and the
paired-end strategy.

All RNA-Seq analyses were performed using the OmicsBox platform, version 2.2.4 [49].
We used FastQC [50] and Trimmomatic [51] for quality control, read filtering, and removal
of low-quality bases. The oil palm reference genome [36]—files downloaded from NCBI
(BioProject PRJNA192219; BioSample SAMN02981535) in October 2020—was used to align
the RNA-Seq data using standard OmicsBox version 2.2.4 parameters, through the STAR
software [52].
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HTSeq version 0.9.0 was used to quantify gene or transcript expression [53], applying
the standard parameters of OmicsBox version 2.2.4. Paired differential expression analysis
between experimental conditions (symptomatic vs. asymptomatic) was performed using
edgeR version 3.28.0 [54], applying a simple design and exact statistical test without filtering
for low-count genes.

4.4. Metabolomics Analysis

The leaf samples for metabolomics analysis were collected simultaneously and using
the same criteria as for the transcriptomics samples, following the “split-sample data”
strategy. Six biological replicates were collected for both symptomatic and asymptomatic
individuals in DP and WP, resulting in a total of 24 samples.

Before solvent extraction, all samples underwent grounding in liquid nitrogen. We
employed a well-established protocol [55,56] to extract the metabolites in three phases
(polar, non-polar, and protein pellet) from aliquots of 50 mg of ground tissue. The solvents
used were methanol grade UHPLC, acetonitrile grade LC-MS, formic acid grade LC-MS,
and sodium hydroxide ACS grade LC-MS, all from Sigma-Aldrich, with water treated in a
Milli-Q system from Millipore.

The analytical method ultra-high performance liquid chromatography and tandem
mass spectrometry (UHPLC–MS/MS) was used in this study, with the UHPLC system
(Nexera X2, Shimadzu Corporation, Kyoto City, Japan) equipped with a C8 reverse-phase
column from Waters Technologies (Acquity UPLC HSS T3, 1.8 µm, 2.1 by 150 mm at
35 ◦C). Solvent A was 0.1% (v/v) formic acid in water and solvent B was 0.1% (v/v) formic
acid in acetonitrile/methanol (70:30, v/v). The gradient elution used, with a flow rate of
0.4 mL min−1, was as follows: 0–1 min isocratic, 0% B; 1–3 min, 5% B; 3–10 min, 50% B;
10–13 min, 100% B; 13–15 min isocratic, 100% B; then five minutes re-balancing to the initial
conditions. The column temperature was set at 40 ◦C.

High-resolution mass spectrometry was used for detection (MaXis 4G Q-TOF MS,
Bruker Daltonics), equipped with an electrospray source in positive (ESI-(+)-MS) and
negative (ESI-(−)-MS) modes. The settings of the mass spectrometer were as follows:
capillary voltage, 3800 V; dry gas flow, 9 L min−1; dry temperature, 200 ◦C; nebulizer
pressure, 4 bar; and final plate offset, 500 V. The rate of acquisition spectra was 3.00 Hz,
mass range m/z 70–1200 for the polar fraction analysis and m/z 300–1600 for the lipidic
fraction. For external calibration of the equipment, we used a sodium formate solution
(10 mM HCOONa solution in 50:50 v/v isopropanol and water containing 0.2% formic
acid), injected through a six-way valve at the beginning of each chromatographic run.
Ampicillin ([M + H] + m/z 350.1186729 and [M − H]− m/z 348.1028826) was the internal
standard for later peak normalization of data analysis.

The DataAnalysis 4.2 software (Bruker Daltonics, Bremen, Germany) was the first
used to analyze the raw data from UHPLC-MS, as mzMXL files. Pre-processing of data was
performed using XCMS Online [57,58], including peak detection, retention time correction,
and alignment of the metabolites. CentWave was used for peak detection (maximum peak
width, 20 s; ∆m/z = 10 ppm; minimum peak width, 5 s). For the alignment of retention times,
the parameters were mzwid = 0.015, minfrac = 0.5 and bw = 5. The unpaired parametric
t-test (Welch t-test) was used for the statistical analysis at the pre-processing stage.

Initially, the pre-processed data (csv file) underwent analysis in the Statistical Analysis
module of the MetaboAnalyst 5.0 [59], using the Pareto method as scaling [60]. Then, the
differentially expressed peaks (DEPs)—those passing the criteria of false rate discovery
(FDR) ≤ 0.05 and Log2(fold change [FC]) 6= 1—were selected and submitted to the Func-
tional Analysis module, applying the following parameters: molecular weight tolerance of
5 ppm; mixed ion mode; joint analysis using both the mummichog [61] and Gene Set En-
richment Analysis (GSEA) [62] algorithms, and the latest KEGG version of the Oryza sativa
pathway library. The p-value cutoff from the mummichog algorithm was at 1.0 × 10−5.

DEPs with two or more matched forms were observed. In those cases, the mass error
was the criteria for the feature selection, keeping the smallest. Then, KEGG IDs with two or



Int. J. Mol. Sci. 2023, 24, 12918 20 of 24

more features (m.z) were also observed; and, again, the smallest mass error was the criteria
for the feature selection. Finally, the KEGG IDs of the matched compounds—one KEGG
ID per m.z—were submitted to the pathway analysis module for visualization through
integrating enrichment and pathway topology analysis [63]. The parameter sets were the
hypergeometric test and the latest KEGG version of the O. sativa pathway library.

4.5. Correlation and Integratomics Analysis

DEPs and DEMs underwent correlation analysis under two distinct scenarios, symp-
tomatic × asymptomatic plants and dry × wet periods. First, to check for the data distri-
bution, the Data Overview module of Omics Fusion [64], the web platform for integrative
analysis of omics data, was used, and then the Scatter Plot one for the correlation analysis be-
tween the sets of data—a pairwise combination of the different scenarios evaluated. The in-
put data was the Log2(FC) from the DE molecules obtained from the single-omics analysis.

The DEPs and DEMs identified underwent a pathway-mapping approach of integra-
tion using the Omics Fusion platform [64]. Before the integration, the NCBI accession
of enzymes was converted to UniProt ID. Thus, the input data used were the UniProt
accession ids for transcriptomics and KEGG ids for metabolomics. The data underwent
enrichment through several databases (EMBL—www.embl.org (accessed on 30 June 2023),
KEGG—www.genome.jp/kegg (accessed on 30 June 2023), NCBI—www.ncbi.nlm.nih.gov
(accessed on 30 June 2023), and UniProt—www.uniprot.org (accessed on 30 June 2023), and
then the module “KEGG feature distribution” was used to map these omics data in known
pathways—www.genome.jp/kegg/annotation (accessed on 30 June 2023)).

5. Conclusions

This study aimed to obtain insights into the possible occurrence and role of oxygen
deficiency (hypoxia) in the onset of Fatal Yellowing (FY), a disease of unknown etiology
that limits the oil palm industry in Brazil. Soil and leaf samples from asymptomatic
and symptomatic plants in the intermediate stages of the disease were collected in two
distinct periods: in October 2021—the dry season—and in June 2022—the rainy season. The
changes observed in the physicochemical attributes did not allow for the discrimination
of plants asymptomatic or symptomatic for this disease, not even in the rainy season,
when the soil became waterlogged. The same was true for the chemical attributes and the
metabolome profiles of the leaves. Only transcriptome profiles of the leaves allowed the
identification of molecular symptoms able to distinguish symptomatic from asymptomatic
plants, independently of the season—dry or rainy. A set of 56 proteins/genes, negatively or
positively regulated in symptomatic plants compared to the asymptomatic ones, resulting
from this study, is undergoing additional analysis, aiming at a broad in silico functional
annotation and the validation of the RNA-Seq expression profile employing qPCR analysis.

Altogether, the single-omics analysis (SOA) performed in the present study allowed
the identification of 320 enzymes (from the transcriptome analysis) and 254 metabolites on
the leaves of oil palm plants that underwent multi-omics integration (MOI) analysis. Such
a set was composed of enzymes and metabolites differentially expressed in asymptomatic
and symptomatic plants in the rainy season—waterlogged soil—compared to the dry
season, plus those differentially expressed only in the symptomatic ones. Such an MOI
analysis produced a list of 27 metabolic pathways affected by the change from dry to rainy
season, with at least ten enzymes and metabolites differentially expressed. Starting from
the premise that the visual FY symptoms intensify in the rainy season, we postulate that a
closer look at such pathways might reveal insights into the role of hypoxia in the symptom
intensification of FY.

Finally, the closer analysis of three out of the fifty-six proteins/genes selected employ-
ing transcriptomics analysis under four distinct scenarios strongly points to the following
postulate: the oxygen deficiency (hypoxia) experienced by the oil palm plants for long
periods of the year promotes stress in the roots of those plants and triggers, directly or
indirectly, a cascade of events that breaks some of the safety barriers that protect plants from
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a large and diverse array of potential phytopathogens. Breaks in the non-host resistance
to non-adapted pathogens—as suggested by the strong negative regulation of EgRPL19-2
in both seasons—as well as in the basal immunity to adapted pathogens, as pointed out
by the negative regulation of this gene and of two WAKs-like proteins belonging to a
plant-specific subfamily of the receptor-like kinase family (IPR045274), are the initial basis
for such a postulate. By doing this, it creates the possibility for opportunist microorganisms
in the soil to infect the plant and promote this bud-rot type of disease. Whether a specific
opportunistic pathogen is prevalent or not still needs further evaluation, although we also
postulate that this might not be the case.

Why do we find asymptomatic plants surrounded by symptomatic ones after spending
a decade in the same conditions? The variability in the expression profiles of those three
genes—and several others among the 53 remaining for further characterization—within
this plant species, but also in the American oil palm (E. oleifera) population, and inside
the populations of inter-specific hybrids between these two species, can pave the way
to answering this question and identify bio-markers for the selection of oil palm plants
resistant to the Fatal Yellowing disease. Mapping the differences in the promoter sequence
of such genes, as well as those between them and their orthologs in the American oil palm,
might help developing gene editing strategies able to protect such genes from the cascade
of events triggered by the abiotic stress, and maintain the safety barriers raised and strong.
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