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With humanity facing an unprecedented climate crisis, the con-
servation of tropical forests has never been so important – their
vast terrestrial carbon stocks can be turned into emissions by climatic
and human disturbances. However, the duration of these effects is
poorly understood, and it is unclear whether impacts are amplified in
forests with a history of previous human disturbance. Here, we focus
on the Amazonian epicenter of the 2015–16 El Niño, a region that
encompasses 1.2% of the Brazilian Amazon. We quantify, at high
temporal resolution, the impacts of an extreme El Niño (EN) drought
and extensive forest fires on plant mortality and carbon loss in un-
disturbed and human-modified forests. Mortality remained higher
than pre-El Niño levels for 36 mo in EN-drought–affected forests
and for 30 mo in EN-fire–affected forests. In EN-fire–affected forests,
human disturbance significantly increased plant mortality. Our inves-
tigation of the ecological and physiological predictors of tree mor-
tality showed that trees with lower wood density, bark thickness
and leaf nitrogen content, as well as those that experienced greater
fire intensity, were more vulnerable. Across the region, the 2015–16
El Niño led to the death of an estimated 2.5 ± 0.3 billion stems,
resulting in emissions of 495 ± 94 Tg CO2. Three years after the El
Niño, plant growth and recruitment had offset only 37% of emis-
sions. Our results show that limiting forest disturbance will not only
help maintain carbon stocks, but will also maximize the resistance of
Amazonian forests if fires do occur.*

Amazon | degradation | El Niño | forest fires | logging

The Amazon basin is critically important for climate regula-
tion, biodiversity conservation, and for supporting the liveli-

hoods of millions of people (1). However, all these can be affected
by the climate crisis (2, 3). One way to mitigate the impacts of
climate change is through preserving the Amazon biome, which
can act as an important carbon sink, sequestering more carbon via
photosynthesis than emitting via decomposition and respiration
(4). Nevertheless, this sink can become a source due to elevated
plant mortality during extreme droughts (5, 6) or as a consequence
of direct anthropogenic disturbances [e.g., selective logging and
forest fires (7, 8)], which now affect an area much greater than
that deforested (9). While the individual influence of extreme
droughts and anthropogenic disturbances on carbon stocks are
increasingly well known (10, 11), the combined effects of these
two stressors remain poorly understood (12). Furthermore, in
years of extreme drought, there is an increase in the occurrence
of forest fires (7) as more fires escape agricultural lands and burn

surrounding forests (13), which become temporary flammable due
to drought conditions (14). According to climate predictions, ex-
treme droughts and forest fires will become more frequent in much
of Amazonia (15, 16), being exacerbated by increasing tempera-
tures (17), and could herald the start of large-scale forest dieback
(2). It is therefore vital to understand the severity and the duration
of drought and fire effects on plant mortality and subsequent
carbon loss.
Although increased plant mortality is the main mechanism by

which the Amazon can switch from a carbon sink to a source, it is
unclear what ecological and physiological factors can increase mor-
tality in forests affected simultaneously by an extreme drought and
anthropogenic disturbance. During a severe drought, the mortality of
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plants due to carbon starvation or hydraulic failure (18) can be
heightened by morphological traits (e.g., stem size, height, and
wood density), competition for water with other individuals, or
attacks by herbivores (19). Similarly, local anthropogenic disturbance
events can lead to increased mortality of a nonrandom portion of the
plant community—for example, selective logging disproportionately
impacts larger trees with high wood density because of their timber
value (20). However, mortality from forest fires—which were largely
unprecedented during the evolution of the Amazon’s flora—is less
understood (21) and has been mostly attributed to cambium
damage resulting from the lack of protection offered by the thin
bark of Amazonian trees (22). Determining what predictors influ-
ence plant mortality during drought and fire events in undisturbed
and human-modified forests, as well as the duration of each factor’s
effect, will advance our understanding of the resilience of Amazo-
nian forests in the Anthropocene.
Here, we address these knowledge gaps by examining 1) the

duration of the effects of the 2015 to 16 El Niño–driven drought
and fires on plant mortality and carbon stocks, 2) whether previous
anthropogenic disturbance affects the El Niño impacts on plot-
level stem mortality and carbon stocks, and 3) the ecological and
physiological predictors of tree mortality over time. Finally, we 4)
scale up our results to our study region—the Lower Tapajós—
comparing the CO2 emissions resulting from the 2015 to 16 El
Niño with the annual CO2 fluxes resulting from forest growth and
loss across the entire Brazilian Amazon (see Methods).

Study Region and Plot Network
The Lower Tapajós, a 6.5-million hectare region of Eastern Ama-
zonia, is composed of a mix of undisturbed and human-modified
forests, which have experienced selective logging and wildfires in
the past (23)—a landscape configuration very common in many
parts of Amazonia (SI Appendix, Fig. S1). In 2015 to 16, the Lower
Tapajós was the Amazonian epicenter of that year’s El Niño
event—temperature anomalies were between 1.5 to 2 °C higher
than observed in previous El Niños (17), the maximum climato-
logical water deficit (a measure of dry season intensity) peaked
at −448 mm, the highest deficit in the 19-y record (i.e., 2000 to
2018—see Methods), and the climatological water deficit (a mea-
sure of dry season length) remained negative for 8 mo, 2 mo longer
than usual (SI Appendix, Fig. S2). These hot and extremely dry
conditions contributed to unprecedented mega-wildfires, burning
one million hectares of forests throughout the dry season (SI Ap-
pendix, Fig. S3A). To investigate the impacts of the El Niño
drought and fires on undisturbed and human-modified forests,
we conducted quarterly surveys fromOctober 2015 to October 2018
in which we monitored the fate of 6,117 stems in 21 long-term plots.
The plots were distributed along a gradient of pre-El Niño human
disturbance, including undisturbed, logged, logged-and-burned, and
secondary forests (hereafter referred to as pre-EN forest distur-
bance classes; SI Appendix, Table S1). During the El Niño, 13 plots
were only affected by drought (EN-drought-affected, hereafter),
while eight were also affected by wildfires, burning between the last
week of November 2015 and the first of January 2016 (SI Appendix,
Fig. S3B). We use the term “EN-fire-affected” for these plots but
recognize that they suffered both drought and fire effects.

The Duration of El Niño Effects on Plant Mortality and Carbon
Loss
Our first analysis evaluated the magnitude and duration of the El
Niño effects on stem mortality and carbon loss using a Bayesian
change point model, a useful technique for examining changes in
trends over time (see Methods). We found that in EN-drought–
affected forests, there was a small increase in the mortality of
stems ≥10 cm in diameter at breast height (DBH), which per-
sisted for the whole 3 y of continued monitoring (Fig. 1A). No
significant drought response was detected for stems <10 cm
DBH (Fig. 1C), with mortality rates continuing similar to those

of baseline levels. Over the whole sampling period, cumulative El
Niño-mediated mortality of stems ≥10 cm DBH and <10 cm DBH
in EN-drought–affected forests averaged 10 and 7%, respectively.
In EN-fire–affected forests, mortality remained above baseline
levels for 30 mo for stems≥10 cmDBH and for 1 y for stems<10 cm
DBH (Fig. 1 B and D). On average, we observed a mortality of 47%
of stems ≥10 cm DBH and of 73% of stems <10 cm DBH in EN-
fire–affected forests. These high levels of overall stem mortality
explain why mortality rates went back to baseline levels in EN-
fire–affected forests—there were not many stems left from the
original plant stock, and although fire-driven mortality persisted,
it was not enough to surpass baseline levels.
The El Niño drought led to a median loss of 9.0 Mg · C · ha−1

(95% credible interval: 5.2 to 12.9) over the whole sampling
period, a figure 5.7 times smaller than in EN-fire–affected forests
(51.5 Mg · C · ha−1; 95% credible interval: 39.8 to 61.1). In
EN-drought–affected forests, the pattern of carbon loss remained
unchanged throughout the 3 y despite a peak in plant mortal-
ity immediately after the El Niño (Fig. 1 A, C, and E). In
EN-fire–affected forests, carbon loss increased substantially in
the first year after the El Niño (Fig. 1F), driven by the large spike
in stem mortality (Fig. 1 B and D).

El Niño Impacts on Undisturbed and Human-Modified Forests
We used Bayesian ANOVA to assess whether the effects of the
El Niño on plant mortality and carbon loss were higher in human-
modified forests than in undisturbed controls (SI Appendix, Fig.
S4). This plot-level assessment of plant mortality revealed two
cases in which previous disturbance amplified the El Niño effect:
for stems <10 cm DBH, mortality from drought alone was sig-
nificantly higher in secondary forests (SI Appendix, Fig. S4C and
Table S2); while for stems ≥10 cm DBH, the impact from
drought and fire combined was higher across all human-modified
forests (SI Appendix, Fig. S4B and Table S2). The results for
carbon loss were very different from those for mortality. In EN-
drought–affected forests, carbon loss was significantly higher in
undisturbed controls despite all forest classes presenting similar
levels of absolute and relative stem mortality (SI Appendix, Fig.
S4A). In EN-fire–affected forests, relative and absolute carbon
loss was similar across all pre-EN forest disturbance classes (SI Ap-
pendix, Fig. S4B), even though a greater number of stems ≥10 cm
DBH died in human-modified forests. These apparently contradic-
tory results can be explained by differences in size structure—in
human-modified forests, stems are smaller and shorter than in un-
disturbed controls (SI Appendix, Table S1), and their mortality results
in the loss of less carbon. Conversely, the death of a few very large
stems, which are either absent or much rarer in human-modified
forests, can lead to the loss of a disproportionate amount of car-
bon in pre-EN undisturbed forests.

Identifying Predictors of Tree Mortality
We employed Bayesian survival analysis to examine 11 potential
ecological and physiological predictors of mortality for trees ≥10 cm
DBH (n = 2,476). To increase statistical power and find general-
izable trends, we substituted our pre-EN forest disturbance classes
with a continuous variable that acts as a strong proxy of the intensity
of previous human disturbance—plot-level mean wood density
(24). We expected that postdrought and postfire mortality would
be positively influenced by a) previous anthropogenic distur-
bance (low plot-level mean wood density), b) traits that can lead
to either carbon starvation or hydraulic failure (taller and larger
trees, those with low wood density, and trees with leaves with
high specific leaf area and high nitrogen and phosphorus content),
c) competition (higher levels of liana loads), d) higher levels of
herbivory, e) lower stem protection (thinner bark), and f) greater
fire intensity (char height) in the case of EN-fire–affected forests
(19, 24). Last, we used the survival analysis to evaluate the mortality
sensitivity of trees to variation in the mortality predictors.
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Stem wood density was the only predictor of large tree mortality
in EN-drought–affected forests, with lower wood density trees being
less likely to survive (SI Appendix, Fig. S5 A and B and Table S3).
This variable led to an increase in mortality sensitivity for 30 mo

(SI Appendix, Fig. S5C). In EN-fire–affected forests, five variables
predicted mortality (Fig. 2). Among these, stem wood density was
the most influential—stems in the fifth percentile of the observed
gradient of wood density values were more than three times as
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likely to have died by the end of the time series as those in the 95th
percentile. Stem wood density raised the mortality sensitivity
throughout almost the entire time series (Fig. 2K). Pre-EN plot-
level mean wood density (a continuous variable that acts as a proxy
for previous human disturbance; see Methods) was the second most
important mortality predictor in EN-fire-affected forests, driving
mortality for 30 mo. Trees with thinner bark, lower leaf nitrogen
content, and higher char height (a proxy of fire intensity) were also
more likely to die in EN-fire–affected sites, although these variables
had much weaker and time-limited effects (Fig. 2 and SI Appendix,
Table S3). All mortality predictors had their greatest effect in the
first year following the El Niño fires (SI Appendix, Fig. S6).

Regional Impacts of the El Niño on Plant Mortality and CO2
Emissions
Extrapolating our results of plant mortality and carbon loss to
the entire 6.5-million hectare region (i.e., the Lower Tapajós), we

estimate that the 2015 to 16 El Niño killed 447 ± 50 million
stems ≥10 cm DBH and 2.5 ± 0.3 billion stems <10 cm DBH (SI
Appendix, Fig. S7), leading to the emission of 495 ± 94 Tg CO2
over 3 y (Fig. 3A). Net emissions (i.e., when accounting for post-El
Niño growth and recruitment measured in November 2018—see
Methods) were 35.9% smaller than gross. The contribution of
EN-drought–affected forests and EN-fire–affected forests to the
regional CO2 emissions were similar, as the large difference in
the magnitude of drought and fire effects (Fig. 1 E and F) was
compensated for by the area that was affected (4.6 million ha of
EN-drought–affected primary forests compared to 978,000 ha of
EN-fire–affected forests).
Although our study region covers just 1.2% of the Brazilian

Amazon, the emissions resulting from this single El Niño event
were larger than the mean annual CO2 emissions from defores-
tation across the whole of the Brazilian Amazon between 2009
and 2018 (Fig. 3B). Offsetting these emissions is challenging; for

Stem wood density (g cm-3)

Survival
H

azard
Sensitivity

Oct 
15

Apr 
16

Oct 
16

Apr 
17

Oct 
17

Apr 
18

Oct 
18

Oct 
15

Apr 
16

Oct 
16

Apr 
17

Oct 
17

Apr 
18

Oct 
18

Oct 
15

Apr 
16

Oct 
16

Apr 
17

Oct 
17

Apr 
18

Oct 
18

Oct 
15

Apr 
16

Oct 
16

Apr 
17

Oct 
17

Apr 
18

Oct 
18

Oct 
15

Apr 
16

Oct 
16

Apr 
17

Oct 
17

Apr 
18

Oct 
18

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.1

0.2

0.3

0.4

0.0

0.2

0.4

0.6

0.8

1.0

Census date

Tr
ee

 s
to

ck
su

rv
iv

al
M

or
ta

lit
y

pr
ob

ab
ilit

y
Va

ria
bl

e 
m

or
ta

lit
y

se
ns

iti
vi

ty

34.8

21.7

15.3

0.88

0.58

0.35

0.73

0.59

0.38

Plot wood density (g cm-3)

12.3

4.70

1.85

-1 ) Char height (cm)

A B C D E

F G H I J

K L M N O

Fig. 2. Physiological and ecological predictors of tree mortality during and after the 2015 to 16 El Niño. The five significantly important predictors influ-
encing (A–E) the proportion of live trees from the initial stock, (F–J) the instantaneous mortality probability (i.e., hazard), and (K–O) the tree mortality
sensitivity in relation to each predictor. The results are for forests affected by fire and drought during the 2015 to 16 El Niño, which were sampled between
October 2015 to 2018. Tree survival and hazard are shown for the fifth, 50th, and 95th percentiles of the observed variable gradient, while other variables
were held at their mean values. The solid lines show the median estimate, and the bands show the 95% credible intervals. Mortality sensitivity quantifies the
change in a variable from its baseline levels required to return a substantial increase in stem mortality. The baseline levels were defined as the mean of each
variable found across all trees in undisturbed forests before the onset of the El Niño (i.e., in the absence of both a climatic or anthropogenic disturbance). The
median char height, however, was defined as the mean found in undisturbed forests after the El Niño fires. A value of 0 indicates that no change in the variable
mean influenced tree mortality at a given time (i.e., the variable does not act as a predictor of mortality); a value of 1 indicates that any change in the variable
returned a substantial mortality increase. Mortality sensitivity thus quantifies a variable’s time-varying importance (see Methods for full details). The white/
red background displays the CWD for the Lower Tapajós region from 0 (white) to −448 (dark red) mm.

4 of 8 | PNAS Berenguer et al.
https://doi.org/10.1073/pnas.2019377118 Tracking the impacts of El Niño drought and fire in human-modified Amazonian forests

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 E
m

pr
es

a 
B

ra
si

le
ir

a 
Pe

sq
 A

gr
o 

on
 D

ec
em

be
r 

5,
 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

20
0.

12
9.

18
9.

13
6.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2019377118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2019377118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2019377118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2019377118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2019377118/-/DCSupplemental
https://doi.org/10.1073/pnas.2019377118


example, it would require, in the absence of any climatic or an-
thropogenic disturbance, either the continued carbon accumulation
of the 10.5 million hectares of secondary forests for a period of 3.3
to 7.9 y or the continued carbon accumulation of the 334 million
hectares of primary forests distributed across the Brazilian Amazon
for 9 to 18 mo (Fig. 3B). If included in the national carbon ac-
counting, the emissions resulting from the 2015 to 16 El Niño would
represent an important setback to Brazil’s international commit-
ments to mitigate climate change.

Conclusion
We provide evidence of the long-lasting impacts of the El Niño
drought and fires on plant mortality, which remained elevated
for up to 3 y, resulting in substantial carbon loss. Consequently,
forest inventories conducted in the first year after extreme droughts
or fires (e.g., refs. 5 and 23) will not fully capture these impacts,
underestimating carbon loss in Amazonia. We also show that
human disturbance can amplify the impacts of El Niño fires,
significantly increasing both plot- and stem-level mortality. While
previous research has shown that human-modified forests may
be more susceptible to fires (14, 25), our results show that they
are also more sensitive. Finally, our results show that extreme
events—such as the 2015 to 16 El Niño—can have globally sig-
nificant outcomes even if their main effects are concentrated in a
relatively small area. Taken together, these findings suggest that
country-level estimates of CO2 emissions and global climate–
vegetation models could be improved by including the duration
and regional intensity of extreme drought and fire events as well
as the previous disturbance history of affected forests. They also
provide insights into management priorities in a changing world.
While the next El Niño cannot be avoided, further human distur-
bance can—the resilience of the Amazon in the Anthropocene could
be improved by curbing illegal logging operations and investing in
improved fire management and combat.

Methods
Study Design. In 2010, we established 21 plots (10 × 250 m) in the munici-
palities of Belterra, Mojuí dos Campos, and Santarém in the Lower Tapajós
(Eastern Amazonia). Plots were distributed along a gradient of human-

modified forests (SI Appendix, Fig. S3B) and located at least 100 m away
from forest edges and between 1.5 to 97 km apart. Plots were distributed
into four forest classes: undisturbed primary forests (n = 6), logged primary
forests (n = 5), logged-and-burned primary forests (n = 5), and secondary
forests (n = 5). Forest classes were established using a combination of
physical evidence of past human disturbance found during field surveys
(e.g., pieces of charcoal, tree stumps) and a visual analysis of a chronose-
quence of Landsat images ranging from 1988 until 2010 (23). We found no
evidence of pre-Columbian settlements across our plots, such as dark earth
or mounds.

Plot Census. The first plant census took place in 2010. In each study plot, all
trees and palms ≥10 cm DBH (1.3 m) were measured and identified to species
level as well as all lianas ≥10 cm in diameter at 1.3 m from their main rooting
point. Five subplots (5 × 20 m) were established in each plot in which all trees
and palms ≥2 cm DBH and all lianas ≥2 cm in diameter at 1.3 m from their
main rooting point were measured and identified.

Plot Recensuses and Mortality Assessments. Plots were first recensused in 2014
and then again in 2018, measuring the DBH of every stem and the height of
every tree and palm, noting when a stem was dead. During the recensus, we
also recorded how much of a tree crown was covered by lianas (0, 1 to 25, 26
to 50, 51 to 75, and 76 to 100%). BetweenOctober 2015 andOctober 2018, we
conducted quarterly mortality surveys of all stems in all 21 plots, including the
eight plots that burned during the 2015 to 16 El Niño (SI Appendix, Table S1).

Carbon-Stocks Estimates. Plot-level carbon stocks were calculated using bio-
mass equations. For all trees, except Cecropia spp., we used Chave’s 2014
equation (model four), which includes tree DBH, height, and wood density
(26). Tree DBH and height were assessed during the full vegetation census.
Species-level wood density was extracted from the Global Wood Density
Database (27) filtered for South American tropical regions. When a species
was not present in the database, we used the mean wood density value at
the lowest available taxonomic level. For Cecropia spp., we applied a genus-
specific biomass equation (28) that accounts for their hollow stems. For
palms, we applied different equations for individuals ≥10 cm DBH (29)
and <10 cm DBH (30). Liana biomass was estimated using Amazonian-specific
equations (31). Carbon was assumed to account for 50% of biomass (8, 32–34).

Physiological and Ecological Drivers of Tree Mortality. In 2014, we sampled
bark thickness in all trees ≥10 cm DBH across all 21 plots, taking two samples
at 30 cm from the ground from opposite sides of each stem. In 2015, prior to
the El Niño, we sampled leaf functional traits and invertebrate-mediated
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leaf herbivory in 20 study plots (all but one undisturbed forest in order to
have an equal sample size across forest classes). For sampling, we first se-
lected all species that contributed to 80% of each plot’s basal area. For each
selected species, we then sampled a maximum of three individuals per plot,
always selecting those with the largest DBH. For each individual, we sampled
two branches fully exposed to the sun. From one branch, we collected three
healthy adult leaves, carefully removing any dirt, moss, or lichen present on
their surfaces. To calculate specific leaf area, we scanned each fresh leaf
separately and then dried the leaves until constant weight. After drying,
each leaf was ground, and its nitrogen and phosphorus content were ana-
lyzed. Total leaf nitrogen was determined using a CN Vario Max (35). The
phosphorus content was extracted by nitroperchloric digestion (36) and
subsequently determined by the Shimadzu spectrophotometer using the
ammonium molybdate method (37). On the second branch, we counted the
total number of leaves for those trees with simple leaves or the total number
of leaflets for those trees with compound leaves. We then counted the
number of leaves/leaflets that were chewed and then randomly selected 30
chewed leaves/leaflets to be scanned. Each leaf/leaflet had its original area
reconstructed with imagery software (ImageJ) so we could estimate the
proportion of area lost due to herbivory (38). The mean area lost across the
scanned leaves was extrapolated to all other chewed leaves of each indi-
vidual, and the mean percentage of herbivory per branch also incorporated
the number of unaffected leaves. For individuals in which we did not sample
their leaf traits, we attributed the mean trait value from that same species in
the same forest class. After the El Niño fires, we measured the maximum
char height in all trees ≥10 cm DBH in the EN-fire–affected plots. Finally, to
estimate plot-level wood density, we calculated the mean wood density
value of all trees ≥10 cm DBH in each plot.

Climatological Water Deficit. The monthly climatological water deficit (CWD)
between January 2000 and April 2019 was calculated as the precipitation of a
given month [in millimeters, sourced from the Climate Hazards Group In-
fraRed Precipitation with Stations (CHIRPS) dataset (39)], minus evapo-
transpiration [in millimeters, sourced from TerraClimate (40)], plus the CWD
of the previous month (41).

Data Analysis.
Accounting for expected mortality. To account for pre-EN mortality levels
(i.e., stem mortality in the absence of extreme climate events), we calculated
the quarterly mortality rate between our 2010 and 2014 census. Quarterly
mortality rates were calculated separately for each forest class (i.e., undisturbed,
logged, logged-and-burned, and secondary forests). We then subtracted, for
each forest class, its pre-EN mortality rate from all post-El Niño mortality rates.
Temporal dynamics of stem mortality and carbon loss. We used a Bayesian mul-
tisite piecewise linear model (hereafter “change point model”) to assess the
temporal dynamics of tree mortality and cumulative carbon loss across the
census period. Change point analyses are ideal for investigating significant
changes in the rate of an event through time; in this case, plant mortality
and carbon loss.

The model is given by

yit = αi + ∑
k+1

j

βj(t − θj)+ + τi ,

where yit is the value of the independent variable (stem mortality or cu-
mulative carbon loss) at site i at time t, and αs is the site-specific intercept,
which is modeled hierarchically as a random normal variable with a mean
equal to the common intercept, α0, and unknown variance [i.e., αi ∼ N(α0, σ21)].
Similarly, τi is the site-specific error term, modeled hierarchically as N(ei , σ22), to
allow for correlated errors across sites. The change point model is comprised of up
to k + 1 linear coefficients, β, and corresponding changepoints, θ.

A Bayesian model comparison with reversible jump Markov chain Monte
Carlo (MCMC) simulations (42) was used to average multiple piecewise linear
models (43). The number and location of changepoints were assigned hier-
archical prior distributions that included zero changepoints: for example,
binomial (3, 0.5). This approach is equivalent to averaging over multiple
model structures, each with a different number and location of change-
points, using marginal likelihoods to weight models (43). The resulting
posterior distributions yielded model-averaged parameter estimates and
credible intervals that account for uncertainties about model structure. We
assessed models which allowed for up to five changepoints and selected the
most parsimonious as that with the lowest deviance information criterion
score. We assumed strong evidence for a change point for posterior prob-
abilities greater than 0.75.

The combined effects of prior forest disturbance and extreme climate events. We
assessed whether prior forest disturbance influenced the effects of the 2015
to 16 El Niño using a Bayesian analysis of variance. Separately for each pre-
EN forest disturbance class in EN drought–affected forests and EN fire–
affected forests, we calculated the total stem mortality and total carbon loss
at the end of the census period. We then used one-way ANOVA within a
Bayesian framework to assess the evidence for differences in mean mortality
and carbon loss across forest classes using, in all cases, uninformative priors.
To account for variation in initial conditions (e.g., less disturbed forests have
larger carbon pools than more disturbed forests), we ran the ANOVA both
for absolute mortality and carbon loss as well as mortality and carbon loss as
a proportion of, respectively, the initial stem and carbon stocks. As above,
we assumed evidence of a difference in class means for a posterior proba-
bility >0.75 (posterior probabilities are given in SI Appendix, Table S2).
Predictors of tree mortality. We used a Bayesian survival model to investigate
the roles of the potential physiological and ecological predictors of mortality.
Survival analyses are recommended when investigating the duration of time
until an event happens; in this case, tree death. Specifically, we fitted a
semiparametric proportional odds model and used spike-and-slab variable
selection to determine the important mortality predictors, using default
uninformative priors (see ref. 44 for full details). All predictors deemed im-
portant (the standardized posterior 95% variable effect size credible interval
excluded 0) were included in the final model. As stem height and DBH were
highly correlated (r = 0.76, SI Appendix, Fig. S8), we ran the initial model
twice, including only one of them. However, neither variable met the criteria
for inclusion in the final model. Using the final model, we determined cu-
mulative mortality across the census period as well as the mortality hazard
(probability of death at a given time) at each census. We also determined
the marginal effect of each variable across its gradient, with all other vari-
ables held constant at their mean values (SI Appendix, Fig. S6).

In the survival analysis, we used plot-level wood density (i.e., the mean
wood density of all stems in a given plot) as a continuous measure of prior
anthropogenic disturbance (24)—that is, the more disturbed a forest, the
lower its wood density (SI Appendix, Table S1). This significantly simplifies an
interpretation of model results compared to the situation in which prior
disturbance is a categorical variable with many classes.

Finally, we derived a time-varying measure of variable importance using
the survival hazards. For each variable in the final model and at each point in
time, we determined the change in variable from the mean observed in
undisturbed forests required to return a substantial increase in mortality
probability. We defined a “substantial increase in mortality probability” to
mean that the 95% hazard credible intervals did not overlap. We refer to
this measure as the variable’s mortality sensitivity, and we scaled it to lie
between 0 and 1. A value of 0 indicates that no change in the variable
returned a substantial mortality increase at a given time, and as such, the
variable does not act as a mortality driver at that time. A value of 1 means
that the smallest change considered returned a substantial mortality in-
crease, and as such, the variable acts as a strong mortality driver at the given
time. We consider a range of variable values in this analysis by scaling the
undisturbed forest mean by 1 to 10 in increments of 0.1, accounting for the
direction of the variable’s effect (i.e., if decreases in the variable led to in-
creases in the mortality probability, we scaled the variable downward.
Conversely, if increases led to increased mortality probability, we scaled the
variable upwards).

For all Bayesian models, model parameters were estimated from 100,000
reversible jump MCMC iterations after 20,000 burn-in iterations. Chain-
history and Gelman–Rubin statistics confirmed adequate MCMC mixing
and convergence (45).
Scaling up to region-wide consequences of the 2015 to 2016 El Niño.We focus on a
6.5-million hectare region around our study plots that was also the epicenter
of rainfall anomalies in the Amazon during the 2015 to 16 El Niño (17). This
extrapolation has a ratio of 1.2 M hectares for each sampled hectare being
higher than that used in basin-wide assessments of Amazonian forests (4, 5,
46, 47) and is supported by two main reasons: 1) the whole 6.5-million
hectare region, including our study plots, experienced the same climatic
anomalies during the 2015 to 16 El Niño (17); 2) the similarity of our findings
with those from an additional 13 human-modified permanent forest plots
inventoried in 2016 and in 2018 (SI Appendix, Fig. S9).

To scale up our results, we first mapped total forest area in our 6.5-M
hectare region in 2015, classifying forests into primary or secondary according
to MapBiomas 3.1 (48). Over this forest map, we overlayed a map of forests
that burned and did not burn during the El Niño (49), which allowed us to
calculate the amount of primary and secondary forests that burned
(i.e., drought- and fire-affected forests) and did not burn (i.e., drought-
affected forests) during the El Niño. We used the four forest categories
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that we obtained (i.e., unburned primary, burned primary, unburned sec-
ondary, and burned secondary forests) to estimate gross and net carbon
emissions and total stem mortality across the whole study region. For this,
we extrapolated our plot-level estimates of carbon loss, carbon gain, and
stem mortality to the whole area occupied by each of the four categories.
Finally, we summed values across the classes, accounting for error propa-
gation. To estimate gross carbon emissions, we converted our carbon loss
estimates to CO2 using a conversion factor of 44/12 (50). To estimate net CO2

emissions, we applied the same procedure detailed above for stem growth
and recruitment and subtracted total values across the study region from
total gross emissions, again accounting for error propagation. We compared
gross emissions to three types of annual Brazilian Amazon CO2 fluxes: 1)
emissions from deforestation, 2) sequestration from secondary, and 3) se-
questration from primary forests. Annual deforestation extents were
obtained from the Brazilian Space Agency (51) and converted to tCO2 using
a factor of 18.1 following Azevedo et al. (52). The rates of carbon uptake in
primary forests came from Amazon-wide estimates (4), while those in sec-
ondary forests came from a locally derived (53) and a Neotropical estimate
(54). The rates of carbon uptake were converted to CO2 by also using a factor
of 44/12 (50).

Data Availability. Data available at: https://doi.org/10.6084/m9.figshare.
14839521.v1.
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