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ABSTRACT. Multi-trait multi-environment (MTME) models were fitted to eucalyptus breeding trials data 

to assess residual variance structure, genetic stability and adaptability. To do so, 215 eucalyptus clones were 

evaluated in a randomized complete block design with 30 replicates and one plant per plot in four 

environments. At 36 months of age, tree diameter at breast height (DBH) and pilodyn penetration (PP) were 

measured. Two MTME models were fitted, for which residuals were considered homoscedastic and 

heteroscedastic, with the best MTME model selected using Bayesian information criterion. The harmonic 

mean of the relative performance of the genotypic values (HMRPGV) was used to determine stability and 

adaptability. Of the two models, the heteroscedastic MTME model had better fit and provided greater 

accuracy. In addition, genotype-by-environment interaction was complex, and there was low genetic 

correlation between DBH and PP. Rank correlation between the clones selected by the MTME models was 

high for DBH but low for PP. The HMRPGV facilitated clone selection through simultaneous evaluation of 

stability, adaptability, and productivity. Thus, our results suggest that heteroscedastic MTME model / 

HMRPGV can be efficiently applied in the genetic evaluation and selection of eucalyptus clones. 
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Introduction 

Eucalyptus L’Hér species are commercially important trees in tropical and subtropical regions around the 

world (Castro, Resende, Bhering, & Cruz, 2016). The widespread use of these species in plantations is due 

primarily to their beneficial silvicultural and industrial properties, along with the success of breeding 

programs (Ramalho, Marques, & Lemos, 2021). In Brazil, for instance, nearly 7 million hectares have been 

planted with eucalypt, constituting ~ 77 % of the country’s total planted forest area (IBGE, 2019). 

Multi-environment trials (MET) are often employed in eucalyptus breeding programs to determine 

genotype-by-environment interactions (GEI) (van Eeuwijk, Bustos-Korts, & Malosetti, 2016). Indeed, MET 

are particularly important for eucalyptus breeding because these species are farmed in a diverse range of 

environments, each of which presents a unique suite of soil and climatic conditions (Binkley et al., 2017; Elli, 

Sentelhas, & Bender, 2020). Such variation in environmental conditions can in part account for the often large 

discrepancies in yield among plantations across regions (Elli, Sentelhas, Freitas, Carneiro, & Alvares, 2019). 

Because of the wide range of conditions in which eucalyptus plantations are situated, data acquired from 

MET may contain substantial heterogeneous residual variance (Shalizi & Isik, 2019). In addition, trials 

conducted in different environments may be statistically and genetically unbalanced. To ensure the accuracy 

of genotype evaluation, statistical methods must therefore account for both heteroscedasticity and missing 

data (Melo et al., 2020; Smith & Cullis, 2018). However, homogeneous residual variance and statistical and 

genetic balance are assumptions of several methods commonly used to measure GEI, including ANOVA-based 

methods: AMMI (additive main effects and multiplicative interaction), and GGE biplots (the genotype main 

effects plus GEI effects) (van Eeuwijk et al., 2016; Yan, Hunt, Sheng, & Szlavnics, 2000; Zobel, Wright, & 

mailto:leonardo.bhering@ufv.br
https://orcid.org/0000-0002-6072-0996


Page 2 of 9 Ferreira et al. 

Acta Scientiarum. Agronomy, v. 45, e61626, 2023 

Gauch, 1988). Methods capable of capitalizing on heteroscedasticity and imbalance are thus preferable to 

more conventional approaches (Li, Suontama, Burdon, & Dungey, 2017; Smith & Cullis, 2018). 

One such example is the use of mixed models via restricted maximum likelihood (REML) and best linear 

unbiased prediction (BLUP) (van Eeuwijk et al., 2016). Estimation of variance components using REML 

(Patterson & Thompson, 1971) and prediction of genetic values using BLUP (Henderson, 1975) offer several 

advantages over traditional methods, such as the ability to overcome complex data structures (e.g., statistical 

and genetic imbalance), comparison of individuals over time and space, and correcting for environmental 

trends (Isik, Holland, & Maltecca, 2017; Resende, 2016). 

In addition, REML/BLUP procedure can account for covariance among traits when a multi-trait BLUP is 

fitted (Alves et al., 2018; Henderson & Quaas, 1976, Imai et al., 2016), which is essential when traits are 

correlated because selection bias may arise when traits are analyzed individually. Within the context of MET, 

a multi-trait multi-environment BLUP (MTME-BLUP) has the capacity to incorporate bits of information 

simultaneously, thereby taking into consideration both genetic and non-genetic covariances (Mathew, Léon, 

& Sillanpää, 2018; Resende, Silva, & Azevedo, 2014). 

The MTME-BLUP output (genotypic values) can be used to assess both genotypic stability and adaptability. The 

stability refers to a genotype's predictability of its phenotypic performance, whereas adaptability refers to a 

genotype's capacity to effectively respond to its environmental conditions (Finlay & Wilkinson, 1963; Eberhart & 

Russell, 1966). The harmonic mean of the relative performance of the genotypic value (HMRPGV) is a useful 

method for identifying genotypes that respond well to favorable environments, are largely unaffected by 

unfavorable conditions, and produce high yields (Chaves et al., 2021; Dias et al., 2018; Ferreira et al., 2021). 

In this study, our main objective was to examine the effectiveness of using MTME-BLUP models for genetic 

assessment of eucalypt, highlighting the importance of residual variance structure, and stability and 

adaptability analyses in eucalyptus clone selection. 

Material and methods 

Genetic material, experimental design, and assessed traits 

Two hundred and fifteen clones of different eucalyptus species and hybrids (Table 1) were evaluated under four 

different environmental conditions (Table 2). The experimental design consisted of a randomized complete block 

with 30 replicates and a single-tree plot with spacing dimensions of 3.5 m between rows × 2.6 m between trees. 

Table 1. Hybrids of Eucalyptus evaluated in four environments (CB, CP, FZ, and SJ). 

Two-way cross Three-way cross Four- Way crosss 

E. grandis × E. urophylla E. urophylla × (E. grandis × E. urophylla) (E. grandis × E. kirtoniana) × (E. robusta × E. tereticornis) 

E. urophylla × E. maidenii E. globulus × (E. grandis × E. urophylla) (E. grandis × E. urophylla) × (E. urophylla × E. globulus) 

E. pellita × E. grandis E. grandis × (E. grandis × E. urophylla)  
E. grandis × E. maidenii E. urophylla × (E. camaldulensis × E. grandis)  

E. grandis × E. dunnii E. saligna × (E. grandis × E. urophylla)  
E. grandis × E. saligna E. robusta × (E. grandis × E. urophylla)  

E. urophylla × E. saligna E. grandis × (E. dunnii × E. grandis)  
E. urophylla × E. globulus E. maidenii × (E. grandis × E. urophylla)  
E. grandis × E. globulus E. saligna × (E. urophylla × E. grandis)  

E. globulus × E. tereticornis E. urophylla × (E. grandis × E. globulus)  
E. urophylla × E. deanei E. urophylla × (E. tereticornis × E. saligna)  

E. urophylla × E. tereticornis. E. urophylla × (E. urophylla × E. grandis)  
Locations: CB: Minas do Leão – Rio Grande do Sul State, Brazil (Forest Garden Cambará); CP: Encruzilhada do Sul – Rio Grande do Sul State, Brazil (Forest Garden Capivara); FZ: 

Dom Feliciano – Rio Grande do Sul State, Brazil (Forest Garden Fortaleza) and SJ: Vila Nova do Sul – Rio Grande do Sul State, Brazil (Forest Garden São João). 

Table 2. Geographic location (GL) and annual climatic conditions (ACC) of each environment (E). 

GL / ACC CB CP FZ SJ 

Geographic coordinates 
Latitude: 30°11'09" S Latitude: 30°29'45" S Latitude: 30°27'19" S Latitude: 30°14'46" S 

Longitude: 52°00'10" W Longitude: 52°19'35" W Longitude: 52°39' 53" W Longitude: 53°49'7" W 

Altitude (m) 141 378 250 301 

Average temperature (oC) 17.5 16 17 16.8 

Absolute minimum temperature (oC) -0.9 -1.7 -0.6 0.0 

Absolute maximum temperature (oC) 32.3 30.7 33.3 34.7 

Rainfall (mm) 1422 1564 1368 1133 

Locations: CB: Minas do Leão – Rio Grande do Sul State, Brazil (Forest Garden Cambará); CP: Encruzilhada do Sul – Rio Grande do Sul State, Brazil (Forest Garden Capivara); FZ: 

Dom Feliciano – Rio Grande do Sul State, Brazil (Forest Garden Fortaleza) and SJ: Vila Nova do Sul – Rio Grande do Sul State, Brazil (Forest Garden São João). 
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Tree diameter at breast height (DBH, in cm) and pilodyn penetration (PP, in mm) were determined at 36 

months of age. DBH was measured using a diameter measuring tape, and PP was measured with a pilodyn, a 

device that fires a 2.5 mm metallic pin into a tree at a preset force, with wood density estimated from the 

inverse proportional relationship between the depth of penetration and the hardness of the wood in the 

direction transverse to the tree stem (Hasnikova & Kuklík, 2013). For PP, two measurements were made at a 

height of 1.3 m, one on the north and another on the south cardinal aspects of each tree, with the average 

value of these two measurements used in the analyses. 

Statistical analyses 

REML/MTME-BLUP procedure (Henderson & Quaas, 1976; Patterson & Thompson, 1971) was used to 

estimate the variance components and predict genotypic values. The MTME model was calculated as: 

y = Xβ + Zα + Wθ + Qρ +  e, 

where y is the vector of phenotypic data; β is the vector of environment effects (assumed to be fixed) added 

to the overall mean, α is the vector of genotypic effects (assumed to be random) [α~N(0,ΣG⨂I), where ΣG 

represents the genotypic covariance matrix], θ is the vector of GEI effects (random) [θ~N(0,ΣGEI⨂I), where 

ΣGEI is the GEI covariance matrix], ρ is the vector of replications effects (assumed to be random) [ρ~N(0,Σ

_ρ⨂I), where Σρ represents the replications covariance matrix], and e is the vector of residuals (random) 

[e~N(0,ΣR), where ΣR is the residual covariance matrix]; I is an identity matrix and ⨂ is the Kronecker 

product. The uppercase letters X, Z, W, and Q represent the incidence matrices for β, α, θ, and ρ, 

respectively. 

Residual variance structures (homogeneous and heterogeneous) were compared via Bayesian information 

criterion (BIC) (Schwarz, 1978), based on the equation: 

BIC = −2LogLF + pLog[n − r(x)], 

where LogLF is the logarithm of the restricted likelihood function, p is the number of estimated parameters, n 

is the number of observations, and r(x) is the rank of the fixed effects incidence matrix. The significance of 

the random effects of the MTME models was tested using the confidence interval, considering the t 

distribution and a confidence level of 95% (Type I error of 5%) (Burdick & Graybill, 1992). 

Phenotypic variance (�̂�𝑝𝑗
2 , Equation 1), broad-sense individual heritability (h2

gj, Equation 2), selective 

accuracy (𝑟�̂�𝑔𝑗
, Equation 3), reliability (𝑟�̂�𝑔𝑗

2 , squared selective accuracy), type B genotypic correlations across 

environments (r2
gei, Equation 4), and the coefficient of determination of the GEI effects (c2

gei, Equation 5) were 

estimated using the following equations: Equation 1: 

𝜎𝑝𝑗
2 = 𝜎𝑔

2 + 𝜎𝑔𝑒𝑖
2 + 𝜎𝑒𝑗

2           (1) 

where σ2
g é the genotypic variance, σ2

gei is the GEI variance and σ2
ej is the residual variance, one value for 

the homoscedastic model and four values (one for each jth environment) in the heteroscedastic model; 

Equation 2: Equation 3: 

hgj
2 = σg

2 σpj
2⁄             (2) 

rĝgj
= √1 −

PEV

σg
2             (3) 

where PEV is the prediction error variance, extracted from the diagonal of the generalized inverse of the 

coefficient matrix of the mixed model equation (Resende et al., 2014) Equation 4: 

rgei
2 =

σg
2

σg
2+σgei

2             (4) 

and 

cgei
2 =

σgei
2

σpj
2             (5) 

The genotypic covariance between traits (σgDBH,PP) was used to estimate the genotypic correlations 

between traits (rDBH,PP), by the following expression: 
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rDBH,PP =
σgDBH,PP

√σg
2

DBH
 σgPP

2
, 

The harmonic mean of the relative performance of genotypic values (HMRPGV), a value that reflects 

clones’ stability and adaptability associated to its productivity (Resende, 2004), was estimated by: 

HMRPGVi =
E

∑
1

GVij
µj

E
j=1

, 

where E is the number of environments, GVij is the genotypic value (BLUP) of the ith clone in the jth 

environment and µj is the phenotypic mean of the jth environment. 

To select simultaneously for both traits, the Additive Index (AI) was used: 

AIi = ∑ CVg
HMRPGVic

σgc

2
1 , 

where CVg is the genotypic coefficient of variation (𝐶𝑉𝑔𝑐
= (100𝜎𝑔𝑐

) 𝜇⁄ ), used as weight and 𝜎𝑔𝑐
 is the genotypic 

standard-deviation of the trait c. The assignment of weights were positive weight for DBH and negative 

weights for PP. 

The gain with selection (GS), was predicted (considering four different selection intensities: 5, 10, 15, and 

20%) by the following equation: 

GS(%) = (∑i=1
s GVi) S⁄ ,  

where 𝑆 is the number of selected clones. 

The rank correlation (Spearman's rank correlation) (rr) between the two models (homoscedastic MTME and 

heteroscedastic MTME) were calculated based on the HMRPGV rank, and was given by: 

rr = 1 −
6 ∑ D2

n(n2−1)
, 

where D is the difference between ranks and n is the number of pairs of data. 

All statistical analyses were performed using ASReml-R (Butler, Cullis, Gilmour, Gogel, & Thompson, 2018). 

Results 

BIC comparison suggested that the best-fit model for DBH and PP had a heterogeneous residual variance 

structure (Table 3). 

Table 3. Fitted model, likelihood logarithm (LogL), number of parameters (NP) related to the R (residue effects) and G (genotypic, GEI 

and replications effects) covariance matrices, Bayesian information criterion (BIC) and accuracy of each model for the traits diameter at 

breast height (DBH) and pilodyn penetration (PP) evaluated in eucalyptus clones. 

Model LogL 
NP 

BIC 
Selective accuracy 

G R DBH PP 

Homoscedastic residue -55214.5 9 3 110535.9 0.97 0.99 

Heteroscedastic residue† -54094.5 9 12 108424.4 0.97 0.99 
†The most suitable model. 

Both genotypic and GEI effects were significant, according to their confidence intervals (Table 4), 

indicating the existence of genetic variability and GEI. Broad-sense individual heritability was low for DBH 

and moderate for PP in all four environments (Table 4). Despite heritability, reliability was high for all traits 

across the four environments. In general, PP exhibited greater reliability than DBH, and the second 

environment displayed better selection conditions for both traits. 

Evaluating the significance of the GEI effects and differences in the residual variances, heritabilities, and 

reliabilities between environments improves understanding of the moderate and high genotypic correlations across 

environments for DBH and PP, respectively (Table 4). Variation in the magnitude of parameters among traits might 

account for the low correlation between DBH and PP. Such results would prove an obstacle to indirect selection. 

Based on the predicted genotypic values, HMRPGV was calculated to identify the most stable, adaptable, 

and better performing (i.e., high DBH and low PP) genotypes. To illustrate differences in trait estimates when 

the residual variance was considered homogeneous and when it was considered heterogeneous, BLUP for DBH 

and PP were determined for both models, and an additive index was used to achieve gains for both traits, 
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which were found to be similar regardless of selection intensity (Table 5). The high-ranking correlations 

underscore the similarities between the two models, and, in this case, shows the extent to which the different 

residual variance structures affected clone rankings (Table 5). A high correlation was found between the two 

rankings for both traits, indicating lower model influence. 

Table 4. Estimates of variance components (± confidence interval) and genetic parameters for the traits diameter at breast height 

(DBH) and pilodyn penetration (PP) evaluated in eucalyptus in four environments† (E1, E2, E3 and E4), by the heteroscedastic multi-

trait multi-environment model. 

Components/Parameters 
DBH  PP 

E1 E2 E3 E4  E1 E2 E3 E4 

σ2
g --------- 0.910 ± 0.220 ---------  --------- 3.601 ± 0.716 --------- 

σ2
gei --------- 0.799 ± 0.106 ---------  --------- 0.551 ± 0.078 --------- 

σ2
r --------- 0.129 ± 0.039 ---------  --------- 0.629 ± 0.168 --------- 

σ2
e 4.89 3.44 2.87 6.52  3.91 2.48 5.72 3.65 

σ2
pj 6.73 5.28 4.71 8.36  8.70 7.27 10.51 8.43 

h2
gj 0.14 0.17 0.19 0.11  0.41 0.50 0.34 0.43 

rĝg 0.90 0.93 0.91 0.84  0.97 0.98 0.98 0.96 

rĝgj

2  0.82 0.88 0.84 0.78  0.95 0.97 0.96 0.94 

r2
gei -------------- 0.53 --------------  -------------- 0.87 -------------- 

c2
geij 0.12 0.15 0.17 0.10  0.06 0.08 0.05 0.07 

µj 14.11 13.21 12.64 14.55  17.41 20.07 18.26 18.69 

rDBH,PP ----------------------------------- 0.167 ----------------------------------- 

σ2
g: genotypic variance; σ2

gei: genotype-by-environment interaction (GEI) variance; σ2
e: residual variance;  σ2

pj: phenotypic variance; h2
gj: broad-sense 

individual heritability: reliability; rGEI: type B genotypic correlation across environments; c2
GEIj: coefficient of determination the GEI effects; µ: phenotypic 

mean; and rDBH,PP: genetic correlation between DBH and PP. † E1: Minas do Leão (Rio Grande do Sul State, Brazil); E2: Encruzilhada do Sul (Rio Grande do 

Sul State, Brazil); E3: Dom Feliciano (Rio Grande do Sul State, Brazil); E4: Vila Nova do Sul (Rio Grande do Sul State, Brazil). 

Table 5. Selection gains in percentage (GS %) for diameter at breast height (DBH) and pilodyn penetration (PP) evaluated in eucalyptus 

considering the additive index value, four selective intensities and assuming homogeneous and heterogeneous residual variance structures. 

Traits Selection intensity (%) 
Selection gains (%) 

Ranking correlations 
Homoscedastic residue Heteroscedastic residue 

DBH 

5 13.57% 13.57% 0.99 

10 11.33% 11.33% 0.99 

15 9.46% 9.46% 0.99 

20 6.77% 6.77% 0.99 

PP 

5 -17.16% -17.16% 0.99 

10 -14.47% -14.47% 0.99 

15 -12.11% -12.11% 0.99 

20 -9.39% -9.39% 0.99 

For PP, lower values indicate greater gains with selection. 

Discussion 

Residual effects encompassed all non-controllable factors in the trials. When considering residual 

homoscedasticity, it is usually presumed that environmental influences are the same in all locations, an 

assumption that clearly does not reflect real-world conditions (Coelho et al., 2020; Silva, Oliveira, Nuvunga, 

Pamplona, & Balestre, 2019). In truth, differing edaphoclimatic and management conditions will have distinct 

impacts on the same genotype, driving performance variability across regions (Elli et al., 2019; Isik et al., 

2017; Peixoto et al., 2020). Two fundamental factors of MET can thus be derived: i) at the experimental level, 

MET models must be established in representative regions, both in terms of prevailing edaphoclimatic 

conditions and management type; and ii) at the genetic-statistical level, model residues must be tested for 

homoscedasticity in order to select models that better simulate real-world conditions (Atlin, Cairns, & Das, 

2017; Ceccarelli, 2015; Isik et al., 2017). Both conditions were met in this study.  

Residual variances were particularized (one for each environment) in the heteroscedastic MTME, which, 

as noted, BIC comparison indicated was the best-fit model. The significance of GEI and differences in residual 

variance observed across environments justified the care taken to account for model selection. Following the 

detection of genetic variability, its suitability for population selection was tested. In the presence of GEI, 

selection can be undertaken individually or jointly for each environment, taking into account the GEI effects 

(Alves et al., 2020). Ideally, the choice of selection strategy will depend on breeding program objectives, with 

selection based solely on identification of genotypes that perform better under the specific conditions of each 
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location; however, logistical problems and lack of necessary resources often limit options. In such cases, 

selection of genotypes exhibiting broader adaptability and stability should be prioritized (Ewing, Runck, 

Kono, & Kantar, 2019; Hardner, 2017), a strategy that was used in this study. 

Individual broad-sense heritability estimates were low for DBH (< 0.15) and moderate for PP (0.15-0.50) 

(Resende & Alves, 2020). Given that this parameter represents the proportion of the heritable portion of the 

trait in the phenotypic variance (Falconer & MacKay, 1996), the low values observed for DBH are indicative 

of the substantial influence that environmental conditions have on phenotypic expression, which can be a 

complicating factor in selection. GEI is linked to the unequal expression of genes in each environment in 

response to the particular conditions of each location (Leon, Jannink, Edwards, & Kaeppler, 2016; van Eeuwijk 

et al., 2016). Reliability, an auxiliary parameter to heritability, is a measure of the degree to which 

experimental precision and results are consistent (Bernardo, 2020). Here, reliability differed between traits, 

with PP having higher values than DBH, likely due to trait measurement process. 

Genotypic correlations across environments were moderate for DBH (0.533) and high for PP (0.867) 

(Resende & Alves, 2020), suggesting that environmental conditions have a greater effect on DBH than on PP. 

Moreover, the GEI for PP was relatively simple (i.e. genotypes best suited for one environment were also the 

best-suited for other environments; Li et al. (2017), whereas GEI for DBH was found to be more complex. 

MTME-BLUP enables more accurate estimates of genetic and non-genetic (co)variance between traits and 

environments. Because it considers correlations between traits among genotypes, use of multi-trait BLUP 

reduces selection bias and increases selective accuracy (Montesinos-López et al., 2016; Sun et al., 2017). For 

MET, MTME-BLUP also considers the specificities of environmental conditions by accounting for residual 

heteroscedasticity (Volpato et al., 2019), which is especially relevant in instances of high correlation among 

traits (Imai et al., 2016). However, this was not the case in our study (rDBH,PP = 0.167), suggesting that the 

genes that determine both DBH and PP are not pleiotropic, or that several genes are in linkage disequilibrium 

(Montesinos-López et al., 2019). Nonetheless, quantifying this relationship, even if inconsequential, may be 

beneficial for improving the accuracy of model projections. 

MTME-BLUPs were used to estimate HMRPGV, which penalizes genotype instability and prioritizes 

adaptability across different environments (Peixoto et al., 2021); that is, this approach selects for clones 

responsive to the most suitable environments (Bocianowski & Liersch, 2021), an effective strategy for 

selecting genotypes that grow under a wide range of environmental conditions (Chaves et al., 2021).  

Although no differences were observed between homoscedastic and heteroscedastic MTME model gains, 

our results lead us to conclude that the heteroscedastic MTME model is more suitable for both parameter 

estimation and genetic selection, particularly because the heteroscedastic model maximized accuracy. This 

highlights the importance of modeling residual variance structure and reducing the probability of erroneous 

selection by the breeder, which could lead to additional problems in the future.  

Conclusion 

The results of our analyses suggested that, for eucalyptus genotype selection, a heteroscedastic MTME 

model was more suitable for MET data analysis, as reflected by the lower BIC for this model version. 

Combining multi-trait and multi-environment information via an MTME-BLUP allowed for wider 

interpretation of the results through greater consideration of the relationships between both environments 

and traits, enhancing genotypic evaluation accuracy. Finally, application of HMRPGV facilitated 

simultaneous assessment of stability, adaptability, and productivity among eucalyptus genotypes. 
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