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Abstract
Genetic gain followed by loss of diversity is not ideal in breeding programs for several species, and most studies
face this problem for single traits. Thus, we propose a selection method based on Genetic Algorithms (GA) to
optimize the gains for multi-traits that have a low reduction of status number (NS), which takes into account equal
contributions from individuals as a result of practical issues in tree breeding. Real data were used to compare GA
with a method based on a branch and bound algorithm (BB) for the single-trait problem. Simulated and real data
were used to compare GA with a multi-trait method adapted from Mulamba and Mock (MM) (a genotypic ranking
approach) through a range of selected individuals’ portions. The GA reached a similar gain and NS in a shorter
processing time than BB. This shows the efficacy of GA in solving combinatorial NP-hard problems. In a selected
portion of 1% and 2.5%, the GA had low reduction in the overall gain average and greater NS than the MM. In a
selection of 20%, the GA reached the same NS as the base population and a greater gain than MM for the simulated
data. The GA selected a lower number of individuals than expected at 10% and 20% selection, which contributed to
a more practical breeding program that maintained the gains and without the loss of genetic diversity. Thus, GA
proved to be a reliable optimization tool for multi-trait scenarios, and it can be effectively applied in tree breeding.
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1. Introduction

The selection of related individuals can be harmful to
genetic diversity in a tree breeding program by enabling
their crosses and, consequently, the expression of ge-
netic load by allowing deleterious alleles in homozigose.
This is likely to happen, because related individuals can
share the same genes that produce the best phenotypes
(Ahlinder, Mullin, & Yamashita, 2014). Thus, flexible al-
gorithms that promote a sustainable balance between
genetic gains for many traits in selection processes and
genetic diversity are essential to a successful tree breed-
ing.

In this context, detailed pedigree information is of
great importance, because gives more precise informa-
tion about genetic crosses and the resemblance between
relatives without knowing the genetic design (El-Kassaby,
Cappa, Liewlaksaneeyanawin, Klápště, & Lstibůrek, 2011;
Sonesson, Woolliams, & Meuwissen, 2012). This infor-

mation is useful for estimating the genetic size of a popu-
lation through group co-ancestry (θ ) (Cockerham, 1967;
Lindgren, Gea, & Jefferson, 1996), which represents the
genes that are identical to descendants (IBD), provid-
ing a measure of genetic diversity in the base breeding
population and the next selected populations.

Lindgren et al. (1996), Noiton and Alspach (1996),
and Wei et al. (1998) suggest the use of the status num-
ber (NS), which is half the inverse of the θ mean and
equal to the census number when all individuals are not
IBD. The θ and NS are independent of the genetic cross-
ing design and useful in measuring the genetic relation-
ships between individuals. However, in finite populations,
the selection of related individuals is common, which is
why it is important to control the endogamy and the ge-
netic gains that are reached (Pong-Wong & Woolliams,
2007; Sonesson et al., 2012). The selection of few indi-
viduals will likely carry a higher number of individuals per
family and, consequently, result in a lower NS. Besides
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that, inbred individuals will greatly reduce the genetic
diversity of a population, so the selection of large family
numbers with the same number of individuals per family
and a lower number of inbred individuals is needed (de
Oliveira Castro et al., 2019; M. D. V. Resende, 2002).

This problem has been studied intensively in the re-
cent past (Brisbane & Gibson, 1995; de Oliveira Cas-
tro et al., 2019; Fernández & Toro, 1999; Meuwissen,
1997; R.-P. Wei et al., 1998; R. P. Wei & Lindgren, 1995),
and a method of dynamic optimization selection using
Lagrange multipliers was derived (optimum contribution
– OC) for animal breeding by maximizing genetic gain
under a given restriction on group co-ancestry (Meuwis-
sen, 1997). In tree breeding, an algorithm based on
OC (Meuwissen, 1997) was developed because of differ-
ences in the mating system between trees and animals
(Kerr, Goddard, & Jarvis, 1998) and tested in various
mating schemes, including a diallel progeny trial of Scots
pine (Hallander & Waldmann, 2009a). Another impor-
tant algorithm is the Population Merit Selection (PMS),
which maximizes genetic gain under a given weighting re-
striction on group co-ancestry (Lindgren & Mullin, 1997).
However, the PMS is very time consuming due to the
recalculation of group co-ancestry (Lindgren & Mullin,
1997) and requires weights that adjust the importance of
genetic diversity, which depends on economic, biological,
and other parameters (Hallander & Waldmann, 2009b).
Subsequently, a software called GENCONT was devel-
oped (Meuwissen, 2002). However, GENCONT rounds
negative contributions of the candidates, obtaining sub-
optimal solutions (Pong-Wong & Woolliams, 2007; Wool-
liams, Berg, Dagnachew, & Meuwissen, 2015). Therefore,
semidefinite programming (SDP) (Pong-Wong & Wool-
liams, 2007) was developed, and the optimal solution
was found with a shorter processing time than with GEN-
CONT (Meuwissen, 1997, 2002). Currently, there is a
faster version of GENCONT (Gencont2) due to the use of
Gauss-Seidel method (Dagnachew & Meuwissen, 2016).

The SDP was applied in tree breeding and it obtained
excellent results for clonal seed orchard selection. How-
ever, the computational cost would have been higher
if a large candidate list (12,000 genotypes plus ances-
tors) was considered, and this would also have been
very time consuming (Ahlinder et al., 2014). Thus, an
alternative and faster method based on second-order
cone programming (SOCP) was proposed for analyzing
unequal contributions of parental genotypes to the seed
orchard (Yamashita, Mullin, & Safarina, 2015), showing
better results than GENCONT and SDP, mainly, for large
problems in a matter of seconds. Currently, SOCP is
one of the best software programs developed for unequal
contribution solutions.

However, due to a lack of human and financial re-

sources, tree breeding programs encounter difficulties
when analyzing specific crossings with a variable family
size and a larger number of parents per crossing. Conse-
quently, many breeders prefer to cross a specific number
of parents with equal contributions to the next breeding
population. As a result of these practical issues, Mullin
and Belotti (2016) suggested a branch and bound al-
gorithm (BB) to solve this mixed integer quadratically
constrained optimization (MIQCO) problem. Thus, objec-
tive functions and/or constraints are quadratic, and the
variables to be optimized must be binary. Consequently,
contributions are equal for all candidates. BB proved to
be an excellent algorithm, although MIQCO is still consid-
ered an NP-hard problem. Hence, other methods should
be developed because the search to find the best candi-
dates in a small population tends to become exhaustive
(Fernandez & Toro, 2001).

However, most of these algorithms used single traits
and a multi-trait problem is more realistic and challeng-
ing in breeding programs (Chapuis, Pincent, & Colleau,
2016; Colleau, Tual, de Preaumont, & Regaldo, 2009;
Yanchuk & Sanchez, 2011). Furthermore, antagonistic
traits negatively impact the search for optimal conditions,
in addition to the simple control of co-ancestry (Cha-
puis et al., 2016; Yanchuk & Sanchez, 2011). Thus, the
selection of a group of individuals with highly desirable
genetic gains for all traits without a loss of diversity is
a complex problem that justifies the use of heuristic al-
gorithms for MIQCO problems. Heuristic methods, such
as simulated annealing (SA), have been applied to as-
signed matings (Hallander & Waldmann, 2009a; Kerr et
al., 1998) to maximize genetic gains with a restriction on
co-ancestry in animal (Chapuis et al., 2016; Colleau et
al., 2009) and tree breeding (Fernandez & Toro, 2001;
Yanchuk & Sanchez, 2011). However, these methods
assign unequal contributions to their candidates.

Another algorithm that is robust and easy to imple-
ment is the Genetic Algorithm (GA). GA is based on the
concept of natural selection proposed by Darwin (Holland,
1975). Although its name suggests it is a method used
solely for biological problems, it is currently used in many
areas of science, such as multi-depot vehicle routing prob-
lems, manufacturing systems, and 3D Truss Structures
(Karakatič & Podgorelec, 2015; Mejı́a & Gutiérrez, 2016;
Mitchell, 1998; Toğan & Daloğlu, 2016). In genetics and
crop breeding, there are studies that use it to map quan-
titative trait loci (QTL) (Nakamichi, Ukai, Kishino, Ukai,
& Nakamichi, 2001) and genomic selection (Akdemir,
Sanchez, & Jannink, 2015). In animal breeding, GA has
been applied to maximize average genetic gains of direct
and social effects under the control of inbreeding, and
it showed advantages in relation to BLUP (best linear
unbiased prediction) (Wu, Jiang, Zhu, Li, & Tang, 2016).
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However, the authors did not give substantial background
regarding their approach. Thus, the objective of this
study was proposing the use of GA to optimize genetic
gain for multiple traits and genetic diversity of a breeding
population at the same time.

2. Material and Methods

2.1 Data

2.1.1 Case 1: Simulated data and multi-trait index

This dataset was used to evaluate the optimization be-
havior of selection via GA in a simulation scenario. Here,
the population structure and the genetic correlations be-
tween the traits were known. Four generations with 20
sires and 1000 dams were created with a simulation us-
ing the 16th workshop QTLMAS (Usai, Gaspa, Macciotta,
Carta, & Casu, 2014). The generations did not overlap.
Three traits were created relating to milk production and
the genetic correlation between them. All traits relate to
the female ones. Therefore, in this study, the algorithm
was applied to the data of 3000 individuals in generations
G1-G3. These data were chosen because the simulating
quality and the resemblance to dioecious plant species.
These plant species include many fruit trees, for which
most phenotypes are also measured in female individ-
uals. This is the case for the Brazilian Pine (Araucaria
angustifolia) and Yerba Mate Tea (Ilex paraguariensis).

2.1.2 Case 2: Real data and single-trait index

In order to compare GA with the method reported by
Mullin and Belotti (2016), the same dataset for single-
traits used by these authors was examined. These data
include current information regarding the pedigree and
estimated breeding values (EBVs) of a breeding program
in Sweden. From 50 parents, 24 breeding populations of
Pinus sylvestris were crossed, and 242 individuals within
these populations were used as the F0 to produce the F1
and F2 generations. The cycles were evaluated through
open and controlled pollination. From this population,
the study used the same 5250 individuals, which were
examined using the method that Branch and Bound imple-
mented in OPSEL software (Mullin & Belotti, 2016). The
EBV average was compared for both methods (BB and
GA) at the same restrictions and co-ancestry coefficient
(Woolliams et al., 2015).

2.1.3 Case 3: Real data and multi-trait index

The Pinus taeda dataset was provided by Resende et
al. (2012). A population of 926 individuals was formed
from a partial diallel with 32 top parents. The individuals
were asexually propagated as clones, which generated

experimental replicates in three different environments.
Seventeen traits were evaluated by the authors, which
pertained to growth, wood properties, and disease sus-
ceptibility.

In this study, the following five traits were examined:
diameter at breast height (DBH), tree height (HEI), wood
specific gravity (WSG), lignin content (LIG), and suscepti-
bility assessed as gall volume (GV). All traits with correla-
tions and heritability were in the same range as typical
forest tree pedigrees, and they represented a multi-trait
selection of individuals with equal contributions that max-
imized genetic gain with low diversity reduction.

2.2 Index formulation

The index for multi-trait selection was formulated using
GA, which is considered to be a stochastic, evolutionary,
metaheuristic index that is very efficient at finding the op-
timal solution for combinatorial NP-hard problems (Haupt
& Haupt, 2004). GA is a methodology proposed by Hol-
land (1975) and it is based on the theory of evolution
by natural selection. Thus, its associated language is
derived from biological terms like chromosomes, genes,
alleles, population, fitness, selection, crossover, mutation,
and elitism. The flow-chart (Figure 1) shows the steps
followed in a GA analysis.

Generally, the algorithm randomly creates a set of
solutions (population), and each solution is called a chro-
mosome. Each chromosome is formed by many units
(genes) that have discrete values (alleles) with binary rep-
resentation. The algorithm either selects (allele equals
one) or does not select (allele equals zero) individuals
from a breeding population. Our chromosome was a bi-
nary vector yielding equal contributions. However, other
codifications are also possible.

All solutions are evaluated by the fitness function (ob-
jective function), which calculates the genetic gains of
many traits and the NS of the group of individuals for
each chromosome, generating a fitness value. The NS
was applied instead of group co-ancestry, because the
NS is better understood than the concept of group co-
ancestry (Cockerham, 1967). This makes more sense
with respect to the number of non-inbred individuals and
unrelated genotypes (Lindgren & Mullin, 1997). However,
Kerr et al. (1998) showed differences between the use
of status number and group co-ancestry as a restriction
to the optimum contribution (OC). Hence, the breeder
can choose what parameter is most appropriate for the
specific problem. However, further investigations must
be performed to assess the differences between them.
The fitness function was formulated and applied in the
GA package in R software (Scrucca, 2013). Its represen-
tation (equation 1) and restrictions (equations 2, 3, and
4) are shown below:
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Figure 1. Flow chart showing all
steps followed by the GA method.
The base population is created ran-
domly, and all of its chromosomes
are evaluated according to the fit-
ness before entering the breed-
ing cycle. The best chromosomes
are selected (exploitation) and en-
hanced crossovers and mutations
(exploration) are performed. After
this, an improved population is ob-
tained and submitted to a new it-
eration (generation). The process
repeats until one of the stopping cri-
teria is achieved.
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where: k = number of traits; m = total of individuals; Z =
vector of ones (k × 1); N = EBVs matrix (k × m); x =
binary vector of the solution (chromosome) (m× 1); Y
= vector of EBVs’ average (k × 1); A = additive kinship
matrix (2×coancestry coefficients) (m × m); R = vector of
penalty constant for traits (1 × k); C = penalty constant
for the maximum number of selected individuals; Q =
vector of zeros (k × 1); u = vector of ones (m × 1); S j
= maximum number of selected individuals according to
the selected portion j; NS = status number of selected
individuals (equation 6); NS0 = status number of the base
population with m individuals (equation 7).

The data consisting of traits represented by EBVs
were normalized to vary from 0 to 1, and the mean rep-
resented the genetic gain. Normalization was necessary
to avoid biased selection of individuals that have high
absolute values for a specific trait, allowing us to set them
at the same scale as the relation between status number
of selected individuals and the base population.

The fitness function maximizes the mean between
the NS/NS0 ratio (the second element of equation 1) and
the average genetic gain for all traits (the first element of
equation 1). When the former is close to 1, this indicates

that there is a low reduction in diversity. The NS0 was cho-
sen because it avoids the question of what value should
be set, preventing a large variation in group co-ancestry
and, consequently, population bottlenecks (Woolliams et
al., 2015).

When k traits for equation 2 are not met (no gain or a
negative gain), the sum of the k trait penalties (constants)
is subtracted in equation 1. In this study, the value of
the penalty was 2 for each trait. This penalty value was
chosen because the averages of the first and second ele-
ments of equation 1 will result in a maximum value close
to the unit. Hence, when any penalty is not fulfilled, the
fitness function results in negative values for that chro-
mosome (x), indicating that the chromosome is unlikely
to be selected and enhanced through genetic crossover
and mutation (Figure 1). Furthermore, any penalty value
over this unit could be chosen.

Equation 3 limits the unit’s genetic gain maximum
to 100% of the gain, which is equal to double the base
population’s mean. This strategy balances the selection
averages for many traits with respect to NS and NS0 so
that all averages varied from 0.0 to 1.0. This meant that
a maximum of 100% of the genetic gain was limited to
each trait.

Equation 4 allows the GA to identify a group of indi-
viduals that has a lower or equal value as the maximum
number established by the selected portion. If unfulfilled,
the penalty equals 2 (C), and this is applied in equa-
tion 1 for the same reason explained above. Thus, the
selected portion in this case is the maximum condition
allowed. Equation 5 refers to the GA binary codifica-
tion, indicating equal contributions from all individuals
selected and the size of the chromosome in the GA pack-
age (Scrucca, 2013). Equations 6 and 7 calculate the NS
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and NS0, respectively. Because the binary codification
of GA in equation 5, our method allows the selection of
the minimum number of individuals necessary to achieve
an equilibrium between the genetic gain and the NS/NS0
ratio within the limits imposed by equation 4.

Therefore, this new multi-trait method will obtain the
fitness values for all chromosomes by selecting individ-
uals that have a higher EBV average for all traits with a
lower reduction of status number by using a minimum
number of selected individuals.

The greater the fitness value (meaning the higher
genetic gain and better control of NS), the greater the
probability that these solutions will be selected. This
probability is given by the linear rank method proposed
by Baker (1985), which results in a slower convergence of
the algorithm compared to others methods, such as the
Roulette Wheel (RW) method. However, it guarantees
a greater diversity of possible solutions (Mitchell, 1998;
Sivanandam & Deepa, 2007). The linear rank method
sets a maximum value for the best chromosome, and it
sets 0 for the worst chromosome. Then, it determines
the probabilities for the other chromosomes in a linear
fashion. Thus, each chromosome receives a probabil-
ity ranking according to its fitness value and not on its
magnitude (Baker, 1985; Sivanandam & Deepa, 2007).

The RW method determines the probability of selec-
tion for each chromosome according to the magnitude of
its fitness value. Therefore, if a chromosome has a very
high fitness value, the others will have a low probability of
being selected using the RW method. This leads to rapid
convergence (Sivanandam & Deepa, 2007). After se-
lection, chromosomes exchange genes (cross-over) and
mutations occur, which are modifications to some gene
values (alleles). These processes explore the solution
space.

The genetic operators (crossover and mutations) were
the default settings adopted by the GA package (Scrucca,
2013). They generate new chromosomes based on the
best ones from the previous generation, and they are
evaluated again using the fitness function. This process
then repeats to identify the best chromosomes and main-
tain them across generations (elitism) (Haupt & Haupt,
2004; Scrucca, 2013).

The GA is robust, flexible, and it avoids local optima.
This is because it has mechanisms for exploration (evalu-
ation of new solutions in the solution space) and exploita-
tion (the use of information from better solutions obtained
previously) (Sivanandam & Deepa, 2007).

The steps involved in selection, crossover, and mu-
tation that create the enhanced population are called
breeding cycles (Mitchell, 1998; Sivanandam & Deepa,
2007). Two-stopping criteria were adopted, which in-
cluded a preset maximum number of generations and

a stall generation to take into account the number of
generations without an improved solution (Sivanandam
& Deepa, 2007). The number of iterations was chosen
according to the problem size because of the evolution-
ary nature of GA, which could consequently run forever
(Glover & Kochenberger, 2006). Thus, the algorithm will
stop when the search does not yield improved results or
the maximum number of generations is reached.

Economic weights could be applied using weighting
factors for which the sum should be equal to 1. In this
study, all traits were proportionally equal. An important
study in multi-trait selection by (Yanchuk & Sanchez,
2011) could be a method to use for tree breeding. The
authors maximized the classical Smith-Hazel (SH) in-
dex under a constraint on group co-ancestry. While they
did this in two steps, they first found the best individu-
als based on EBV through the SH index, and then they
optimized the SH index under a constraint using group
co-ancestry via simulated annealing. Our approach does
the same in only one step.

2.3 Analysis for each case study

In cases 1 and 3, an index based on Mulamba and
Mock (1978) (MM) was used as a comparison for the GA
method. The MM maximizes the genetic gain of traits
using the sum of their average ratings, and it selects
the top-ranked individuals. However, the MM does not
consider economic weights or the NS during selection.
Therefore, it is not a sufficient method for maintaining
genetic diversity across breeding cycles. The NS was
calculated after the individuals had been selected using
the MM method.

In case 2, the solution vectors (chromosomes) were
remodeled to fit the 50 individuals that had been selected
according to the restrictions on the number of individuals
established by Mullin and Belotti (2016), which permitted
a lower space for solutions. The value of the genes (al-
leles) was set as the identification number of individuals,
and it ranged from 1 to 5250. Thus, each chromosome
had 50 identification numbers (genes) that represented
the candidates. Additionally, in the fitness function, the
selection of 50 individuals was considered with restric-
tions on a maximum of six individuals per family and a
co-ancestry coefficient less than or equal to 0.015. This
was equivalent to selecting a group possessing an NS
higher than 33.33. All restrictions were equal to those
used by Mullin and Belotti (2016).

The same process was performed using the co-ancestry
coefficient of 0.0167 (NS = 29.94) with a predefined pro-
cessing time of 30 minutes in order to compare BB and
GA in a shorter time. The dsOpt solver embedded in
OPSEL software was used to implement the BB algo-
rithm (Mullin & Belotti, 2016). All results were obtained
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on a personal computer (Windows 7, 64 bits, 2.5 GHz, 6
GB RAM). GA was compared to BB because both algo-
rithms are used to address MIQCO problems.

For case studies 1 and 3, defined selected portions
were 1%, 2.5%, 5%, 10%, and 20% without a specific se-
lected portion (free). This was performed by excluding the
restriction (equation 4) and penalty constant (C). In these
cases, the processing time for GA was efficient, which
encouraged other researchers to improve this method
and develop others that are similar.

The selection was performed using both methods (GA
and MM) to cross individuals randomly and obtain a lower
probability of inbreeding. Using these conditions, the next
breeding population will have a smaller risk of inbreeding
depression and higher genetic diversity.

3. Results

3.1 Case 1: Simulated data and multi-trait index

Table 1 shows the results for the MM and GA methods
in different selected portions. This includes the number of
selected individuals, the new averages for the three traits
and their percentage genetic gains (T1, T2, and T3), the
number of selected families (NF), the number of individu-
als per family (IF), the number of inbred individuals (NI),
the processing time for GA, and its number of iterations.

For the MM method, the 1% selected portion had
an NS of 6.1, which is nine times lower than the NS of
the base population (54.9). Meanwhile, the GA method
generated 50% of the NS of the base population (Table
1). The MM method displayed 47% of the overall gain
and the GA had 44%.

The Figure 2 shows that the iterations using GA progress
up to its convergence. Figures 2a, 2b, and 2c represent
the selected portions of free, 1%, and 10%, respectively.
In the selected portion of 1%, it is not possible to reach
higher values of NS. In the selected portion of 10%, the
final results after convergence are similar to the selected
portion of the free context with respect to NS, genetic
gain, and numbers of iterations.

In the selection portion of 5%, GA reached an NS
equal to the base population, and it displayed a similar
overall gain in the selected portions of 10%, 20%, and
free. The overall gain for GA (0.33) was slightly lower
than that of MM (0.36), for which the NS reached 60%
of the base population’s NS (Table 1). Thus, a selected
portion of 5% is suitable for using the GA method to
analyze these data.

For the selected portions of 10% and 20%, the GA
obtained a smaller number of individuals (177 and 185,
respectively) than expected (300 and 600, respectively).
This was because the best NS was found, which guar-

anteed genetic diversity and avoided over-selection of
individuals that reduces the overall gain. The same phe-
nomenon occurred with the selected portion of the free
category, which had a similar number of individuals with
selected portions of 10% and 20%. Obtaining fewer
individuals with a high NS and overall gain makes the
selection process more practical and robust.

The GA method selected a smaller number of families
and a larger number of individuals per family compared
to the MM method (Table 1), which jeopardized the ge-
netic diversity of the breeding population (Resende 2002).
However, genetic diversity depends on the base popu-
lation structure and the relatedness between and within
families. Thus, the GA selected the best unrelated indi-
viduals from the best families.

The MM produced a significant reduction in the NS
of selection portions by 1% and 2.5% because it did not
have any control over the related individuals. For this
method, the NS reduction can be controlled by using a
selected portion of 10% or more. Alternatively, the same
number of individuals per family can be selected with a
higher number of families, which implies a lower genetic
gain for both strategies.

The genetic correlations between T1 and T2 or T3
are 0.81 and -0.44, respectively. The correlation between
T2 and T3 is 0.15. According to simulated data, there are
positive, negative, and null correlations, which influence
the way the genetic gain is set with respect to the traits.
When traits are highly negatively correlated, there is an
increased processing time because the search will be
restricted to a few individuals that are related to each
other with high breeding values.

In this context, the GA could be applied as an efficient
tool in genetic breeding for combinatorial NP-hard prob-
lems because it effectively lowered processing time (from
7.55 to 39.58 minutes, Table 1).

3.2 Case 2: Real data and uni-trait index

The BB method ran for 120 minutes using a per-
sonal computer with OPSEL software and obtained a
co-ancestry coefficient (θ ) equal to 0.015 (NS = 33.33)
and an EBV average equal to 319.81. The GA ran until it
identified an EBV average greater than or equal to 320.5,
and it then selected 50 individuals from 45 families with
a maximum of 6 individuals per family and obtained a
co-ancestry coefficient (θ ) equal to 0.015 (NS = 33.33)
and an average EBV of 320.69 in 64 minutes and 10
seconds (141059 iterations).

With a co-ancestry coefficient of 0.0167 (NS = 29.94)
generated in the same processing time (30 minutes), the
GA method obtained an average EBV of 332.42, while
BB in OPSEL yielded an average EBV of 332.88 with 50
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Table 1. Results obtained from both selection indexes using simulated data (Usai et al., 2014). The status number
(NS), GA processing time (Time), genetic gains for the three traits (T1, T2, and T3), and overall gain (average of the
percentage genetic gain for the three traits) are shown.

Mulamba and Mock

Sel. Int.a Sel. Ind.b Ns T1 T2 T3 Overall Gain NFc IFd NIe Time (min) Iter.f

1% 30 6.08
253.553 22.086 0.028

0.47 13 2.3 1 – h –
(0.433)g (0.685) (0.287)

2.5% 75 28.1
214.352 19.002 0.026

0.41 65 1.2 2 – –
(0.366) (0.590) (0.266)

5% 150 33.8
181.561 16.579 0.024

0.36 113 1.4 6 – –
(0.310) (0.514) (0.248)

10% 300 40.4
172.851 14.806 0.018

0.32 216 1.39 14 – –
(0.296) (0.459) (0.191)

20% 600 46.1
155.140 12.429 0.013

0.26 417 1.44 32 – –
(0.265) (0.386) (0.134)

Genetic Algorithm

1% 30 24.64
305.546 21.508 0.013

0.44 28 1.07 0 7.55 1217
(0.522) (0.667) (0.136)

2.5% 75 43.27
247.987 17.641 0.012

0.36 36 2.08 0 13.78 2189
(0.424) (0.547) (0.120)

5% 150 54.92
234.671 16.039 0.009

0.33 55 2.73 0 21.35 3375
(0.401) (0.498) (0.097)

10% 177 54.92
240.245 16.375 0.009

0.33 78 2.27 2 23.81 3680
(0.411) (0.508) (0.093)

20% 185 54.93
238.600 16.333 0.009

0.34 82 2.26 3 21.8 3118
(0.408) (0.507) (0.096)

Free 184 54.93
236.129 16.338 0.010

0.34 82 2.24 3 39.58 4641
(0.404) (0.507) (0.101)

a Selected portion; b Selected individuals; c Number of families selected; d Number of selected individuals per family; e Number
of selected inbred individuals (i.e., inbreeding coefficient > 0); f Number of iterations; g Percentage of genetic gain (values in
parentheses); h Instantaneous process.

selected individuals and a maximum of six individuals per
family.

3.3 Case 3: Real data and multi-trait index

The Table 2 shows the results from using real data
(M. F. R. Resende et al., 2012) with the MM method and
the GA method at different selected portions. This table
reports the number of selected individuals, the new mean
of the five traits, the number of selected families (NF),
the number of individuals per family (IF), the number of
inbred individuals (NI), the processing time for GA, and

its number of iterations.
For the MM method, a selected portion of 1% showed

an NS of 3.0, which represents an eight-fold reduction in
the base population’s status number (24.1). In contrast,
the GA method produced almost one-third (7.5) of the
base population’s status number (Table 2) and a lower
gall volume (GV) with a small difference (0.07) in the
overall gain between the two methods.

For GA, the best selected portion that yields high
NS with high genetic gains is 10%. Similar results are
obtained with the 20% and free selected portions. For se-
lected portions of 10% and 20%, the GA method isolated
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Figure 2. The GA method’s convergence progress for case 2. (a) The selected portion is free (Free) to maximize
the NS and the genetic gain without restricting the number of selected individuals. (b) The selected portion of 1%
(maximum of 30 selected individuals). (c) The selected portion of 10% (maximum of 300 selected individuals). The
three charts on the top show the maximization of genetic diversity.

a lower number of individuals (91 and 122, respectively)
than expected (93 and 185, respectively) because the
best NS was identified, guaranteeing genetic diversity
and avoiding over-selection of individuals that can re-
duce the overall gain. The same result was obtained for
the selected free portion, which had a similar number of
individuals as the 20% selection.

Using the GA method, the genetic gain values for the
selected portion of 5% are lower than those for the 10%
portion because the latter accommodates a greater num-
ber of individuals with higher genetic values for the five
traits. For instance, the HEI had 67.4% of selected indi-
viduals with genetic values higher than the average in the
5% selected portion. Meanwhile, in the 10% selected por-
tion, 76.9% of the individuals had genetic values higher
than the average.

The GA method selected a larger number of families
and fewer individuals per family than the MM (Table 2),
which preserves the genetic diversity of the breeding
population (Resende 2002) because it selects the best
unrelated individuals from the best families.

The difference in the overall gain between the se-

lected portion of 1% and 2.5% is lower using the MM
method and higher using the GA method. This is because
of the base population’s structure, which has individuals
with higher genetic values in only a few families. This
explains the smaller number of selected families obtained
with the MM method than by the GA method for these
selected portions (Table 2). For this real data, the GA had
a shorter processing time (ranging from 2.54 to 12.38
minutes), which may be due to the absence of highly
negative correlations between the traits.

Controlling selection by imposing a restriction of a
maximum of three individuals per family (REST method)
for the MM method (results not shown) increased the
number of selected families and improved diversity (high
NS). By doing this, the MM method had a higher NS for
all selected portions, but this was still inferior to the GA
method. The overall gain of the MM was similar to that
of GA for a selected portion of 10%. However, the gain
was smaller for the MM with respect to the 20% portion
compared to GA. Showing that the strategy for number of
individuals controlling per family slightly improved genetic
diversity and enhanced the desired genetic gains.
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Table 2. Results obtained from both selection indexes using real data (M. F. R. Resende et al., 2012). The status
number (NS), GA processing time (Time), and estimated breeding values relating to diameter at breast height (DBH),
tree height (HEI), wood specific gravity (WSG), lignin content (LIG), and susceptibility assessed as gall volume (GV)
are shown.

Mulamba and Mock
Sel. Int.a Sel. Ind.b Ns DBH HEI WSG LIG GV Overall Gain NFc IFd NIe Time (min) Iter.f

1% 9 2.4
1.938 92.741 0.470 0.408 -0.177

0.39 3 3.0 0 – h –
(0.511)g (0.412) (0.290) (0.562) (0.154)

2.5% 23 4.9
1.620 90.875 0.361 0.373 -0.192

0.34 10 2.3 0 – –
(0.411) (0.401) (0.211) (0.509) (0.165)

5% 46 8.1
1.499 83.143 0.239 0.303 -0.242

0.29 15 3.1 0 – –
(0.374) (0.357) (0.123) (0.399) (0.204)

10% 93 10.9
1.395 75.154 0.243 0.251 -0.182

0.25 26 3.6 0 – –
(0.341) (0.311) (0.126) (0.319) (0.158)

20% 185 13.7
1.158 62.134 0.178 0.218 -0.165

0.20 38 4.9 0 – –
(0.267) (0.237) (0.079) (0.269) (0.144)

Genetic Algorithm

1% 9 7.5
1.588 86.064 0.313 0.363 -0.180

0.32 8 1.1 0 2.54 514
(0.401) (0.374) (0.176) (0.493) (0.156)

2.5% 23 17.5
0.752 49.324 0.135 0.134 -0.121

0.12 23 1.0 0 3.15 672
(0.139) (0.164) (0.048) (0.139) (0.115)

5% 46 24.1
0.762 41.624 0.079 0.097 -0.057

0.08 38 1.2 0 9.92 2230
(0.143) (0.120) (0.008) (0.082) (0.061)

10% 91 24.1
0.926 49.520 0.181 0.120 -0.098

0.13 53 1.8 0 8.73 1922
(0.194) (0.165) (0.082) (0.117) (0.093)

20% 122 24.1
0.904 51.224 0.180 0.126 -0.108

0.13 59 2.1 0 12.01 2317
(0.187) (0.175) (0.08) (0.126) (0.100)

Free 122 24.1
0.929 50.286 0.171 0.130 -0.106

0.13 58 2.1 0 12.38 2282
(0.195) (0.169) (0.074) (0.132) (0.099)

a Selected portion; b Selected individuals; c Number of families selected; d Number of selected individuals per family; e Number
of selected inbred individuals (i.e., inbreeding coefficient > 0); f Number of iterations; g Percentage of genetic gain (values in
parentheses); h Instantaneous process.

4. Discussion

Genetic breeding programs may produce low genetic
variability and have difficulty selecting other traits be-
cause they do not maintain population diversity (Noiton
& Alspach, 1996). Thus, the selection of many traits
using co-ancestry guarantees genetic gain and diversity
for more than one trait (Chapuis et al., 2016; Colleau
et al., 2009; Yanchuk & Sanchez, 2011). However, the
balance between genetic gain and genetic diversity (co-
ancestry or NS) is typically divergent (R.-P. Wei et al.,
1998; Woolliams et al., 2015) and many studies have
developed efficient algorithms to solve this type of prob-
lem, like algorithms based on Lagrange multipliers (Dag-
nachew & Meuwissen, 2016; Meuwissen, 1997, 2002),
SDP (Pong-Wong & Woolliams, 2007), the branch and
bound algorithm (Mullin & Belotti, 2016), SA (Chapuis et

al., 2016; Colleau et al., 2009; Fernandez & Toro, 2001;
Yanchuk & Sanchez, 2011) and SOCP (Yamashita et al.,
2015). Except for branch and bound, these algorithms
address unequal genetic contributions from animal and
tree breeding, which is considered ideal for long-term
genetic gain (Hallander & Waldmann, 2009a; Meuwissen,
1997; Rodrı́guez, 2000). Despite of unequal genetic con-
tribution benefits, many tree breeders prefer to cross a
specific number of parents with equal contributions to the
next breeding population due to the lack of human and
financial resources.

Moreover, most of these studies concerned the ge-
netic gain of one trait, although the genetic breeding of
many traits was suggested to be extremely important by
Wei et al. (1998). Nevertheless, if the genetic breed-
ing of many negatively correlated traits is desired, this
will negatively impact the search for an optimal gain in-
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stead of simply controlling co-ancestry (Chapuis et al.,
2016; Yanchuk & Sanchez, 2011). In this regard, the GA
method was efficient when applied to a MIQCO multi-trait
problem with a shorter processing time (a maximum of
40 minutes) for simulated data (Table 1). In this case,
the correlations between two traits were -0.44, and the
GA increased the correlation after selection (results not
shown). For real data with correlations and heritabili-
ties in the range for typical forest tree pedigrees (Table
2), the same result was observed, yielding a maximum
processing time of 12.38 minutes.

Some authors applied Simulated Annealing (SA), an-
other artificial intelligence algorithm, to maximize the gain
for one or more traits using a restriction on co-ancestry
in animal (Chapuis et al., 2016; Colleau et al., 2009)
and tree breeding (Fernandez & Toro, 2001; Yanchuk &
Sanchez, 2011). SA is an excellent heuristic method, but
it has been criticized for its slow speed of convergence
(Glover & Kochenberger, 2006). While it circumvents the
problem of becoming stuck in local optima in the first
steps of the algorithm at high temperature, SA can be-
come stuck if a low temperature is chosen (Fernandez
& Toro, 2001; Press, Flannery, Teukolsky, & Vetterling,
1989). In these studies, SA was applied to address un-
equal contributions, and it was not utilized to solve the
MIQCO problem in a multi-trait scenario. For this rea-
son, this study did not compare SA with GA. However,
the selection of different algorithms to solve optimiza-
tion problems should be considered carefully due to the
no-free-lunch theorem, which posits that the average
performance of all algorithms is equal to all types of prob-
lems. In other words, while the SA or GA can function
better than other algorithms for certain problems, they are
not necessarily the best analytical tools for all problems
(Wolpert & Macready, 1997). Thus, future work should
focus on comparing both methodologies because certain
algorithms are more appropriate than others for solving
particular problems. As instance, the SOCP method
can be considered a specific algorithm (Yamashita et al.,
2015), but it should still be tested for its ability to solve
multi-trait problems, MIQCO problems, or both.

Pong-Wong and Woolliams (2007) argued that the
GA method does not guarantee the same solution since
it is a stochastic process and its convergence is slower
when the number of restrictions increase. However, GA
incorporates the elitism parameter, which involves the
maintenance of the best solutions (chromosomes) across
iterations (generations), making GA extremely efficient.
In addition, the GA has two important mechanisms of
exploitation and exploration (Figure 1), which ensure the
acquisition of a global optimum and escape from the local
optima, even though GA does not guarantee an exact so-
lution (Haupt & Haupt, 2004; Scrucca, 2013; Sivanandam

& Deepa, 2007). For combinatorial NP-hard problems,
many local optima are necessary when using methods
that converge to a global optimum, which is similar to
GA. Therefore, the use of GA is very relevant because it
guides genetic breeding programs to a global optimum
despite its stochastic nature (Figure 1). Moreover, the
performance of the algorithm dominates the analysis of
practical applications when the size of the optimization
problems increases, becoming the exact solution irrel-
evant (Kerr et al., 1998). Thus, the processing time is
only important when very large candidate populations
are considered, but even a small number of candidates
results in an exhaustive search (Fernandez & Toro, 2001).
Generally, when there are many non-flexible restrictions,
it is not possible to find a feasible solution. This increases
the processing time because the program searches for
a nonexistent solution. Therefore, optimization methods
should be used as guides during the decision-making
process such that other solutions are considered.

To meet all the restrictions imposed and find an op-
timal solution may result in not identifying an optimal
solution close to a breeder’s objective, and this may re-
quire a longer processing time. This was shown in case
2 where both methodologies (BB and GA) required a
processing time longer than one hour to find the same
EBV at a specific co-ancestry coefficient. Furthermore,
the efficiency of single-trait GA was demonstrated by the
fact that similar results were obtained when compared
to BB for two different scenarios. In the first scenario
(θ equals 0.015), GA obtained an EBV average slightly
higher (320.69) than BB (319.81) in a shorter processing
time. In the second scenario (θ equals 0.0167 with a
processing time of 30 minutes), GA obtained an EBV av-
erage slightly lower (332.42) than BB (332.88). Although
GA is a stochastic algorithm and it can identify different
EBV averages, it converged towards a global optimum
and avoided local optima as much as possible. There-
fore, both algorithms are excellent for solving MIQCO
problems.

The GA algorithm could identify the number of individ-
uals, which guaranteed an optimal solution with respect
to the genetic gains and the diversity with or without (free)
a restriction in the number of selected individuals (Table
1 and 2, and Figure 2). For instance, in case 1, the se-
lected portion of 10% (with a maximum of 300 individuals)
showed that the selection of more than 177 individuals
negatively influenced the genetic gains and the genetic
diversity. This happened because over-selection reduced
the genetic gain and genetic diversity due to the selection
of related and inbred individuals (Table 1). The conver-
gence process for the selected portion (free) is similar to
10% (Figure 2) and 20% of selection (Table 1 and 2), and
only a slight difference in processing time occurred.
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The establishment of a specific number of individu-
als per family, which is called REST by Brisbane and
Gibson (1995), is other simple way to control de loss of
diversity. However, it slightly enhances genetic diversity
and reduces the desired genetic gains (Case 3), because
important combinations of individuals that ensure a better
NS and genetic gain for many traits will be lost.

Inbreeding depression may be a more severe prob-
lem in the short- and mid-term than the loss of genetic
variance (Brisbane & Gibson, 1995; Kerr et al., 1998;
Woolliams et al., 2015). In this context, the minimal
losses observed with respect to genetic gain (Table 1 and
2) justify the improvement in genetic diversity that was
obtained with the GA index, which avoided a reduction
in the genetic variance and inbreeding depression. The
latter can put an end to genetic breeding programs in the
short- and mid-term (Meuwissen, 1997; Mullin & Belotti,
2016; M. D. V. Resende, 2002; Sonesson et al., 2012).
For tree breeding, another strategy used to avoid inbreed-
ing depression is optimizing the assignments of mating
pairs (Hallander & Waldmann, 2009a; Kerr et al., 1998)
that can be also combined with the GA index.

In addition, some breeding programs aim to maintain
the Germplasm Bank’s diversity (Pong-Wong & Wool-
liams, 2007) or introduce a new Germplasm Bank (Noiton
& Alspach, 1996) and GA is able to address this need.
It is also possible to define specific levels of diversity
and gains for each trait while including individual accu-
racy as a weight by changing the fitness function or give
different weights to genetic gain and NS

NS0
in equation 1,

instead of a weight of 0.5 for both. This demonstrate
the extremely flexibility of GA algorithm. Moreover, GA
can be applied to select individuals with unequal contri-
butions and to assign matings in one step instead of two,
as demonstrated by Kerr et al. (1998) and Hallander and
Waldmann (2009a) in tree breeding.

In this study, the control of individual accuracy and
breeding values from the previous generations was not
applied. If it had been, there would be a multi-generation
and multi-trait index that controlled the genetic diversity
and individual accuracy, which is a complex and non-
trivial problem (Brisbane & Gibson, 1995; R.-P. Wei et al.,
1998; R. P. Wei & Lindgren, 1995). In addition, this study
was not applied in more than one generation, which is a
limitation that will be fulfilled in future works.

The GA is easy to implement in software like R (R
Core Team, 2022) through the GA package (Scrucca,
2013) and the fitness function, which can be modified
according to the breeder’s objective by including other
factors that favor genetic breeding strategies, guarantee
diversity and genetic gain.

While individual accuracy was not considered in this
study, the data suggest that methods for obtaining EBVs

should have a high level of accuracy, ensuring reliability
with respect to the individuals selected. Furthermore,
phenotypic information combined with molecular mark-
ers obtained through genome-wide selection approaches
provide higher selective accuracies and greater control of
the individual endogamy rate than the use of phenotypic
selection alone (Daetwyler, Villanueva, Bijma, & Wool-
liams, 2007; Sonesson et al., 2012). Therefore, the GA
method may be used in conjunction with genome-wide
selection (GWS) to initially select less-related individuals,
which could ensure more control over the NS and higher
genetic gains across the generations for many traits.

5. Conclusions

The GA method proved efficient for finding a global
optimum for the genetic diversity and genetic gain of
many traits in a convenient processing time, like other
methods found in the literature, by reproducing similar
results as the branch and bound method for one trait in
a mixed integer, quadratically constrained optimization
problem. Additionally, the fitness function’s flexibility al-
lows for the inclusion of different restrictions, which are
adjusted according to the breeder’s objective. Thus, GA
should be the first approach used to when considering
more than one trait and controlling the status number in
tree breeding.

Data Archiving Statement

We follow the standard policies for Tree Genetics
and Genomes. All data are available at figshare.com/
articles/QTLMASXVI_xlsx/4265129. The data were up-
loaded and there are no access numbers. All data in
this work are public and available online. Data for case
1 are available at qtl-mas-2012.kassiopeagroup.com/
en/dataset.php. The section data is in the file QTL-
MASXVI.dat [117.2 KB] and the pedigree information is
in the file QTLMASXVI.gnl [100.1 KB]. These data relate
to the pedigree and EBVs of the simulated data relat-
ing to the milk production case study. Data for case 2
are in a public repository available at datadryad.org/
resource/doi:10.5061/dryad.4r1f0. These data re-
late to the pedigree and EBVs for the Scots pine case
study, and they are reported at the following paper: Mullin
TJ, Belotti P (2016) Using branch-and-bound algorithms
to optimize selection of a fixed-size breeding. Tree Ge-
netics & Genomes 12: 4. dx.doi.org/10.1007/s11295-
015-0961-z. Data for case 3 are available in File S2
and File S3, and can be found at www.genetics.org/
content/190/4/1503/suppl/DC1. These data relate to
the pedigree and EBVs for the Loblolly pine case study,
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and are reported in the following paper: Resende MFR,
Muñoz P, Resende MDV, et al (2012) Accuracy of ge-
nomic selection methods in a standard data set of loblolly
pine (Pinus taeda L.). Genetics 190:1503–1510.
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