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Abstract 

Background Host resilience (HR) to parasites can affect the performance of animals. Therefore, the aim of this study 
was to present a detailed investigation of the genetic mechanisms of HR to ticks (TICK), gastrointestinal nematodes 
(GIN), and Eimeria spp. (EIM) in Nellore cattle that were raised under natural infestation and a prophylactic parasite 
control strategy. In our study, HR was defined as the slope coefficient of body weight (BW) when TICK, GIN, and EIM 
burdens were used as environmental gradients in random regression models. In total, 1712 animals were evaluated 
at five measurement events (ME) at an average age of 331, 385, 443, 498, and 555 days, which generated 7307 body 
weight (BW) records. Of the 1712 animals, 1075 genotyped animals were used in genome‑wide association studies 
to identify genomic regions associated with HR.

Results Posterior means of the heritability estimates for BW ranged from 0.09 to 0.54 across parasites and ME. The 
single nucleotide polymorphism (SNP)‑derived heritability for BW at each ME ranged from a low (0.09 at ME.331) 
to a moderate value (0.23 at ME.555). Those estimates show that genetic progress can be achieved for BW 
through selection. Both genetic and genomic associations between BW and HR to TICK, GIN, and EIM confirmed 
that parasite infestation impacted the performance of animals. Selection for BW under an environment with a con‑
trolled parasite burden is an alternative to improve both, BW and HR. There was no impact of age of measurement 
on the estimates of genetic variance for HR. Five quantitative trait loci (QTL) were associated with HR to EIM but none 
with HR to TICK and to GIN. These QTL contain genes that were previously shown to be associated with the produc‑
tion of antibody modulators and chemokines that are released in the intestinal epithelium.

Conclusions Selection for BW under natural infestation and controlled parasite burden, via prophylactic parasite 
control, contributes to the identification of animals that are resilient to nematodes and Eimeria ssp. Although we veri‑
fied that sufficient genetic variation existed for HR, we did not find any genes associated with mechanisms that could 
justify the expression of HR to TICK and GIN.
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Background
Ecto- and endoparasites such as ticks (TICK), gastroin-
testinal nematodes (GIN), and Eimeria spp. (EIM) are 
endemic in tropical countries and responsible for several 
economic and productivity losses in cattle production 
systems [1]. Parasitic loads represent an important chal-
lenge for cattle production, especially in tropical coun-
tries, such as Brazil. An animal’s ability to respond to 
parasite loads is one of the stress factors that can impact 
the sustainability of the production system.

In the literature, different phenotypes are used to 
describe response to disease, among which we would 
like to highlight resistance, tolerance and resilience [2]. 
Resistance is the ability of the host to fully resist to infec-
tion, i.e., the ability to prevent parasite infection [3]. 
Tolerance is often described as the changes in the host’s 
fitness, once it is infected, with respect to the evolution of 
the internal pathogen burden [3]. In contrast, resilience 
(HR) can be measured as the ability of the host, once 
infected, to maintain its fitness regardless of the inter-
nal pathogen burden [2, 4–6]. As highlighted by Knap 
and Doeschl-Wilson [2], HR can be defined as a combi-
nation of both resistance and tolerance mechanisms. In 
summary, the main difference between the last two defi-
nitions is whether the levels of internal pathogen burden 
are considered (tolerance) or not (resilience).

HR can be estimated as a continuous trait using reac-
tion norm models of the host’s performance on envi-
ronmental stress factors [2]. Under the assumptions of 
the reaction norm model, different patterns of growth 
depending on parasite burden can be described. There is 
no study in the literature that has attempted to estimate 
the different relationships between these factors, and we 
have no strong indication of the most adequate assump-
tion for this. Thus, assuming a simplistic linear relation-
ship between growth and parasite burdens, the additive 
variance of a performance trait can be decomposed into 
three components: the intercept variance (i.e. the additive 
component of the variability in performance assuming 
the absence of stress factors), the slope variance (i.e. the 
HR), and the covariance between intercept and slope [7]. 
Therefore, when linear regressions are used, the genetic 
correlation between the intercept and slope coefficients 
quantifies the genetic association between performance 
and HR [8].

Reaction norm models have been used to estimate HR 
to Fasciola hepatica in Irish cattle [9] and resilience of 
Rainbow trouts to freshwater × seawater [10]. Further-
more, Mulder [11] showed that these models can be used 
in selection programs to improve response to selection 
for resilience. In our study, we estimated HR to TICK, 
GIN, and EIM using the host’s body weight and parasite 
burdens in random regression models. Therefore, our aim 

was to estimate genetic parameters for both BW and HR 
to TICK, GIN, and EIM and to identify genomic regions 
associated with these phenotypes in Nellore cattle.

Methods
Data collection and edition
We used the data on Nellore bulls that were born 
between 2010 and 2016 and raised on the Mundo Novo 
commercial farm, which is located in Uberaba, Minas 
Gerais state, Brazil (19° 24′ 33″ S and 48° 06′ 34″ W, at 
an altitude of 840 m, with a Monsoon-influenced humid 
subtropical climate or Cwa weather according to the 
Köppen scale). The Ethics and Animal Experimentation 
Committee of the Universidade Federal de Minas Gerais 
approved the experiment and data collection (Protocol 
255/2010). Detailed description about the farm and the 
herd are in Passafaro et al. [12].

The bulls were raised on pasture, which comprised 
mainly (> 80%) grass of the Uruchloa genus, with a stock-
ing rate of approximately 0.98 animal unit per hectare. 
Animals had free access to mineral supplementation and 
clean water throughout the year. After weaning (210 days 
old on average), the males were evaluated in performance 
tests that lasted 294 days, and included 70 days of adapta-
tion, to minimize potential nutritional and social stress, 
and 224 days of evaluation (Fig.  1). Animals that were 
evaluated together, in the same performance test, were 
raised under the same environmental conditions, ate 
grass of the same quality, and were subjected to similar 
social, adaptive, and environmental challenges for at least 
the last 56 days before the measurement events (ME).

The bulls were weighed at six ME: at day 1 of the per-
formance test (data not used in our study), at the end of 
the adaptation period (day 70) and at four intervals of 
56 days until the end of the test (Fig.  1), which defined 
five ME. The average age of the animals was 331, 385, 
443, 498, or 555 days from the first to the fifth ME, 
respectively.

The tick counts used in the present study were obtained 
at each ME by counting the engorged female ticks, with 
a length size > 4.5  mm, on the right side of each animal 
[13]. The egg counts of gastrointestinal nematodes (GIN) 
and the oocyst counts of Eimeria spp. (EIM) were esti-
mated by the number of eggs or oocysts per g of faeces, 
according to the modified McMaster technique [14].

Faecal samples were collected directly from the ani-
mals’ rectum using properly identified and lubricated 
plastic bags. They were then cooled and transferred 
into chilled coolers in the laboratory. To perform the 
counts, we diluted 2 g of faeces with 28 mL of water, pre-
pared 2-mL aliquots of this mixture and mixed each ali-
quot with 2 mL of saturated Sheater’s solution (500 g of 
sugar, 6.5 mL of phenol and 360 mL of water). Then, a 
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McMaster chamber was filled with 0.15 mL of the final 
solution to perform the counts of eggs and oocysts. Thus, 
in this study, tick, egg, and oocyst counts are the real 
counts observed on the right side of each animal or in the 
McMaster chamber.

Cohorts were defined by the combination of con-
temporary group (i.e. animals evaluated at a same per-
formance test) and ME and only cohorts with more 
than five individuals were considered, thus, 7307 body 

weight records and parasite counts on 1712 animals 
were evaluated in this study (see Additional file  1: 
Table S1 and Additional file 2: Fig. S1). The pedigree file 
included 5944 animals from approximately nine gener-
ations, with 130 sires (with an average of 13.17 ± 12.46 
offspring) and 1132 cows (with an average of 1.51 ± 0.77 
offspring). The number of generations in the pedigree 
(generation coefficient) was calculated as follows:

where GCi is the generation coefficient of the individual 
i ; GCSi is the generation coefficient of the sire of animal i ; 
and GCDi is the generation coefficient of the dam of ani-
mal i [15]. Individuals with no known parent have a GC 
equal to one, which means that they belong to the base 
population. In the present study, the population had an 
average generation coefficient ± standard deviation of 
5.55 ± 2.45, ranging from 1 to 9.81. The summary statis-
tics for the data used in the present study are presented 
at Table 1.

The bulls included in the present study were sub-
jected to natural parasite infestation. Prophylactic 
parasite control is a routine strategy on the farm and 
integrates a group of sanitary management practices. In 
the studied herd, this strategy includes deworming with 
Ivermectin 4% (1 mL of Ivermectin per 50  kg of live 
BW—Master LP, Ouro Fino Saúde Animal, Cravinhos, 
SP) at the beginning of the performance tests (day 1 of 
the adaptation period). Approximately 65% of the bulls 
were dewormed. The choice of animals that received 
treatment was based on contemporary groups in such a 
way that all the animals that belonged to randomly cho-
sen contemporary groups were dewormed.

Blood samples were collected with sterilized syringes 
into 3.5-mL vacuum tubes containing 9NC coagula-
tion sodium citrate 3.2%, to prevent blood from clot-
ting and maintain DNA integrity. Blood samples were 
frozen and transferred into chilled coolers in the labo-
ratory and stored in freezers at − 20 °C. In total, 1230 
blood samples were selected for genotyping with a 
low-density DNA array, i.e. the Z-chip v2 (Neogen, 
Lincoln, Nebraska, EUA, which contains 27,533 single 
nucleotide polymorphisms (SNPs) mapped to the ARS-
UCD1.2 bovine genome assembly). Most of the geno-
typed bulls were from the performance tests with more 
than 20 animals per group, as described above, and 
each animal had data for the three parasites for at least 
four ME.

The quality control of DNA samples and markers 
was carried out using the SNP & Variation Suite v8.8.3 
software [16]. Alleles with a GenTrain Score < 0.6 were 

GCi =

(

GCSi + GCDi

2

)

+ 1,

Fig. 1 Diagram explaining data collection for performance tests 
of pasture raised cattle on the Mundo Novo farm—Brazil.  Body 
weight (BW), ticks (TICK), eggs of gastrointestinal nematodes (GIN) 
and oocysts of Eimeria spp. (EIM) counts were collected at each 
measurement event (ME). “Age” represents the average age of animals 
at each ME. “nb” is the number of bulls and “nc” is the number 
of cohorts evaluated at each ME. Red arrow indicates a 70‑day 
interval between evaluations, while blue arrows indicate a 56‑day 
interval
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considered as missing calls in the panel. Only SNPs 
with a call rate ≥ 0.95, a minor allele frequency ≥ 0.05, 
and located on the autosomes and the X chromosome, 
and samples with a call rate > 0.90 were kept for further 
analyses. After quality control, the SNP panel included 
21,667 SNPs (78.7% of all tested SNPs) and 1075 sam-
ples (87.4% of genotyped samples).

Covariance components
We used single-trait linear random regression models 
(STM) where BW at each ME was considered as a depend-
ent variable (trait) and the median count of the parasites 
for each cohort (Table  2) as an independent variable and 
no effect of co-infection, therefore we generated 15 data-
sets with both BW records and parasite counts. In the 

remainder of this paper, environmental parasite burden 
will refer to the median count of parasites for each cohort, 
which is our proxy for the strength of external (environ-
ment) infection, and not for individual parasite burden.

The 15 STM were implemented using the Bayesian infer-
ence methodology and can be described as:

where yijkl is the weight of the animal i , evaluated for 
cohort j , at age k and submitted to an environmental par-
asite burden l ; cj is the systematic effect of cohort j ; d1 , is 
the slope to fit the effect of age at which each animal was 
evaluated; m(k) is the age (in days) of the animals on the 
day of evaluation; b0 and b1 are the intercept and slope 
to fit the BW mean trajectory along the parasite burden, 

yijkl = cj + d1m(k) + b0 + b1x(l) + a0(i) + a1(i)x(l) + eijkl,

Table 1 Summary statistics for age at weighing (age), body weight (BW), tick (TICK), gastrointestinal nematode (GIN), and Eimeria spp. 
(EIM) counts at five measurement events (ME) in Nellore bulls

n number of observations, sd standard deviation, min minimum value, max maximum value

Trait n Mean sd Median Min Max

ME.331

 Age (days) 1539 330.72 23.49 334 275 373

 BW (kg) 1539 223.08 33.23 220 138 343

 TICK 1539 5.32 6.65 3 0 80

 GIN 1539 4.71 6.82 2 0 80

 EIM 1539 3.99 9.55 0 0 153

ME.385

 Age (days) 1214 385.66 23.60 388 339 428

 BW (kg) 1214 238.87 35.44 237 135 411

 TICK 1214 9.09 11.34 5 0 131

 GIN 1214 4.93 6.33 3 0 43

 EIM 1214 4.50 14.18 0 0 255

ME.443

 Age (days) 1546 443.18 23.69 446 390 485

 BW (kg) 1546 261.21 36.29 260 156 380

 TICK 1546 5.34 7.36 3 0 63

 GIN 1546 5.79 7.64 3 0 80

 EIM 1546 3.45 13.27 0 0 284

ME.498

 Age (days) 1458 498.23 23.76 501 446 541

 BW (kg) 1458 305.67 36.84 306 176 429

 TICK 1458 6.24 8.27 3 0 80

 GIN 1458 5.13 6.28 3 0 71

 EIM 1458 3.63 12.79 0 0 182

ME.555

 Age (days) 1550 555.22 23.52 558 501 597

 BW (kg) 1550 337.27 37.91 336 214 467

 TICK 1550 6.48 8.71 3 0 72

 GIN 1550 4.22 6.20 2 0 73

 EIM 1550 3.30 13.91 0 0 328
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respectively; x(l) is the median of parasite counts (TICK 
or GIN or EIM) of the animals’ cohort; a0(i) and a1(i) are 
the random intercept and slope to fit the additive genetic 
effect of each animal i , respectively; and eijkl , represents 
the error associated with each observation. It is impor-
tant to highlight that a0(i) estimates the genetic effects for 
BW in the absence of parasite challenge, and a1(i) is the 
HR. Furthermore, we assumed that there is a covariance 
between a0(i) and a1(i) and the variance components asso-
ciated with those effects were estimated using pedigree 
information (traditional BLUP).

The additive genetic variances for BW for each 
observed environmental burden were estimated by 
the product P⊗G0⊗ P

′ . The P matrix has a number 
of lines equal to the number of different environments 
and two columns. The first column of P is a vector of 
1s for adjusting the intercept, and the second column is 
the vector containing the observed median of parasite 
burden in the different cohorts; P′ is the transpose of 
the P matrix; G0 is the covariance matrix between the 
regression coefficients a0(i) and a1(i) , and ⊗ is the Kro-
necker product. For further information about the STM 
see Additional file 3: Methods.

Genome‑wide association studies
The 20 (4 traits × 5 ME) genome-wide association studies 
(GWAS) were carried out for HR to the three parasites 
and for BW and five ME using the SNP & Variation Suite 
v8.8.3 software [16]. A mixed model was used to estimate 
the solutions for each of the 21,667 SNPs that passed 
quality control and an association test P-value related 
to each SNP solution was generated. For the GWAS, we 
used genotypes from animals for which their samples 
passed quality control (1075 samples). For all these ani-
mals, both BW records and estimated breeding values 
(EBV) for HR were available. The GWAS model used for 
BW can be described as:

where BW is the vector of body weight records for each 
animal at each evaluated age; X is the incidence matrix 
for the fixed covariates (cohort and age); b is the vector 
of solutions for the fixed effects; Z is an incidence matrix 
for the genetic additive random effects (estimated from 
the GRM); u is the vector of the solutions for the random 
additive genetic effects related to the observations; S is a 
matrix of genotypes (coded as 0, 1, or 2 copies of minor 
allele) for the evaluated SNPs, with number of rows equal 
to the number of genotyped animals, and number of col-
umns equal to the number of SNPs in the genotype panel; 
a is the estimated effect of the evaluated SNP; and e is the 
vector of errors associated with each observation. SNP 
& Variation Suite v8.8.3 [16] uses a restricted maximum 
likelihood to estimate the solutions for the unknown 
parameters of the model.

Estimated breeding values estimated for HR to each 
parasite at each ME using STM were considered as the 
pseudo-phenotypes of HR for GWAS with no additional 
fixed effect. Note that using EBV as phenotypes may lead 
to double-counting of information and heterogeneous 
residuals. Given that all animals in the analysis had own 
phenotypes, it is expected that they had reasonably simi-
lar EBV, and thus homogeneous residuals, and that the 
double-counting of information was limited. Thus, the 
model used for GWAS for HR can be described as:

where HR is the vector of EBV for host resilience to 
TICK, GIN, or EIM at each ME and the other terms are 
as previously described. The GRM used for GWAS was 
calculated according to the first method of VanRaden 
[17]. We applied it with a full dosage compensation cor-
rection to include the markers on the X chromosome in 
the calculation of the GRM since the number of copies 
of the alternate allele at any locus of X-chromosome can 

BW = Xb+ Zu + Sa + e,

HR = Zu + Sa + e,

Table 2 Summary description of the median counts of ticks 
(TICK), gastrointestinal nematodes (GIN), and Eimeria spp. (EIM) 
per cohort

n number of cohorts, Min and Max minimum and maximum median counts used 
to describe each cohort, respectively

Trait per cohort n Median Min Max

ME.331

 TICK 48 3.50 0 16

 GIN 48 3.25 0 9

 EIM 48 0.00 0 11

ME.385

 TICK 40 7.00 0 33

 GIN 40 4.00 0 11

 EIM 40 2.00 0 10.50

ME.443

 TICK 48 2.75 0 15

 GIN 48 4.00 0 12

 EIM 48 0.00 0 16.50

ME.498

 TICK 44 4.00 0 16

 GIN 44 3.00 1 8

 EIM 44 0.00 0 11

ME.555

 TICK 48 4.25 0 18

 GIN 48 2.75 0 8

 EIM 48 0.00 0 7
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only be zero or one, which makes allele frequency cal-
culations for SNPs at X-chromosomes in males different 
from the calculation of allele frequencies at autosomes 
[18]. It is not our objective to discuss about the effect of 
dosage compensation on the evaluated traits. However, 
there is evidence of this effect on the variation of com-
plex phenotypes [19], thus we proceeded with the dosage 
compensation correction. Further information about the 
topic is described in Sidorenko et al. [19].

It is important to highlight that, in the present study, 
the heritability for BW was estimated based on both the 
GRM and the pedigree-based relationship matrix, thus 
for BW we present both the conventional heritability and 
the SNP-derived heritability estimates.

The pairwise SNP correlations of BW with HR to TICK, 
HR to GIN, and HR to EIM for each ME were computed 
by the Pearson correlation between the SNP effects of 
each one of the traits, as proposed by Fortes et  al. [20], 
and will be considered in the present paper as proxies for 
the genetic correlations between traits.

Quantitative trait loci associated with host resilience
The sample-size-based approach described by Willer 
et al. [21] was used to perform the meta-analysis to com-
bine the results of the five described GWAS of HT to 
TICK (GIN and EIM) using the SNP & Variation Suite 
v8.8.3 [16]. In summary, a Z-score and an overall P-value 
for each marker were calculated by combining the SNP 
P-value, direction of the effect, and sample size gener-
ated by the previous GWAS. The meta-analysis was per-
formed for markers that had solutions estimated in at 
least two studies (i.e. for at least two ME) and no genomic 
control was performed during the meta-analyses. Then, 
we used a Bonferroni correction to define the two groups 
of SNPs: those that were significantly associated with a 
P-value < 2.31 × 10−6 and those that were suggestively 
associated with a P-value <  10−4 [22, 23].

Based on the results of the meta-analysis, we defined 
quantitative trait loci (QTL) associated with each trait. 
The QTL boundaries were defined as follows: first, 
we identified an initial peak, i.e. the SNP with the low-
est P-value for each chromosome (Chr); second, we 
searched for significant SNPs within 0.5-Mbp regions up 
and downstream of the peak SNP. If we identified other 
significative SNPs within this interval, the boundaries of 
the QTL were expanded to include the SNP and another 
0.5-Mbp region (up and downstream) was investigated. 
The process was repeated until there was no more signifi-
cant SNPs in these 0.5-Mbp windows. Finally, a new peak 
SNP was called if there was a significant SNP on the same 
Chr but outside of the boundaries of the first QTL. The 
process was repeated for each Chr until no more peak 
SNPs could be identified.

Moreover, only regions with at least four significant 
or suggestive SNPs were considered as QTL (adapted 
from van den Berg et  al. [24]). In addition, only sug-
gestive SNPs (P-value <  10−4) that were in high linkage 
disequilibrium (LD) with the peak or another signifi-
cant SNP in the QTL were considered. The LD between 
SNPs was evaluated by the D prime (D’) value that was 
estimated using the expectation–maximization method 
by pairwise analysis in the SNP & Variation Suite v8.8.3 
[16]. SNPs were considered in high LD when D′ was 
greater than the mean + 2 standard deviations of the 
D′ computed between all combinations of SNPs on the 
same Chr.

We searched for genes located within the QTL bounda-
ries using the ARS-UCD1.2 bovine genome assembly 
(available at https:// www. ncbi. nlm. nih. gov/ assem bly/ 
GCA_ 00226 3795.2) with the GALLO package [25] of the 
R software [26]. This process resulted in a list of target 
candidate genes for HR to each parasite, which were used 
for the candidate gene prioritization analysis.

Candidate gene prioritization analysis was conducted 
using the ToppGene Suite [27] and consisted of two-
steps. First, for each trait, a functional enrichment anal-
ysis was performed by building a list of the genes that 
were more likely to be related with our phenotypes, 
hereafter named the trained gene list. This trained gene 
list was constructed based on keywords (see Additional 
file 1: Table S2) that describe each of the evaluated phe-
notypes (BW and HR to the three parasites). These lists 
were obtained using the web application GUILDify 
v2.0 [28] for the phenotypic characterization of genes. 
GUILDify searches for genes starting from user-pro-
vided keywords in the Biologic Interaction and Network 
Analysis (BIANA) knowledge database. The genes associ-
ated with the keywords are used as seeds to generate the 
protein interaction networks, for the selected organism, 
and analysed with graph theory algorithms to prioritize 
new disease genes [28]. In the present study, the selected 
model organism was Homo sapiens, since bovine was not 
an option. The Netscore prioritization algorithm from 
the GUILD package was used (with repetition = 3 and 
interaction = 2; default values of GUILDify). The output 
of GUILDify is a trained list of genes that are ranked 
according to the interaction network. The first 100 genes 
were used as the trained gene list for each studied trait.

For functional enrichment analysis, the trained gene list 
was compared with random sets of genes in the genome 
to search for any functional category or parameter that 
was overrepresented in our trained list compared with 
the background. We used Gene Ontology (Molecular 
function, Biological process, and Cellular component), 
Human phenotype, Mouse phenotype, Pathway, Pub-
Med, Transcription factor binding site, Co-expression, 

https://www.ncbi.nlm.nih.gov/assembly/GCA_002263795.2
https://www.ncbi.nlm.nih.gov/assembly/GCA_002263795.2
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and Disease as training databases. The P-value cut-off for 
each training parameter was 0.05 with a false discovery 
rate correction. After this step, a representative profile of 
the trained gene list was obtained.

In the second step, a similarity score was generated for 
each gene in our list of candidate genes. This score is cre-
ated by functional annotation of the candidate gene fol-
lowed by a comparison of its function to each enriched 
term that is learned in the training step. The similar-
ity score calculation and the associated P-values are 
described in Chen et al. [27]. In summary, a fuzzy-based 
similarity measure is applied for categorical terms [29], 
and Pearson correlation between the test gene and the 
enriched gene lists is applied for quantitative functional 
parameters. In the case of a missing value (for instance, 
lack of one or more annotations for a test gene), the score 
is set to − 1. Otherwise, it is a real value within [0, 1] 
[27]. At the end of this process, each gene will have one 
similarity score and one P-value for each one of the func-
tional categories.

A final test is carried out to compute an overall P-value 
that will be used to determine if each gene was prior-
itized or not. For this computation, we need to assume 
that the P-values come from independent tests, thus the 
Fisher’s inverse chi-square method was applied to com-
bine the P-values from multiple annotations into an over-
all P-value [27]. The prioritized genes were considered 
to be those with an overall P-value ≤ 0.05. For the candi-
date gene prioritization analysis, we used the default set-
ting in the ToppGene Suite that has a background gene 
set from the genome for computing the P-value with 
5000 coding genes and two features to be considered for 
prioritization.

Results
Genetic parameters for body weight and host resilience
In general, the highest posterior density interval with 
90% of samples (HPD90) related to the posterior mean 
of the intercept and slope variances were wide, indicat-
ing no difference between genetic parameters estimated 
across ME. However, residual variances of BW estimated 
at ME.331 were smaller than those at ME.555 (Table 3). 
The posterior means of the correlation between intercept 
and slope were negative, but the HPD90 associated to 
those estimates were wide and included zero (Table 3).

A rising trend for the additive variance and heritabil-
ity of BW was observed across the trajectories of TICK, 
GIN, and EIM burden (Fig. 2). For instance, the poste-
rior means for the heritability of BW ranged from 0.09 
to 0.44 at ME.331, from 0.13 to 0.51 at ME.385, from 
0.13 to 0.54 at ME.443, from 0.16 to 0.45 at ME.498 
and from 0.11 to 0.42 at ME.555. In spite of the differ-
ences between the heritability estimates for BW when 

parasite count was zero and maximum (maximum 
count of 16 for TICK, 11 for GIN and 10.5 for EIM), 
the HPD90 related to these posterior means were 
large showing no significant differences between them 
(Fig. 2).

The SNP-derived heritability (average ± standard 
error) for BW (Table  4) at each ME ranged from a 
low (0.09 ± 0.06 at ME.331) to a moderate magnitude 
(0.23 ± 0.06 at ME.555), showing that genetic improve-
ment of BW can be achieved through selection. Moreo-
ver, these values were similar to the heritability of BW 
estimated by STM (Fig. 2).

The SNP-derived heritability estimates for HR to 
TICK, GIN, and EIM at each ME were computed 
through GWAS when the slope solutions (genetic 
effects) were considered as the HR phenotype. As 
expected, the magnitude of these estimates was large 
(Table  4), ranging from 0.76 to 0.87 for HR to TICK, 
from 0.80 to 0.93 for HR to GIN, and from 0.77 to 0.84 
for HR to EIM.

While in some cases, the genetic correlations between 
intercept and HR did not differ from zero (because 
HPD90 includes a zero value), the pairwise SNP cor-
relations indicate that there is some genetic associa-
tion between BW and HR. In general, the pairwise SNP 
correlations of BW with HR to GIN and HR to EIM 
were zero, or favourable (Fig.  3). However, pairwise 
SNP correlations of BW with HR to TICK at ME.331 
(− 0.648 ± 0.005), ME.443 (− 0.307 ± 0.006), and ME.498 
(− 0.148 ± 0.007) were unfavourable (Fig. 3). These cor-
relations agree with those estimated between intercept 
and slope, that were also negative (Table 3).

Candidate genes and pathways associated with host 
resilience to TICK, GIN, and EIM
The genes that were associated with HR were searched 
within the QTL that were built from the significant and 
suggestive SNPs obtained by the meta-analysis GWAS 
(Fig.  4). The meta-analysis was processed using the 
GWAS results related to each age, separately, which are 
presented in Additional file  4: Fig. S2, Additional file  5: 
Fig. S3, and Additional file 6: Fig. S4. Information on the 
number of SNPs and linkage disequilibrium thresholds 
used to define the QTL boundaries are in Table 5.

Apart from the presence of some significant isolated 
SNPs, we detected no QTL, i.e. no genomic regions, 
that were associated with HR to TICK and HR to GIN. 
Five QTL located on Chr 4, 6, 7, 12, 13 were associated 
with HR to EIM (Table 6). In total, 47 genes were located 
within these QTL regions (Table 6) and among these, 16 
were prioritized. Information about the genes that were 
prioritized for HR to EIM is in Additional file 1: Table S3.
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Discussion
Environmental parasite burden
In our study, the median counts of parasites were used as 
environmental gradient, once we considered it the best 
descriptor of parasitic load challenging a group of con-
temporary animals. First, it is important to mention that 
the environmental and animal loads are highly depend-
ent due to the fact that life cycle of parasites involves a 
period of time spent in a host organism. For instance, 
the adult tick females lay their eggs in the pasture, where 
hatching occurs. Larvae, nymphs, and adults parasitize 
the host through feeding, and then drop off again on the 
pasture to continue their life cycle [4]. Similarly, gastro-
intestinal parasites and Eimeria spp. have multiple stages 
of development that include some time spent in the host 
organism but not their entire life cycle [30, 31]. However, 
individual loads depend on factors, such as animal resist-
ance, behaviour, and other individual factors, and, thus, 
using individual parasitic loads can mask the real envi-
ronmental challenges. For instance, more resistant ani-
mals might be within cohorts that are highly challenged 
and even then, present zero parasite counts. The opposite 
is also true, when exposed to low environmental loads, a 

highly susceptible animal might face a high parasitic load, 
although most of its contemporaries are parasite free.

HR, which is the main object of our study, is better 
estimated when environmental parasitic loads are avail-
able [32]. Such measurements were not available since we 
worked with data from a commercial herd, which means 
that the animals were not submitted to a high and arti-
ficially infested environment. Thus, we used the para-
site counts observed in different animals from the same 
cohort as an indicator of the environmental load. Since 
counts are discrete measurements, we feel that using 
medians instead of average counts would better describe 
the common load to which all animals from a same 
cohort were exposed. It is important to highlight that we 
developed this study based on environmental parasitic 
burden, which is a proxy for environmental infection 
pressure (or strength of environmental infection), and 
not for host parasitic burden.

At least one animal in each cohort had parasite counts 
greater than zero, even in cohorts for which median par-
asite counts are zero, therefore there were no parasite-
free cohorts and every single animal in our dataset was 

Table 3 Posterior means of genetic parameters (limits of HPD90) for intercept (int) and slope coefficients of body weight at 
five measurement events (ME) when ticks (TICK), gastrointestinal nematodes (GIN), and Eimeria spp. (EIM)  burdena were used as 
independent variables in single‑trait linear random regression models

σ
2

int = additive genetic variance for the intercept; σ 2

slope = additive genetic variance for the slope; rintxslope = genetic correlation between intercept and slope; 
σ
2
e  = residual variance

ME: measurement events when the age of animals was 331, 385, 443, 498 and 555 days on average
a Parasitic burden was modelled using information about the median infestation per cohort (contemporary group)

ME σ
2

int
σ
2

slope
rint×slope σ

2
e

TICK

 331 186.15 (108.00; 262.40) 1.31 (0.29; 2.19) − 0.90 (− 1.00; − 0.78) 360.51 (320.70; 401.60)

 385 81.05 (9.92; 144.50) 0.32 (0.03; 0.59) − 0.29 (− 0.92; 0.52) 465.09 (413.70; 518.30)

 443 112.68 (27.18; 194.80) 0.95 (0.02; 1.84) − 0.54 (− 1.00; − 0.01) 467.66 (416.00; 517.80)

 498 145.38 (54.55; 231.10) 1.09 (0.11; 2.03) − 0.45 (− 0.97; 0.03) 527.59 (465.00; 588.40)

 555 126.41 (43.78; 214.20) 1.03 (0.06; 1.95) 0.02 (− 0.65; 0.87) 535.91 (470.80; 599.80)

GIN

 331 163.83 (70.57; 256.00) 4.53 (1.59; 7.67) − 0.66 (− 0.91; − 0.45) 341.20 (297.80; 390.60)

 385 188.58 (64.33; 301.40) 4.05 (0.97; 6.87) − 0.74 (− 0.94; − 0.54) 439.23 (380.90; 496.90)

 443 119.87 (17.18; 213.50) 1.68 (0.06; 3.10) − 0.53 (− 1.00; 0.08) 468.77 (419.80; 519.40)

 498 222.44 (8.12; 405.60) 6.86 (0.39; 12.92) − 0.60 (− 0.98; − 0.17) 529.12 (468.70; 590.20)

 555 69.36 (1.52; 130.10) 4.68 (0.56; 8.57) 0.18 (− 0.50; 1.00) 549.7 (485.80; 610.40)

EIM

 331 105.77 (38.78; 165.40) 2.65 (0.49; 4.51) − 0.33 (− 0.83; 0.14) 341.27 (291.70; 385.20)

 385 161.31 (57.58; 256.30) 8.16 (2.82; 13.50) − 0.75 (− 0.96; − 0.53) 431.66 (375.00; 489.60)

 443 74.85 (18.39; 131.30) 2.23 (0.42; 3.92) − 0.07 (− 0.80; 0.72) 462.04 (412.00; 513.10)

 498 101.27 (23.98; 172.60) 3.51 (0.62; 6.42) − 0.07 (− 0.70; 0.57) 530.03 (470.80; 591.10)

 555 192.40 (94.15; 292.50) 7.51 (0.96; 12.97) − 0.52 (− 0.92; − 0.14) 536.81 (469.80; 605.00)
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exposed to natural infestation of TICK, GIN and EIM. 
A zero environmental load only indicates that the ani-
mals in these cohorts are less challenged than those in 
cohorts with a median parasite load equal to 5, for exam-
ple. The observed median counts reported here are sim-
ilar to those of other datasets in crossbreed Angus and 
Nellore [33], Colombian Bos taurus cattle breeds [34], 
and German Black and White dairy cows [35]. The low 
parasite load observed here might be partially explained 
by different factors, including the breed evaluated. Nel-
lore cattle is an indicine breed known to be more resist-
ant to highly infested environments [36, 37]. In addition, 
the adoption of rotational grazing [38], and prophylactic 

Fig. 2 Additive genetic variances [ σ2a  (kg2)] and heritability estimates (h2) for body weight (BW) across the trajectories of tick (TICK), nematodes 
(GIN), or Eimeria ssp. (EIM) burden at five measurement events (ME).  ME.331, ME.385, ME.443, ME.498, ME.555 are body weights at each 
measurement event when the average age of animals was 331, 385, 443, 498 and 555 days, respectively

Table 4 SNP‑derived heritability estimates (standard error) 
for body weight (BW) and host resilience to ticks (HR.TICK), 
gastrointestinal nematodes (HR.GIN) and Eimeria spp. (HR.EIM) at 
different measurement events (ME)

ME.331, ME.385, ME.443, ME.498, ME.555: measurement events when the age of 
animals was 331, 385, 443, 498 and 555 days on average

Trait ME.331 ME.385 ME.443 ME.498 ME.555

BW 0.16 (0.06) 0.09 (0.05) 0.16 (0.05) 0.19 (0.06) 0.23 (0.06)

HR.TICK 0.81 (0.04) 0.87 (0.04) 0.81 (0.04) 0.87 (0.03) 0.76 (0.04)

HR.GIN 0.84 (0.04) 0.93 (0.03) 0.80 (0.04) 0.84 (0.04) 0.85 (0.04)

HR.EIM 0.79 (0.04) 0.82 (0.04) 0.77 (0.04) 0.80 (0.04) 0.84 (0.03)
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parasite control strategies largely applied in commercial 
herds might contribute to low parasite loads. It is impor-
tant to have in mind that such controlled parasite burden 
through prophylactic treatment, as in this study, repre-
sents the reality on commercial farms [39–41].

Genetic parameters for body weight and host resilience
The SNP-derived and STM heritability estimates for 
BW obtained here were similar to those reported previ-
ously for the same population [42]. These results con-
firmed that the low-density SNP panel (27K—Z-chip V2, 

Fig. 3 Pairwise SNP correlations between body weight (BW), host resilience to ticks (HR.TICK), gastrointestinal nematodes (HR.GIN), and Eimeria 
spp. (HR.EIM) measured at five measurement events (ME) when the average age of animals was 331, 385, 443, 498, and 555 days.  The values 
above the diagonal are the Pearson correlations between SNP effects (and standard errors of SNP correlations)
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Fig. 4 Manhattan plots for the meta‑analysis of the genome‑wide association studies for HR to ticks (TICK), gastrointestinal nematodes (GIN), 
and Eimeria spp. (EIM) measured at different measurement events.  The dotted line (y = 5.64) indicates the threshold for statistical significance. The 
dashed line (y = 4.00) indicates the threshold for suggestive evidence of association

Table 5 Description of the QTL associated with host resilience to Eimeria spp.

Chr: chromosome;  NSNP: number of SNPs inside the QTL;  NsigSNP: number of significant SNPs inside QTL (associated P-values < 2.31 × 10−6);  NsugSNP: number of 
suggestive SNPs inside QTL (associated P-values > 2.31 × 10−6 and P-values < 2.31 × 10−4);  LDCHR: average linkage disequilibrium observed between SNPs of each Chr; 
 sdLD = standard deviation of  LDCHR;  LD1−n: linkage disequilibrium between the first and last SNP of a QTL

Chr NSNP NsigSNP NsugSNP LDCHR sdLD LD1−n

4 11 1 3 0.17 0.19 0.70

6 14 2 2 0.15 0.16 0.51

7 11 3 1 0.15 0.16 0.85

12 17 3 1 0.17 0.17 0.71

13 39 2 6 0.15 0.16 0.54

Table 6 Description of the quantitative trait locus (QTL) defined from SNPs that were significantly associated with host resilience to 
Eimeria spp.

Genes marked with awere prioritized in the candidate gene prioritization analyses, bwere included in the analyses but not prioritized, and genes with cwere not 
included in the prioritization analyses

Chr chromosome, n number of SNPs within the QTL, IP initial position, FP final position

Chr n IP FP Genes inside QTL

4 11 116,439,784 117,037,674 DPP6a, HTR5Aa, PAXIPb, RF00006c

6 14 90,646,323 91,785,192 CXCL9a, CXCL10a, CXCL11a, NAAA a, SCARB2a, STBD1a, 
ART3b, CCDC158b, NUP54b,  PPEF2b, SDAD1b, SHROOM3b, 
SOWAHBb, ENSBTAG00000004921c, ENSBTAG00000032074c, 
ENSBTAG00000050665c, ENSBTAG00000053885c, ENS-
BTAG00000054432c, SEPT11c, RF00003c, RF00026c

7 11 58,461,990 59,477,630 DPYSL3a, SPINK1a, SPINK5a, JAKMIP2b, SCGB3A2b, 
SPINK6b, STK32Ab, bta-mir-2284y-7c, C7H5orf46c, ENS-
BTAG00000052309c, ENSBTAG00000053960c, RF00026c

12 17 83,457,070 84,943,864 COL4A1a, IRS2a, LIG4a, TNFSF13Ba, ABHD13b, MYO16b, RF00001c

13 39 70,341,842 71,369,326 PTPRTa, ENSBTAG00000002446c, RF00026c
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Neogen, Lincoln, Nebraska, EUA) can capture the poly-
genetic component of the additive variance observed for 
BW in Nellore cattle. The heritability estimates for BW 
in this population were lower than those reported in the 
literature for Nellore cattle of similar ages raised in Bra-
zil, using pedigree information only [43], which can be 
partially explained by the fact that the studied population 
is under selection. Selective breeding can lead to lower 
genetic variability, and consequently, lower heritabil-
ity estimates [44]. The selective breeding program from 
Mundo Novo farm was implemented in 1978 without 
including external candidates, with an intense selection 
for BW, and an efficient animal husbandry approach that 
corresponds to the outstanding practices of a nucleus 
farm. Regarding the high SNP-derived heritabilities esti-
mated for HR in the present study, they do not indicate 
that HR is highly heritable. In fact, these values are a 
statistical artefact since the phenotype of HR is itself an 
estimated breeding value. However, the SNP-derived her-
itability indicates that breeding values estimated using 
pedigree-based genetic evaluations can be efficiently 
explained by the genomic similarity between individuals.

In the present study, we observed a curved trajectory 
of the heritability estimates for BW as the parasitic loads 
increased, with an overall rising trend if we compare 
extreme environments only, however this increase was 
not significant since the HPD90 overlapped. Marques 
et al. [45] observed a rising trend of the heritabilities for 
faecal egg counts (FEC) and a reduction in the heritabili-
ties for BW in Corriedale sheep between environments 
with low or high FEC, but as in our case, these differences 
were not significant because the HPD of heritability esti-
mates overlapped. Challenging environments with higher 
natural or artificial parasite loads are expected to lead 
to more significant effects on both BW and the genetic 
parameters for HR [46]. For instance, the highest herita-
bility estimates for the FAMACHA score in ram and ewe 
lambs were obtained in high worm burden scenarios [47]. 
Similarly, an uprise in the trend of heritability estimates 
for milk yield was observed with increased temperature-
humidity index, a direct indicator of heat stress [48]. 
However, it is important to highlight that opposite trends 
for genetic variances and heritability estimates can be 
observed with increasing parasite burden. Hollema et al. 
[49] showed that a significant decrease in the heritability 
for growth rate of Australian Merino sheep with increas-
ing worm burden. These authors argued that animals in 
an environment with a high worm burden were not able 
to show their genetic potential for growth in the same 
way than animals in an environment with a low worm 
burden could [49]. In short, parasite burden can affect 
animal performance with consequences for the heritabil-
ity estimates.

The pairwise SNP correlations between BW at different 
ME and the genetic correlations between intercept and 
HR, indicate the presence of a genotype × parasite bur-
den interaction for BW, which means that parasite bur-
den might impact the EBV for BW, with consequences 
for selective breeding. It is important to consider para-
site loads in selective breeding programs for BW and 
growth on pastured systems, especially in tropical areas. 
Varying levels of natural infestation, and different strate-
gies for parasite control will impact animal performance 
and therefore affect genetic predictions as well. Thus, it 
is relevant to develop selection strategies that consider 
multiple breeding objectives, including phenotypes that 
might be indicators of animal health or parasite load, like 
the use of ImmuneDEX (IDEX) as selection criteria [50]. 
IDEX is an index that combines animal’s ability to mount 
a cell-mediated immune response (Cell-IR) and an anti-
body-mediated immune response and can help in the 
identification of immune competent animals.

The unfavourable correlations between BW and HR to 
TICK were stronger for younger (ME.331) than older ani-
mals (ME.550). This result might be partially explained 
by the effect of age on immune response mechanisms 
[51–53]. Moreover, the association between animal size, 
skin surface and vasculature density might influence 
these unfavourable correlations [34]. Complementary 
studies are necessary to investigate the genetic mecha-
nisms that underlie HR to different parasites at different 
growth stages. Considering the varying impact of HR 
at different ages, selection programs that measure BW 
at different ages, can develop a selection index to target 
multiple traits with a balancing approach, which might 
do a better job than targeting only BW at a young age. 
On the opposite side, selection for HR to GIN and HR 
to EIM will either benefit to or have no impact on BW, 
in general. These findings need to be further studied and 
validated on larger populations, and with more extreme 
parasite loads.

Candidate genes and pathways associated with host 
resilience
The methods, which were used here to search for func-
tional candidate genes only in the QTL regions, filtered 
out the search for genes associated with HR to TICK and 
HR to GIN. In spite of the absence of significant QTL, 
some SNPs were significantly associated with these traits. 
For research purposes and with the main objective of 
avoiding the discussion of spurious associations from the 
GWAS, we believe that adding the QTL definition based 
on the presence of multiple significant and suggestive 
SNPs at a given region, is a good quality control to select 
for true associations. However, we do acknowledge that 
the population with available phenotypes was small, and 
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that regions with significant SNPs associated with HR to 
TICK and HR to GIN might be within important QTL 
that were not identified because of the limitations due to 
the size of our database. Thus, future studies might bring 
other interesting insights on HR.

We identified several genes in the chemokine path-
ways, such as CXCL9, CXCL10, and CXCL11, which were 
related to HR to EIM. The transcripts of these genes are 
proinflammatory chemokines that are released from the 
intestinal epithelium [54]. The levels of both CXCL9 and 
CLCX11 transcripts were found to be increased in the gut 
tissue of susceptible mice that were artificially infected 
with Trichuris muris, but the up-regulation of these 
genes has not been verified in artificially-infected resist-
ant mice [55]. Furthermore, in vivo neutralization of the 
CXCL10 gene resulted in a significant reduction in worm 
burden and increased rate of epithelial cell turnover in 
infected susceptible mice [56]. Cliffe et  al. [56] demon-
strated that CXCL10 had no effect on the TH1 immune 
response of susceptible animals, indicating that epithe-
lial cell turnover alone can mediate worm expulsion. The 
CXCL9 gene plays an important role in antimicrobial 
defence by protecting the gut of artificially infected mice 
from the invasion by the bacteria Citrobacter rodentium 
and restoring the damaged tissue. These studies in mice 
suggest a possible mechanism underpinning the asso-
ciation of CXCL9, CXCL10, and CXCL11 with HR. The 
immune responses mediated by chemokines is probably 
an important mechanism for HR to all intestine parasites, 
including protozoans. However, further studies in cattle 
are necessary to confirm the role that these genes might 
play in HR.

The modulators of antibody-mediated immune 
response, i.e. the IRS2, LIG4, and TNFSF13B genes were 
associated to HR to EIM in our study. These genes were 
also associated with human susceptibility to the nema-
tode Ascaris lumbricoides, an endemic disease in tropical 
areas [57]. The TNFSF13B gene plays an important role 
in the class-switch recombination process and in the pro-
liferation of B cells by rearranging its DNA sequence to 
switch their expression from one class of immunoglobu-
lin, such as IgM, to an immunoglobulin heavy-chain 
constant region, which results in antibodies with differ-
ent effector functions [58]. Moreover, the expression of 
TNFSF13B in the intestinal tissue of chickens that were 
orally infected with Eimeria acervulina increased after 
coccidiosis infection and led to a high antibody response 
[59]. Therefore, expression of HR to EIM can be associ-
ated with intestinal homeostasis maintenance and adap-
tive immune response. The genes that are significantly 
associated with HR to EIM were previously associated 
with nematode infections thus, it is possible that the 
defence mechanisms developed by animals exposed to 

GIN and EIM are partially similar. Further studies are 
required to validate these associations and the possi-
ble mechanisms that link the above discussed candidate 
genes with HR in cattle.

Conclusions
Selection under natural infestation and controlled para-
site burden, via prophylactic parasite control, contrib-
utes to identify animals that are resilient to nematodes 
and Eimeria ssp. and that are expected to perform better 
under challenging environments (i.e. tropical regions). 
Chemokine pathways and intestinal epithelial cells are 
important for HR to gastrointestinal parasites and further 
studies focused on the expression of the candidate genes 
discovered in this study might help to better understand 
the HR mechanisms to different parasites.
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