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Abstract
Aim: Amazon‐nut (Bertholletia excelsa) is a hyperdominant and protected tree spe‐
cies, playing a keystone role in nutrient cycling and ecosystem service provision 
in Amazonia. Our main goal was to develop a robust habitat suitability model of 
Amazon‐nut and to identify the most important predictor variables to support con‐
servation and tree planting decisions.
Localization: Amazon region, South America.
Methods: We collected 3,325 unique Amazon‐nut records and assembled >100 spa‐
tial predictor variables organized across climatic, edaphic, and geophysical catego‐
ries. We compared suitability models using variables (a) selected through statistical 
techniques; (b) recommended by experts; and (c) integrating both approaches (a and 
b). We applied different spatial filtering scenarios to reduce overfitting. We addition‐
ally fine‐tuned MAXENT settings to our data. The best model was selected through 
quantitative and qualitative assessments.
Results: Principal component analysis based on expert recommendations was the 
most appropriate method for predictor selection. Elevation, coarse soil fragments, 
clay, slope, and annual potential evapotranspiration were the most important predic‐
tors. Their relative contribution to the best model amounted to 75%. Filtering of the 
presences within a radius of 10 km displayed lowest overfitting, a satisfactory omis‐
sion rate and the most symmetric distribution curve. Our findings suggest that under 
current environmental conditions, suitable habitat for Amazon‐nut is found across 
2.3 million km2, that is, 32% of the Amazon Biome.
Main conclusion: The combination of statistical techniques with expert knowledge 
improved the quality of our suitability model. Topographic and soil variables were the 
most important predictors. The combination of predictor variable selection, fine‐tun‐
ing of model parameters and spatial filtering was critical for the construction of a 
reliable habitat suitability model.
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1  | INTRODUC TION

Range‐wide management and conservation of socio‐economically 
important tree species require a comprehensive understanding of 
species habitat preferences and the magnitude and nature of anthro‐
pogenic and natural threats to their in situ persistence. However, in 
Amazonia such knowledge often remains incomplete and based on 
local experience rather than rigorous scientific data. Furthermore, 
existing knowledge on Amazonian forest species has been poorly 
integrated within conservation planning frameworks (Addison et al., 
2013; Gardner, Barlow, Chazdon, Robert, & Harvey, 2009). As a re‐
sult, biodiversity conservation strategies have failed to protect the 
majority of endemic species in Brazil (Oliveira et al., 2017). The latter 
authors found that <40% of the estimated distribution area for some 
species fell inside protected areas. Conservation decision‐making 
processes in Amazonia can be greatly improved through the inclu‐
sion of species distribution models (SDMs) which is currently not the 
case in most Amazon countries.

The complexity of SDMs, both in terms of development and 
understanding, is a common constraint to their application in de‐
cision‐making (Addison et al., 2013). Nonetheless, SDMs are an in‐
creasingly important tool for predicting habitat suitability and for 
understanding species environmental tolerances (Stolar & Nielsen, 
2014). SDMs are also essential to guide field collections, as well as 
to inform or reinforce management, reforestation, and conserva‐
tion plans (Franklin, 2010). The value and importance of a well‐con‐
structed SDM have motivated an explosion of methods aimed at 
building more accurate models (Elith et al., 2011; Kuhnert, Martin, 
& Griffiths, 2010). However, few efforts have been made to develop 
a collaborative model‐building process among modelers, ecolo‐
gists, and decision‐makers to improve model quality (Calixto‐Pérez 
et al., 2018) and to facilitate clear communication of model results 
(Addison et al., 2013).

One of the most widely used methods of developing SDMs 
is MAXENT (Phillips, Anderson, Dudík, Schapire, & Blair, 2017). 
MAXENT is a correlative model based on the principle of maximum 
entropy to predict or infer species occurrence using presence‐only 
data and environmental variables (Phillips, Anderson, & Schapire, 
2006). The probability of occurrence is then modeled using a logis‐
tic equation fitted to presence data and background locations cho‐
sen randomly or in target‐groups that MAXENT contrasts against 
the presence (Phillips & Dudík, 2008). Several studies have high‐
lighted that the performance of MAXENT models is influenced by 
(a) biases in occurrence data that cause overfitting (Kramer‐Schadt 
et al., 2013) and (b) the uncritical use of default settings based on 
taxonomic groups studied by MAXENT designers (Phillips & Dudík, 
2008). Indeed, there is growing evidence that the most appropri‐
ate settings vary according to species and study area. However, 
only 3.7% of articles published between 2013 and 2015 tested if 
the default regularization and feature class parameters were appro‐
priate for their data (Morales, Fernández, & Baca‐González, 2017; 
Radosavljevic & Anderson, 2014). When adequately fine‐tuned, 

these parameters prevent the algorithm from fitting the input data 
too closely (Phillips & Dudík, 2008).

Errors can furthermore be introduced into MAXENT‐based anal‐
ysis through multi‐collinearity among predictors that can inflate the 
variance and standard errors of regression parameter estimates. 
Careful selection of candidate predictor variables is therefore rec‐
ommended (Dormann et al., 2013). Statistical analysis has been com‐
monly used to address this issue, as for example through principal 
component analysis (PCA) (Everitt & Dunn, 2001). However, models 
using maximum entropy have also been improved by integrating ex‐
pert knowledge in the predictor selection stage of model develop‐
ment (Porfirio et al., 2014).

An expert is someone who has gained knowledge through his/
her life experience, education, or training, and who is responsible 
for providing judgments (Mcbride & Burgman, 2012). Experts can 
contribute, for example, to the choice of variables based on their 
knowledge of a species' life cycle (Porfirio et al., 2014), to determine 
geographic limits to the presumed species (Jones, Dye, Pinnegar, 
Warren, & Cheung, 2012), to provide knowledge when empirical 
data are lacking (Kuhnert et al., 2010), or simply to provide feedback 
on model results. Expert‐based information has been successfully 
used to improve management of environmental systems (Perera, 
Drew, & Johnson, 2012), but has been seldom used in the develop‐
ment of SDMs (Kuhnert et al., 2010; Porfirio et al., 2014).

1.1 | Amazon‐nut modeling distribution

MAXENT has been applied previously to model the distribution 
of the Amazon‐nut (Bertholletia excelsa), specifically at Para State, 
Brazil (Albernaz & Avila‐Pires, 2009). However, results from this 
study are limited in their utility for conservation planning due to 
paucity of presences used, the restricted spatial extent of analysis, 
and the limited diversity of environmental predictors considered. 
Thomas, Alcázar, Loo, and Kindt (2014) also examined Amazon‐
nut distribution using an ensemble modeling approach. Their goal 
was to assess the distribution of Amazon‐nut across the Amazon 
basin and make projections to past and future climate conditions. 
They found that the current spatial distribution of this species was 
shaped by an initial period of range contraction in the Pleistocene, 
followed by range expansion in the Holocene resulting in its con‐
temporary distribution. Although these findings are informative 
and compelling, the model of distribution of suitable habitat esti‐
mated showed a high degree of overfitting and had limited out of 
sample (OOS) predictive power. Such reduced predictive power 
was clearly observed at eastern Amazon, where they had few re‐
cords of presence.

Developing robust models with a high OOS for the Amazon‐nut 
is now possible thanks to the availability of high‐quality environmen‐
tal data (e.g., Wordclim (Fick & Hijmans, 2017) and Soilgrid platforms 
(Hengl et al., 2014)). Additionally, species occurrence data are being 
generated in scientific collaboration networks with standardized 
accessibility policies (e.g., Global Biodiversity Information Facility; 
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https​://www.gbif.org). Specifically for B. excelsa, a Brazilian project 
named MAPCAST “Mapping of Amazon‐nut groves and socio‐envi‐
ronmental and economic characterization of Amazon‐nut produc‐
tion systems in the Amazon” was carried out from 2013 to 2018 
(https​://www.embra​pa.br/en/projetos). It generated direct biologi‐
cal information and the formation of a group of specialists on this 
taxonomic group.

Amazon‐nut (Bertholletia excelsa) is one of the largest and lon‐
gest living hyperdominant tree species in Amazonia (Ter Steege et 
al., 2013). In old‐growth forest, Amazon‐nut trees can reach 60 m 
in height and 4 m in diameter at breast height (Müller, 1995). It 
ranked third in the top 20 accumulators of aboveground woody 
biomass in Amazonia (Fauset et al., 2015) and has provided critical 
ecosystem services to humans since prehistory (Roosevelt et al., 
1996). The fruits are hard, indehiscent, and can often be opened by 
large species of psittacid (Ara sp) and rodents (Agouts sp). Agouts 
and human both play an important role in Amazon‐nut dispersion, 
rodents can carry fruits as far as 60 m (Haugaasen, Haugaasen, 
Peres, Gribel, & Wegge, 2012) and humans positively influenced 
its abundance in the past (Thomas et al., 2014). Species distribu‐
tion differs for being broad and discontinuous, leading to forma‐
tion of groves in some areas (Salomão, 2009) and scattered trees 
in others (Wadt, Kainer, & Gomes‐Silva, 2005). However, its trees 
population has been vulnerable to illegal activities in the Amazon 
for the last forty years, mainly in southern and eastern Amazon, 
region named “arch of deforestation” (Scoles, Canto, Almeida, & 
Vieira, 2016).

Amazon‐nut is legally protected and one of the most important 
nontimber forest product (NTFP), on which tens of thousands of 
local people depend, mainly in Brazil, Bolivia, and Peru (Guariguata, 
Cronkleton, Duchelle, & Zuidema, 2017). The fruit's success is 
recently attributed to health benefits offered by the seeds rich 
in selenium and other micronutrients (Cardoso, Duarte, Reis, & 
Cozzolino, 2017). Its cultural and economic importance brings 
various common names constantly associated with geographic 
localization (Brazil‐nut, Pará‐nut, Acre‐Nut, and Bolivian Brazil‐
nut) to the fruit market. Here, we adopted the term Amazon‐nut 
instead of Brazil‐nut, the most common name, to be more inclu‐
sive of other Amazonian countries, in which the species is native. 
Extensive research has been dedicated to evaluating the sustain‐
ability of nut harvesting (Bertwell, Kainer, Cropper, Staudhammer, 
& Oliveira Wadt, 2017), characterizing demographic and genetic 
structure within and among (Salomão, 2009; Sujii, Martins, Wadt, 
Azevedo, & Solferini, 2015), and understanding the natural and 
human drivers of its current distribution (Thomas, Alcázar Caicedo, 
Mcmichael, Corvera, & Loo, 2015). Despite this rich body of work, 
surprisingly little is known about the environmental predictors 
that determine species occurrence.

In this paper, we develop a novel SDM using MAXENT with the 
goal of improving our understanding of the habitat extent and the 
suitable environmental to B.  excelsa occurrence, in order to guide 
conservation and tree planting strategies. Given the importance 
of careful selection of potential predictor variables and removal of 

bias in SDMs (Boria, Olson, Goodman, & Anderson, 2014; Franklin, 
2010), we also address three methodological questions: (a) Which 
strategy of predictor selection is most adequate to model B. excelsa 
habitat suitability? (b) What are the best MAXENT settings based on 
the distribution of our data across Amazonia? (c) What is the mini‐
mum distance between occurrence points to remove bias and fit ro‐
bust models statistically and ecologically? Finally, we evaluated the 
usefulness of incorporating expert knowledge in predictor variable 
selection for enhancing the quality of SDM for B. excelsa.

2  | METHODS

2.1 | Occurrence data

This study was conducted in the Amazonia biome, the world's largest 
tropical rainforest, occupying 7.2 million of km2. Amazon‐nut's oc‐
currence data (n = 3,325) were collected from a diversity of sources: 
datasets provided by researchers acquired in field collection; data 
available from Emilio Goeldi Museum and Embrapa herbarium col‐
lections; Global Biodiversity Information Facility (GBIF) database; 
scientific publications and data recorded in field expeditions from 
2015 to 2018 supported by São Paulo Research Foundation (see 
Table S1.1). In Figure 1, we exhibited the biggest specimen tree 
found in our field expedition in 2016, and in Figure 2, the spatial 
distribution of the presence data obtained.

2.2 | Environmental data

Predictor variables were derived from globally available raster data 
at 30 arc‐second spatial resolution (~1 km). A total of 102 predictors 
were assembled for this study (Table S1.2). Nineteen bioclimatic 
variables were obtained from http://www.world​clim.org, which are 
based on interpolation data from 1950 to 2000 (Hijmans, Cameron, 

F I G U R E  1  Amazon‐nut (B. excelsa) tree with 10.65 m of 
circunference mesured at breast height in 2016. It was found in a 
forest fragment of the rural agroextractivist settlement Praia Alta 
Piranheira, in Nova Ipixuna do Pará, Brazil. This specimen is known 
as “majestade” (Majesty) in this rural community
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Parra, Jones, & Jarvis, 2005). From these layers, monthly poten‐
tial evapotranspiration (PET), aridity (ARI), and soil water content 
(SWC) layers were calculated and available by http://www.cgiar-csi.
org/data.

Predictors for physical and chemical soil properties were ob‐
tained for seven depths (0 up to 200  cm) from https​://www.soilg​
rids.org. Selected predictors included soil organic carbon (g/kg), soil 
pH × 10 in H2O, sand, silt and clay fractions (%), bulk density (kg/
m3), cation‐exchange capacity (cmol+/kg), and coarse fragments (%) 
(Hengl et al., 2014). To test for differences between soil variable 
means at different depths, we used ANOVA followed by post hoc 
Tukey tests computed using the multcompView package for R (Graves, 
Piepho, Sundar, Maintainer, & Selzer, 2015). Prior to ANOVA, we ver‐
ified the assumption of normality and homogeneity of data variance, 
using Shapiro–Wilk and F tests, respectively. To minimize multi‐collin‐
earity among soil predictors, only layers with significantly different 
mean values were retained for further modeling. Boxplots are given 
in Figure S1.1.

Global terrain elevation data (GMTED2010) were retrieved from 
the USGS/ NASA database: https​://topot​ools.cr.usgs.gov/gmted_
viewe​r/. These data were used to derive topography and hydrolog‐
ical variables, such as slope, aspect, Compound Topographic Index, 
and Stream Power Index via ARCGIS 10.3. Geological data were also 
obtained from NASA https​://daac.ornl.gov/SOILS/​guide​s/Global_
Soil_Regol​ith_Sedim​ent.html. These variables provided estimates of 
the thickness of the permeable layers above bedrock like soil, rego‐
lith, and sedimentary deposit (Pelletier et al., 2016).

2.3 | Removing bias

One source of inaccuracy in SDMs is sampling bias in presence 
data (Boria et al., 2014). For example, it has been shown that pres‐
ences recorded may suffer from problems of locational under‐
specification, geocoding errors, taxonomic changes, among others 
(Franklin, Serra‐Diaz, Syphard, & Regan, 2017). To minimize poten‐
tial biases, we removed all presences within a radius of 5 km from 

F I G U R E  2  Geographical localization of the Amazon in South America. The black points indicate the localization of the Amazon‐nut 
(B. excelsa) observation points obtained to this study (3,252). The coordinate system adopted was Albers equal‐area conic projected for 
continental areas
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municipal centers. For this, we created a distance surface from cit‐
ies using Euclidian distance on geographic information system (GIS). 
Additionally, presences in savanna within the Amazon biome were 
not used because there were few Amazon‐nut occurrences found 
in these dry forest patches, and species persistence in these drier 
environments requires further investigation. The omission of sam‐
ples from the Cerrado regions was also strongly suggested by ex‐
perts consulted. After this first filtering, 3,252 occurrence records 
remained.

Bias also occurs when presence data are spatially clustered, often 
due to more frequent sampling in regions that are more accessible, 
or due to dispersal limitation causing natural clusters. Consequently, 
parts of the environmental space suitable for a species are over‐
represented, while other parts are absent or poorly represented 
(Fourcade, Engler, Rödder, Secondi, & Brooks, 2014). Inconsistent 
spatial representation of potential species habitat can lead to over‐
fitting (Radosavljevic & Anderson, 2014) and biased inference. To 
address this problem, spatial filtering can be used reducing overrep‐
resentation and improving model quality (Boria et al., 2014; Kramer‐
Schadt et al., 2013).

To reduce biases and find optimal geographic distance between 
trees, we filtered our Amazon‐nut presence data through random 
rarefication of 3,252 presences considering minimum Euclidian dis‐
tances between them of 3, 5, 10, 15, and 20 km. Filtering was imple‐
mented using the Sdmtoolbox ArcGIS toolbox (Brown, 2014). These 
distances were selected because many of the presence points in our 
dataset were clustered at spatial resolutions below 1 km, the grain 
size of our predictor variables, in order to evaluate how environ‐
mental heterogeneity was maintained according to the increasing 
geographic distance. These experiments have been suggested in the 
literature (Boria et al., 2014).

2.4 | Predictor selection

When developing SDMs, researchers often prioritize predictors as‐
sociated with primary plant resources (e.g., water, temperature and 
nutrients) or those related to human or natural disturbance (e.g., fire 
and insect outbreaks) (Guisan & Thuiller, 2005). However, problems 
may arise on the one hand because predictors choices may be sub‐
jective and on the other because subsets of predictors may be highly 
correlated. Automated model selection methods have been devel‐
oped to address some of these subjectivity issues, because they 
apply different combinations of variables without researcher's inter‐
ference to find the “best” model. This selection is given by the model 
weight that is computed by means of metrics, such as minimization 
of the Akaike information criterion (Burnham & Anderson, 2002). 
Despite the advances, it remains challenging to identify a meaning‐
ful and informative subset of SDM predictors (Galipaud, Gillingham, 
David, & Dechaume‐Moncharmont, 2014), largely due to the con‐
founding influence of multi‐collinearity (Dormann et al., 2013).

Principal component analysis (PCA) has been suggested to re‐
duce the dimensionality of predictor variables through the gener‐
ation of multiple orthogonal synthetic variables (Everitt & Dunn, 

2001). The downside is that PCA results can be difficult to inter‐
pret, especially when trying to determine which variables contrib‐
ute meaningfully to each component (Vaughan & Ormerod, 2005). 
However, also external information can be useful to interpretation of 
ecological structure. Expert knowledge previously considered to be 
subjective has recently been recognized for its vast potential to im‐
prove ecological models (Kuhnert et al., 2010; Porfirio et al., 2014). 
Here, we compare three methods for variable selection: one based 
on ordination (PCA), one based on expert knowledge, and another 
that combines both approaches.

2.4.1 | Ordination‐based variable selection

We used PCA to reduce collinearity and dimensionality in our large 
predictor dataset (Legendre & Legendre, 2012). PCA‐derived syn‐
thetic predictors were calculated using environmental data covering 
the entire geographic space of the Amazon (Pan‐Amazon) at spatial 
resolution of 30 arc seconds (~1  km). Prior to analysis, all predic‐
tors were standardized to zero mean and unit variance. Then, we 
explored correlations between variables using Pearson's R. We 
grouped variables by category (i.e., climatic, edaphic, and geophysi‐
cal) and submitted each group to a PCA. The eigenvectors were 
normalized for each group, and we retained the subset of principal 
components accounting for 80% of the variance in the original data 
(Jolliffe, 1972).

The predictors that maximally contributed to explaining vari‐
ance in principal components were identified based on correlations 
between variables and PCA axes (eigenvector and its standard de‐
viation). Using graphics produced in the factorextra package for R 
(Kassambara & Mundt, 2017), we obtained the contribution of each 
variable to the overall axis expressed as a percentage. Only the 
variables whose contribution was greater than the average were re‐
tained. We iteratively recalculated a new PCA on this restricted set 
of predictors. Next, we applied collinearity tests at a 95% confidence 
interval using mctest package for R (Ullah & Aslam, 2017). Once col‐
linearity persisted, one for every two variables with Pearson R > |.7| 
in the correlation matrix was rejected. The variables retained follow‐
ing this procedure will be referred to as Group 1.

2.4.2 | Expert‐based variable selection

In 2016, we convened an expert panel in Amapa State, Brazil, com‐
posed of twelve researchers (PhDs and graduate students) with 
different types of expertise on Amazon‐nut to a workshop titled 
“Maxent modelling and its application in the estimation of prefer‐
ential areas to B. excelsa,” organized by the MAPCAST project. The 
panel was established to collect expert knowledge on the geophysi‐
cal and biological factors influencing Amazon‐nut distribution for 
incorporation in the SDM building process.

The 102 variables in the original database, as well as preliminary 
PCA results, were submitted to their appraisal. The panel of experts 
was specifically asked the following questions: Which variables 
should be included in the model? What is the maximal period during 
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which the plant can be exposed to water and heat stress? Should all 
available depths of soil variables be used? Were the variables se‐
lected by PCA adequate to model B. excelsa? After analysis and dis‐
cussion, the experts reached consensus and provided a list of what 
they considered to be the most important variables for the occur‐
rence of Amazon‐nut (Table S1.2). This variable set will be referred 
to as Group 2. Combining both approaches, we also calculated a PCA 
from the set of variables selected by the expert panel. The variable 
set will be referred to as Group 3.

2.5 | Setting and fitting models

We calibrated and projected all models using the ENMeval package 
for R (v. 0.2.2; Muscarella et al., 2014), which includes some of the 
latest functions developed to help modelers find parsimonious mod‐
els using maximum entropy (v. 3.3.3k; Phillips et al., 2017).

Presence data were used to determine appropriate feature 
classes (FC) and regularization multiplier (β) parameters within 
MAXENT for our study area. Feature classes are functions (linear, 
quadratic, hinge, product, threshold, and categorical) created by 
MAXENT for each environmental variable (Phillips & Dudík, 2008). 
By default, features choice is usually conditioned by the number 
of observations (n). When n > 80, all features are used and conse‐
quently, model complexity increases (Elith et al., 2011). To reduce 
complexity, users can specify FCs manually and adjust the level of 
regularization via the multiplier coefficient (β), which controls the 
smoothness of the distribution curve. It is equilibrated by lambda 
regularization parameter in the regression equation. By default, 
β  =  1 is often selected to balance fit and complexity, but studies 
have mentioned that higher values result in smoother models (Elith 
et al., 2011), while according to others, values of β above 4.0 may 
lead to decline in models quality (Radosavljevic & Anderson, 2014).

We sought to identify the best FC and β parameters for our 
MAXENT model of Amazon‐nut occurrence. As such, we examined 
five feature classes and combination thereof (L, H, T, LQ, LQP, LQH, 
LQHP, LQHPT, where L = linear, Q = quadratic, H = hinge, P = product, 
and T = threshold), and four levels of regularization from 0.5 to 2.0, in 
increments of 0.5. We examined the suitability of these combinations 
of parameters for both filtered (rarefied occurrence) and unfiltered 
models for each of the three groups of candidate predictors. We used 
random k‐fold cross‐validation selection of training and testing data, 
adopting k = 10 to assess model accuracy (Kohavi, 1995). Overall, 576 
models were run, taking 10,000 random pseudo‐absences from the 
Pan‐Amazonia background (Phillips & Dudík, 2008).

2.6 | Model performance

Model performance was evaluated using the three metrics: (a) the 
corrected Akaike information criterion (AICc) (Burnham & Anderson, 
2002); (b) the area under the curve of the receiver operating charac‐
teristic (ROC) for the test data (AUCTEST) (Elith et al., 2011; James, 
Robert, Wotton, Martell, & Fleming, 2017); and (c) the 10% training 
omission rate (OR10) (Fielding & Bell, 1997; Liu, White, & Newell, 

2013). All metrics were calculated using the ENMeval package in R 
(Muscarella et al., 2014).

We compared all models with ΔAICc < 2, which indicates equiv‐
alent models (Burnham & Anderson, 2002) using AUC and OR10 
values to identify the most appropriate groups of predictors and 
filtering distance. Even based on these three metrics, it was not triv‐
ial to select the most appropriate spatial filtering distance. For this 
reason, we ran MAXENT using R dismo package just for the six best 
models (Hijmans, Phillips, Leathwick, & Elith, 2011). This resource 
was chosen because it offers some useful functions to complement 
our model evaluation, as nicheOverlap and evaluate.

We used the nicheOverlap function to compute Schoener's D 
statistic (Warren, Glor, & Turelli, 2008), which quantifies pairwise 
similarities among the best unfiltered and filtered models. Confusion 
matrices were also reevaluated using the evaluate function for con‐
structing density curves, and determining the relative contribu‐
tions of environmental variables, as well as different thresholds. 
Continuous maps were transformed into binary maps using the 
maximum sensitivity and specificity sum (max SSS threshold). This 
threshold has provided good results when reliable absence data are 
unavailable (Liu et al., 2013). Pixels with values equal to or higher 
than the threshold were considered suitable.

The final maps were examined visually by six of twelve Amazon‐
nut experts consulted who were asked to provide feedback on three 
aspects: (a) whether the model showed predictive power to identify 
underrepresented areas; (b) whether the distribution of the habitat 
of the B. excelsa had been well‐represented; (c) whether the most im‐
portant selected variables made ecological sense. This information 
was used in complement to the statistical metrics. The model‐build‐
ing process is summarized in Figure 3.

3  | RESULTS

3.1 | Candidate predictor variables

For Group 1, we identified moderate to high correlations among pre‐
dictor variables within the climatic (Figure 4a), edaphic (Figure 4b), 
and geophysical (Figure 4c) predictor groups. For the set of 37 ana‐
lyzed climate variables, 87% of the variance was explained by the 
first three ordination axes. For the soil (n  =  43) and geophysical 
(n = 10) predictors, four and five axes, respectively, were required to 
capture at least 80% of the variance.

Following initial examination of PCA results, we retained 22 
climate variables, 24 soil variables, and five geophysical variables 
which have loadings on the respective PCA axes greater than av‐
erage (Figure 3d–f). These variables were again submitted to a PCA 
which resulted in a new set of PCA scores by category. From this 
PCA 17 climatic variables, 16 soil variables and three geophysical 
variables had the highest contributions. Several of these variables 
remained correlated. To reduce multi‐collinearity, we retained only 
variables with pairwise correlations (Pearson's r) <.7. Temperature 
of the driest quarter and evapotranspiration of driest quarter had a 
stronger relationship with the first axis, whereas soil water content 
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     |  12629TOURNE et al.

of driest quarter had a stronger correlation with the second one. The 
soil and geophysical variables that were most correlated with the 
first three axes were bulk density (fine earth) in kg/m3, soil pH‐H2O, 
silt mass fraction %, aspect, hillslope valley‐bottom and average soil, 
and sedimentary deposit thickness. Additional details on ordination 
including factor loadings can be found in Table S2.1.

For Group 2, 29 environmental variables of the initial set of 102 
were highlighted by experts (Table S1.2). They included only two soil 
depths, one superficial (0–5 cm) and the other deeper (100–200 cm), 
to represent variation of the soil variables. Among the climatic 
variables, temperature and soil water content of the driest quar‐
ter were indicated to represent stressful periods, as well as, annual 

precipitation because water supply is a determining factor for fruit 
production.

A PCA based on the variables selected by experts (Group 3) cap‐
tured most of the variance in the first two ordination axes of climatic 
(86.8%) and geophysical (90.0%) predictors. Four climatic and two 
geophysical variables showed contributions above average: Mean 
temperature of driest quarter showed the highest correlation with 
the first axis, followed by mean temperature of the coldest quarter 
and annual mean temperature, whereas the annual potential evapo‐
transpiration had stronger relation with the second axis. The relation 
between the predictor variables and the first two principal compo‐
nents are visualized in Figure 5a–c.

F I G U R E  3  Summary of the model‐building process executed to identify the suitable habitat for Amazon‐nut (B. excelsa) in the Pan‐
Amazon
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12630  |     TOURNE et al.

Among the geophysical predictors, terrain elevation and slope 
were strongly associated with the first axis. For the soil variables, 
83.5% of the variance was explained by the first five axes, for which 
eight variables were above average: coarse fragments >2 mm, cation‐
exchange capacity, soil pH, sand mass fraction, clay mass fraction 
and, silt mass fraction. In Table S2.2, additional details on ordination 
of this group can be found.

3.2 | Habitat suitability model

Values of AUC and omission rates of the best 18 models with low‐
est AICc (i.e. ΔAICc < 2) are illustrated in Figure 6. All metrics are 
provided in Table S2.3.

3.2.1 | Maxent settings

There was a high degree of variation in both FC and β parameters 
among the best models. The most frequent regularization coeffi‐
cient was β = 1.5 (44%), followed by β = 1 (39%) and β = 2.0 (17%). 
LQHPT feature classes appeared in 56% of the best models, includ‐
ing the final model.

3.2.2 | Choice of variables

PCA based on expert recommendations (Group 3) was the most ap‐
propriate method to select predictors on both unfiltered and filtered 
model based on the metrics (Table S2.3). Among unfiltered models, 
the highest AUC (0.89) was obtained for Group 3 and omission rates 

were within the expected errors (10%) (Figure 6a,b), but this model 
was considered unreliable due to overfitting caused by biased data 
used in calibration (Figure 6). The unfiltered model on the left showed 
a high probability of presence close to sampled occurrences (dark 
blue) and consequently, low out of sample (OOS) predictive power. 
This is not visualized on the filtered model on the right (at 10 km of 
tree distance), because its probability distribution is more regular.

Models based on all variables selected by experts (Group 2) had 
better discriminatory power than models based on the other groups, 
regardless of the scale of spatial filtering applied (3–20  km), with 
AUC values ranging from 0.80 to 0.86 (Figure 5a). However, these 
models had omission rates between 12% and 17%, that is, rates 
above the expected theoretical threshold (10%). This reflects low 
accuracy and predominance of false‐negative errors in the confusion 
matrix. However, after removing multi‐collinearity of the predictors 
selected by experts via PCA (Group 3), omission rates were reduced 
to 11%, as well as overfitting (Table S2.3). Therefore, this group of 
variables was selected for modeling the distribution of Amazon‐nut.

3.2.3 | Spatial filtering

Unfiltered models were found to perform better than filtered mod‐
els on the basis of AUC (Figure 6). However, through visual exami‐
nation of the maps we noted strong signs of overfitting to training 
data for the former models (Figure 7), confirming that poorly fitted 
models with biased samples can have good discriminatory power 
(Lobo, Jiménez‐valverde, & Real, 2008), but may be nonetheless 
overfit. In Figure 7, the probabilistic maps suggested that overfitting 

F I G U R E  4  The first two principal axes of PCA for the environmental predictors in the Amazon geographical space (Group 1): (a) 37 
climate variables; (b) 43 soil variables; and (c) 10 geophysical variables. Variables percentage of contribution in the principal components with 
the large variance of the data. The red‐dashed line indicates the expected average contribution: (d) 22 climate variables; (e) 24 soil variables; 
and (f) 5 geophysical variables were selected

 20457758, 2019, 22, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.5726 by C

A
PE

S, W
iley O

nline L
ibrary on [07/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



     |  12631TOURNE et al.

was reduced with spatial filtering improving model quality. We high‐
lighted two areas with high density of presence data in unfiltered 
and filtered models, and detected adjustment of biases and increase 
of the area extension predicted in the filtered model. However, our 
results expressed high similarity between filtered and unfiltered 
models using rarefied data from 3 to 20  km based on results of 
Schoener's D comparisons (Table S2 3).

The minimum distance between occurrence points was also 
highlighted through density curves. The unfiltered model showed 
signs of highly clustered data, featuring three peaks in the distri‐
bution curve, while in filtered models, curves were bell‐shaped 
with a single peak (Figure S2.1). The model simulated with 10 km 
of distance between records achieved a higher peak in the inter‐
val of 0.5–0.8 than other filtered models, as well as satisfactory 
discrimination power via AUC test (0.8) and lower omission rate 
(0.11).

The final model and the most important predictors are shown in 
Figure 8. This model was fit using records of Amazon‐nut distributed 
spatially filters at 10 km resolution (557 presence points), regulariza‐
tion multiplier (β = 1.5), feature classes combination (LQHPT), and 
Group 3 predictors. The minimum probability of occurrence was lim‐
ited by the Max SSS threshold of 0.5, representing an omission rate 
of 11%. The five predictors with highest contribution highlighted by 
MAXENT were elevation (19.4%), coarse soil fragments >2 mm in 
% (18.3%), clay mass fraction % (18.2%), slope (11.9%), and annual 
potential evapotranspiration (6.9%). Our results suggest that under 
current environmental conditions, suitable habitat for Amazon‐nut is 
found across 2.3 million km2 or 32% of the Amazon Biome.

4  | DISCUSSION

4.1 | Amazon‐nut habitat suitability

We best model indicates across 2.3 million km2 is potentially suit‐
able for B.  excelsa. This area is far greater than that suggested by 
previous studies (1.3 million km2), in which the authors (Thomas et 
al., 2014), highlighted that some areas along the Tocantins River and 
in southeastern Amazonia may have been underrepresented. Our 
model identified that these and other areas in the eastern Amazon 
are suitable (Figure 8).

With respect to the most important predictors that control its 
spatial distribution, our results are similar to those found in other 
studies. In Peru, seed production was found to be positively cor‐
related with clay content and negatively with sand content (Thomas 
et al., 2017). In Brazil, Guerreiro et al. (2017) found that the species 
has a preference soils with a clayey to very clayey texture. However, 
none of the previous studies identified the presence of coarse soil 
fragments >2 mm as being relevant to species distribution, despite 
its known occurrence in high stem densities on lateritic soils which 
contain coarse fragments (Müller, 1995; Salomão, 2009) and often 
are rich in iron oxide and aluminum (Horbe & Da Costa, 2005). 
Concerning chemical attributes, soil influence on fruit production 
has been shown to be positively associated with cation‐exchange 
capacity (Kainer, Wadt, & Staudhammer, 2007). However, other 
studies found highly productive trees in areas with higher levels of 
exchangeable Al and low soil pH, confirming that species can also be 
productive in acidic and less fertile soil (Costa, Tonini, & Filho, 2017).

F I G U R E  5  The first two principal axes of PCA for the environmental predictors proposed by experts in the Amazon geographical space 
(Group 3): (a) 10 climate variables; (b) 17 soil variables; and (c) 3 geophysical variables. Variables percentage of contribution in the principal 
components with the large variance of the data. The red‐dashed line indicates the expected average contribution: (d) 4 climate variables; (e) 
8 soil variables; and (f) 2 geophysical variables were selected
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12632  |     TOURNE et al.

Among topographic predictors, elevation was one of the stron‐
gest predictors. In the map, species probability of occurrence was 
lower at higher altitudes, as in the northern and southern extremes 
of the Amazon basin. Amazon‐nut trees have been recorded from 
sea level to ~400 m above sea level (ASL) (Thomas et al., 2014). Our 
data included specimens found up to 562 m ASL in the south of Para, 
Brazil. In addition, our model indicates that many lowland areas were 

suitable in contrast to the prevailing notion that this species prefers 
upland areas (Scoles et al., 2016). Indeed, species seed production 
has been shown to be lower when trees were close to rivers (Thomas 
et al., 2017). The unexpected inclusion of lowland areas as suitable 
Amazon‐nut habitat was discussed with experts.

Some experts emphasized that several islands in the Amazon 
estuary should not have been classified as suitable, because they 

F I G U R E  6  Results of the receiver 
operating characteristic (ROC) for the test 
data (AUC test) and omission rates (OR) 
in the 18 best models with lowest AICc 
(i.e., ΔAICc < 2) classified by group of 
predictors. (a) AUC and (b) OR. For each 
data‐partitioning approach, we adopted 
10 interactions (k = 10)
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     |  12633TOURNE et al.

are often flooded and have soils rich in silt, with growth condition 
adverse those where the species is commonly found. Others experts 
suggested that although Amazon‐nut occurrence in areas prone to 
flooding is rare, it can happen. They reported an example in the 
lago capanã grande reserve, in Manicoré, Amazonas, where the local 
community affirms that the Amazon‐nut trees in flooded areas are 
more productive than those found in nonflooded areas thanks to the 
presence of river sediments. Similarly, occurrences and high fruit 
productivity have been described in Peruvian Amazonian lowlands, 
notably in Madre de Dios (Nunes et al., 2012). Amazon‐nut popula‐
tion observed closer to the river has been recently associated with 
dispersal by ancient humans who strongly contributed to expand 
species distribution in the habitat (Thomas et al., 2014, 2015). For 
future studies, we recommend a more detailed investigation about 
Amazon‐nut suitability in periodically flooded areas using environ‐
mental data at finer spatial resolutions, also, taking into account fre‐
quency and duration of flooding.

Climate was less important than soil and topography to Amazon‐
nut habitat suitability in the best model. This was unexpected given 

the known importance of climate to spatial patterns in floristic di‐
versity across Amazonia (da Silva et al., 2011). However, our findings 
are similar to those of a recent study that highlighted the relative 
importance of edaphic conditions to plant occurrence in Amazon 
(Figueiredo et al., 2017). We attributed this result to recognized im‐
portance of soil attributes to Amazon‐nut ecology and productivity 
(Costa et al., 2017; Kainer et al., 2007). Moreover, we highlight that 
the percent contribution values ranked by MAXENT are determined 
by how much of variation a model with only that variable explains, 
it considers environmental variables separately (Bradie & Leung, 
2017). A low variation in climate predictors was confirmed though 
our PCA analysis (Table S2.2).

Despite low variation, the annual potential evapotranspiration 
contributed with 7% in the final model. Derived from climatic vari‐
ables, this predictor represents the amount of soil water lost by evap‐
oration and transpiration from plants into the atmosphere under given 
conditions (Zomer, Trabucco, Straaten, & Bossio, 2006). Inclusion of 
this variable in the final model makes ecological sense as the Amazon‐
nut is an emergent tree that receives a high level of solar radiation. 

F I G U R E  7  The best unfiltered and filtered models to estimate the Amazon‐nut (B. excelsa) habitat based on current environmental 
conditions (Group 3 of predictors). We highlighted for two areas where we had high density of sampled points (red points). Area1: at the 
border between Brazil, Peru and Bolivia. Area 2: southern Amapa State, Brazil
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12634  |     TOURNE et al.

Consequently, Amazon‐nut trees are vulnerable to drought and water 
loss. It has been noted that this species is most vulnerable to drought 
during the dry season, and that dry and warm conditions negatively 
affect species seed production (Thomas et al., 2017). Facing climate 
changes, forest loss and rapid land‐use changes, many uncertainties 
hover on Amazon‐nut future. Therefore, natural and human factors, 
as well as their consequences on the species distribution, must be 
urgently assessed to ensure its conservation.

The above reflections were supported by experts consulted who 
believe that the model was adequate to representing Amazon‐nut 
habitat suitability. Although, some areas were deemed underpre‐
dicted in Venezuela, Guyana, and Colombia. This was attributed 
to limited presence data obtained in these countries. In Brazil, the 
country that contains the greatest percentage of habitat for this spe‐
cies (91%), many microregions classified as suitable were confirmed 
by experts, such as: in Amazonas (microregion of Purus, Madeira, 
medium and low Rio Negro); southern of Amapá (microregion of 
Mazagao); Pará (microregion of Santarém, Óbidos, Itaituba, Tome‐
Açú, Marabá); and Rondonia (Microregion of Porto velho). Experts 
also identified areas that were not suitable for B. excelsa, although 
the model identified them to be as, such as: in microregions of 
Roraima (Roraima) and Cruzeiro do Sul (Acre). According to these 
experts, this was not a commission error inherent to model because 
there are Amazon‐nut trees planted and growing in arboretums and 
nurseries, but not in natural forest in the Cruzeiro do Sul, for exam‐
ple. These potential areas not naturally occupied can be justified by 
ecological factors.

Unfortunately, biologic information was not considered in our 
model, due to the scarcity of spatial data. Fauna studies are often 

local and focused on population dynamic (demography, displace‐
ment, and food availability) (Haugaasen et al., 2012). Fauna habitat 
modeling may be extremely useful to tree distribution studies, but it 
is seldom investigated for terrestrial Amazon species. Besides fauna 
interaction, very little is known on Amazon‐nut dominated plants 
communities and their roles on species distribution.

4.2 | Methodological aspects

Our results demonstrated that a hybrid strategy based on statisti‐
cal modeling and expert opinion allowed identifying the best model 
for B. excelsa. This finding reinforces that the relationships among 
original predictors should be understood not only through their 
statistical behavior, but also by the ecological role they play in the 
species distribution. Although PCA is a highly informative ordination 
technique and has been extensively applied in community ecology 
since 1954 (Legendre & Legendre, 2012), interpretation of outputs 
requires biological knowledge (Janekovi & Novak, 2012).

Detailed biological knowledge is still scarce or incomplete for 
many if not most Amazonian plant species. Therefore, expert‐based 
information has been proposed as an alternative approach to iden‐
tifying meaningful predictors in habitat modeling (Calixto‐Pérez et 
al., 2018). Our findings showed that PCA was effective in reducing 
omission error rates, data collinearity, and dimensionality, as well as 
preserving maximum variance, when applied to a set of variables 
preselected by experts. Thus, among 29 variables chosen by ex‐
perts, fifteen were selected via PCA and used to fit our model. Five 
of them had a contribution of 75% in the best model found ensuring 
statistical and ecological representativeness.

F I G U R E  8  Distribution of suitable habitat for Amazon‐nut (B. excelsa) in the Pan‐Amazon to a probability of presence >0.5 (Max sss 
threshold) and percent of contribution of the variables in the final model. Dashed red line indicates five biggest contributions to Amazon‐nut 
distribution. Elevation (19.4%), coarse fragments volumetric >2 mm in % (18.3%), clay mass fraction % (18.2%), slope (11.9%), and annual 
potential evapotranspiration (6.9%)
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Even using the best set of predictors, we observed that the dis‐
criminatory ability of filtered models measured by AUC was gradu‐
ally reduced at larger filtering distances. Ironically, our most biased 
model (poorly fitted) received the highest AUC value. Similar re‐
sults were found by Radosavljevic and Anderson (2014). This was 
expected, because the AUC has been shown to be insufficient for 
model evaluation when no true absence data are available (Jiménez‐
valverde, 2012; Lobo et al., 2008). Through visual interpretation, 
we identified clear positive effects of spatial filtering on reducing 
overfitting (Figure 7), supporting previous research (Kramer‐Schadt 
et al., 2013). However, the challenge was to define at which distance 
the filtering became too strict, because statistically, there was high 
similarity between filtered models. We addressed this problem by 
comparing metrics and density curves (Table S2.4 and Figure S2.1).

The minimum distance of 10 km between presence data was 
considered appropriate to the adopted scale. Models using data 
filtered in this way displayed the highest peak in density curve in 
the interval of 0.5–0.8, satisfactory discrimination power via AUC 
test and lower omission rate. The same distance has been used 
and recommended in other studies of highly heterogeneous areas 
(Boria et al., 2014; Kramer‐Schadt et al., 2013). However, 10 km 
does not represent a distance between populations or groves, it 
was only chosen in order to reduce geographical bias existing in 
the data. If AUC would have been the only evaluation metric, it 
would have been misleading. But, together with other metrics and 
visual evaluation, this index was useful, because the biased models 
with highest AUC were used as reference to compare with other 
metrics.

Regarding Maxent settings, the variation of FC and β between 
experiments led us to conclude that these parameters should be 
fine‐tuned on a species and dataset‐specific basis (Radosavljevic & 
Anderson, 2014). However, contrary to our expectations, the data 
were well‐fitted to the combinations of all feature classes, usually 
suggested as default (Phillips & Dudík, 2008), when we compared 
to more simplified functions. Similar results were found by (Elith et 
al., 2011), when comparing models with all features to those using 
only the hinge function, with no differences in the predictive ability 
of either model were found. For the β, values ranged from 1 to 2 
among the 18 best models. This corresponds with the optimal range 
obtained by Radosavljevic and Anderson (2014).

5  | CONCLUSION

The outcomes suggest that we may be able to fit a robust habi‐
tat suitability model by developing a collaborative model‐building 
process. The combinations of statistical techniques with expert 
knowledge were decisive in the selection of predictors. The PCA 
despite being powerful should be complemented by ecological 
knowledge. By involving experts actively, we were also able to 
better define the addressed ecological and methodological ques‐
tions, as well as to evaluate our results with their feedback. Other 
positive strategy for the construction of a reliable model was the 

application of spatial filtering that helped us identify the minimum 
distance between presence points. Fine‐tuning of model param‐
eters also allowed us to understand their effects in the model 
quality. At last, combining qualitative and quantitative methodolo‐
gies, we could identify spatial variations between models, evaluate 
metrics efficiency and the model accuracy.

The best model showed that 2.3 million km2 of the Amazon re‐
gion is potentially suitable for B. excelsa based on the existence of 
appropriate environmental conditions. Topographic and soil vari‐
ables were the predictors with the highest contribution to the model, 
expressing that geomorphology and soil physic are more important 
than soil chemistry and climate to explain species occurrence in the 
adopted scale (extension and grain size). It is also crucial to stress 
that the real habitat occupied by this species is smaller than 32% 
of the Amazon, mainly due to other ecological and anthropogenic 
factors, generally unknown or rarely monitored, such as predation, 
pollination, natural dispersal limitation, genetic variation, fragmen‐
tation, among others.

Our model can efficiently assist new site selections for planting; 
however, aggregation with additional information to reach planting 
success is strongly suggested, such as proximities with conserved 
forest fragments to allow pollination process; planting mixed with 
other species to facilitate the bee's flight up to the Amazon‐nut 
flowers; make seeds selection to ensure healthy individuals with 
high fruit productivity; and conduct management and forestry treat‐
ments. The generated model can also be used as basis for modeling 
studies considering future scenarios for climate change and to sup‐
port conservation practices. We recommended that other studies 
be developed in a small scale, constantly including decision‐makers 
in the processes.
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