Obtenção de nanofibras de Nb₂O₅ com o Aditivo Tungstênio Visando a Fotoconversão do Dióxido de Carbono

<u>Jhenifer Fernanda Leite Oliveira</u>¹; Maria Luiza Lopes Sierra e Silva²; João Otávio Donizette Malafatti³; Elaine Cristina Paris⁴

¹Aluno de graduação em Bacharelado em Química Tecnológica, Universidade Federal de São Carlos, São Carlos, SP. Bolsista PIBIC/CNPq, Embrapa Instrumentação, São Carlos, SP; Jhenifer_1997@hotmail.com.

Preocupações com o aquecimento global, decorrentes do acréscimo da temperatura do planeta têm se destacado nos últimos anos. Poluentes como CO₂, N₂O e CH₄ são campeões em relação à permanência na atmosfera devido às atividades antropogênicas, promovendo o acúmulo de gases do planeta. Materiais semicondutores são excelentes opções para aplicação na conversão fotocatalítica do CO₂, visando a obtenção de produtos de valor agregado, a partir da formação de radicais gerados por exposição à radiação ultravioleta-visível. O Nb₂O₅, destaca-se por possuir características de um semicondutor do tipo n, bandgap próximo a 3,1 eV, elevada área de superfície e porosidade. Uma maneira promissora de aplicação em foto conversão são nanofibras cerâmicas, devido anisotropia, que favorece os fenômenos de superfície. Para a obtenção de nanofibras pode-se empregar o processo de eletrofiação, o qual permite o controle da aparência, comprimento e porosidade. Portanto, o objetivo deste trabalho foi obter nanofibras de Nb₂O₅ com a adição de tungstênio. As nanofibras na presença do aditivo foram avaliadas em relação à variação da concentração de tungstênio 1 a 10% (m/m) a partir do ácido tungstíco, empregando-se o método de eletrofiação seguido de tratamento térmico. No processamento por eletrofiação, foram encontrados os melhores parâmetros para concentração da matriz polimérica do polivinil álcool (PVA) e do precursor oxalato de nióbio. Em relação ao tratamento térmico, observou-se que a temperatura de 600 °C e a taxa de tratamento térmico de (1°C min⁻¹) proporcionaram um controle da fase pura e a obtenção de nanofibras com diâmetros controlados. Dessa maneira, o presente trabalho possibilitou o desenvolvimento de nanofibras promissoras para que, futuramente, possam ser avaliadas como sistemas fotocatalisadores alternativos na conversão gasosa do CO₂, um dos principais gases que constituem e atuam no efeito estufa.

Apoio financeiro: Embrapa

Área: Engenharias

Palavras-chave: nanofibras, pentóxido de nióbio, tungstênio, eletrofiação

Número Cadastro SisGen: não se aplica PIBIC/CNPq (Processo nº: 123796/2022-9)

² Doutoranda PPGQ/UFSCar, São Carlos, SP

³Pós doutorado na Embrapa Instrumentação, São Carlos, SP

⁴Pesquisadora da Embrapa Instrumentação, São Carlos, SP.