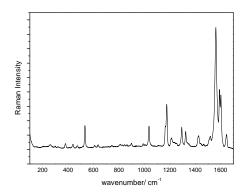


Synthesis and Raman spectra of various chalcones

Pôster 077

José Ricardo Patrício da Silva Souza^{1*}, Heriberto R. Bitencourt^{1*}, José Ciriaco Pinheiro¹, Antonio Pedro da Silva Souza Filho², Sanclayton Geraldo Moreira¹ and Claudio Márcio Rocha Remédios¹

¹Instituto de Ciências Exatas e Naturais, UFPA, Belém-PA, Brazil. ²Embrapa Amazônia Oriental, Belém-PA, Brazil. *remedios@ufpa.br **Keywords:** Raman, nonlinear optics, antimitotic


Introduction

Chalcones derivatives compounds have been researched so much for being very promising in the application of nonlinear optics (NLO)¹ and also for their biological activity, antimitotic potency and cancer including chemopreventin agents². Chalcones may ha substantial potential for the treatment of leishmaniasis³. cutaneous The synthetic chalcones was obtained in our laboratory and then its crystalline structure was identified by Xray diffraction. The spectroscopy investigation has been carried out by Raman technique. The assignments of vibrational modes and detailed synthesis information also are presented.

Results and Discussion

The synthetic chalcone was obtained in a round-bottomed flask (125 mL), placed in an ice bath, was added 15 mL of methanol, 2-hydroxy acetonaphthone (7.26 mmol; 1.38 g), 10 mL of 10% sodium hydroxide solution, and *ortho*, *meta* or *para*-anisaldehyde (7.93 mmol, 1.08 g) resulting in three isomers of flavanones of chemical formula $C_{20}H_{16}O_3$. The reaction mixture was kept under magnetic stirring at 80°C for 4h. After this period, acidification with acetic acid (5%) and extraction with chloroform were done. The solvent was then dried and evaporated.

Raman spectra of various chalcones was obtained. The Fig 1. Show sample of experimental Raman spectra of synthetic chalcones in the range 100-1800 cm⁻¹. We assigned the peaks in the Raman spectra by comparison with references for the spectra of other molecules.

Figure 1. Experimental Raman Spectro in the spectral range from 100-1800 cm⁻¹ of synthetic chalcone.

Conclusions

Synthesis information of synthetic chalcones was presented here. The spectroscopy investigation has been carried out by Raman spectroscopy. The assignment of each normal modes was done based on basis of literature survey. This study furnishes description of vibrational properties of various chalcones crystals.

Acknowledgments

The authors acknowledge the financial support from the Brazilian agencies CNPq and CAPES

¹Fichou, D., Watanabe, T., Takeda, T., Miyata, S., Goto, Y. & Nakayama, M. (1988). Jpn J. Appl. Phys. 27, L429-L430.

³Mello, T. F.P., Cardoso, B. M., Lopes, S. N., Bitencourt, H. R., Voltarelli, E. M., Hernandes, L., Aristides, M. A., Lonardoni, M. V. C., Silveira, T. G. V., (2015). Parasito Res. 114:3587-3600

²Bertl, E., Becker, H., Eicher, T., Herhaus, C., Kapadia, G., Bartsch, H. & Gerhauser, C. (2014). Biochem. Biophys. Res. Commun. 325, 287-295.