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Tropical forage grasses, particularly those belonging to the Urochloa genus, play

a crucial role in cattle production and serve as the main food source for animals

in tropical and subtropical regions. The majority of these species are apomictic

and tetraploid, highlighting the significance of U. ruziziensis, a sexual diploid

species that can be tetraploidized for use in interspecific crosses with apomictic

species. As a means to support breeding programs, our study investigates the

feasibility of genome-wide family prediction in U. ruziziensis families to predict

agronomic traits. Fifty half-sibling families were assessed for green matter yield,

dry matter yield, regrowth capacity, leaf dry matter, and stem dry matter across

different clippings established in contrasting seasons with varying available water

capacity. Genotyping was performed using a genotyping-by-sequencing

approach based on DNA samples from family pools. In addition to

conventional genomic prediction methods, machine learning and feature

selection algorithms were employed to reduce the necessary number of

markers for prediction and enhance predictive accuracy across phenotypes. To

explore the regulation of agronomic traits, our study evaluated the significance

of selected markers for prediction using a tree-based approach, potentially

linking these regions to quantitative trait loci (QTLs). In a multiomic approach,

genes from the species transcriptome were mapped and correlated to those

markers. A gene coexpression network was modeled with gene expression

estimates from a diverse set of U. ruziziensis genotypes, enabling a

comprehensive investigation of molecular mechanisms associated with these

regions. The heritabilities of the evaluated traits ranged from 0.44 to 0.92. A total

of 28,106 filtered SNPs were used to predict phenotypic measurements,

achieving a mean predictive ability of 0.762. By employing feature selection
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techniques, we could reduce the dimensionality of SNP datasets, revealing

potential genotype-phenotype associations. The functional annotation of

genes near these markers revealed associations with auxin transport and

biosynthesis of lignin, flavonol, and folic acid. Further exploration with the

gene coexpression network uncovered associations with DNA metabolism,

stress response, and circadian rhythm. These genes and regions represent

important targets for expanding our understanding of the metabolic regulation

of agronomic traits and offer valuable insights applicable to species breeding.

Our work represents an innovative contribution to molecular breeding

techniques for tropical forages, presenting a viable marker-assisted breeding

approach and identifying target regions for future molecular studies on these

agronomic traits.
KEYWORDS

feature selection, forage grasses, gene coexpression networks, genomic prediction,
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1 Introduction

Pastures composed of tropical forage grasses, particularly those

belonging to the Urochloa genus, serve as the main food source for

livestock animals in tropical and subtropical regions. These pastures

play a significant role in the economic sectors associated with beef

and dairy production, as well as seed markets (Jank et al., 2014;

Ferreira et al., 2021). The genetic improvement of Urochloa species

is recent, starting approximately 40 years ago, and presents

challenges due to varying ploidy levels, high heterozygosity, and a

prevalent mode of reproduction through apomixis (Ferreira et al.,

2021; Simeão et al., 2021). Among the main goals of breeding

programs are the development of cultivars that exhibit tolerance to

biotic stresses, adaptability to future climate changes, and increased

productivity with enhanced nutritional value to optimize animal

performance (Pereira et al., 2018b; Simeão et al., 2021).

These goals can be expedited through the incorporation of

genomic selection (GS) into breeding cycles. GS employs statistical

models to perform genomic predictions (GPs) of plant performance

based on genetic markers, mainly single nucleotide polymorphisms

(SNPs) (Daetwyler et al., 2013). Although the estimation of GP

models has already demonstrated feasibility in other important

polyploid crops (de Bem Oliveira et al., 2020; Pincot et al., 2020;

Ferrão et al., 2021; Haile et al., 2021; Juliana et al., 2022; Petrasch

et al., 2022), this methodology has only recently started to be tested

in Urochloa spp. (Matias et al., 2019a; Aono et al., 2022). Therefore,

efforts must be directed toward the establishment of high-quality

marker panels and large-scale phenotyping (Simeão et al., 2021).

Fortunately, two Urochloa spp. genomes, specifically U. ruziziensis

(2n=2x=18), have recently become available (Pessoa-Filho et al.,

2019; Worthington et al., 2021), facilitating the identification of

many SNPs with the potential to enhance the accuracy of GP

analyses in Urochloa spp.

Traditionally, GP models employ a dense dataset of molecular

markers to compute genomic estimated breeding values at the
02
individual level (Meuwissen et al., 2001). However, in the case of

U. ruziziensis and other forage species, such as alfalfa and ryegrass,

it is a common practice to employ the family (full or half-siblings)

as the basic unit for phenotyping and selection (Simeão et al., 2012;

Simeão et al., 2016a; Simeão et al., 2016b; Biazzi et al., 2017; Cericola

et al., 2018; Jia et al., 2018; Murad Leite Andrade et al., 2022). This

practice makes the development of genome-wide family prediction

(GWFP) approaches highly advantageous. By considering family

groups as the measurement unit, there is a reduction in genotyping

efforts, as well as the costs associated with developing GP models

(Zou et al., 2016; Rios et al., 2021; Murad Leite Andrade et al., 2022).

Furthermore, the implementation of GWFP can improve the

predictive ability of selection, increasing the rate of genetic gains

for complex traits, as demonstrated in studies on loblolly pine and

alfalfa (Rios et al., 2021; Murad Leite Andrade et al., 2022).

To identify family-pool markers, sequencing approaches can be

employed to generate a large number of SNP markers (Elshire et al.,

2011; Poland et al., 2012). Genotyping-by-sequencing (GBS) is a

cost-effective and high-throughput genotyping method that can be

used to identify SNPs even in the absence of a reference genome.

However, it is important to ensure a reasonable sequencing depth to

minimize the occurrence of missing data points (Thakral et al.,

2022). GBS has been employed in several studies on family-pool

genotyping (Futschik and Schloütterer, 2010; Bélanger et al., 2016;

Cericola et al., 2018; Schneider et al., 2022) due to its advantages and

straightforward applicability in obtaining allele counts from

sequencing reads (Byrne et al., 2013). Consequently, in the

context of family-pool GP, the use of allele counts derived from

GBS allows for direct inference without the need for estimating

allelic dosages (Guo et al., 2018).

In addition to the application of GP models in GS approaches,

family-pool markers can also be employed in genome-wide

association studies (GWAS). Unlike selection-based applications,

GWAS aims to identify loci that are associated with a greater extent

of genetic variation, thereby enhancing the understanding of the
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genetic architecture underlying complex traits (Ashraf et al., 2014;

Zhang et al., 2014; Fè et al., 2015). In this sense, adopting a family-

based approach provides a more comprehensive perspective on the

genetic variations related to the configuration of traits across

different families. Once these genomic associations have been

assessed, additional omics approaches can be employed to further

elucidate the biological mechanisms triggered by adjacent genes and

their association with the configuration of complex traits (Scossa

et al., 2021).

Traditionally, data generated from various levels of biological

information, such as genomics, transcriptomics, and proteomics,

have been analyzed separately. However, more recently, the

integration of data followed by appropriate statistical analysis has

emerged as a promising approach to unravel the biological

implications of different traits in humans (Yang et al., 2014),

microorganisms (Borin et al., 2018; Rosolen et al., 2022), animals

(Parker Gaddis et al., 2016; Mateescu et al., 2017), and plants

(Francisco et al., 2021; Cardoso-Silva et al., 2022). Despite the

economic importance of U. ruziziensis and the availability of

molecular data resources, no study incorporating multiomics has

been conducted onU. ruziziensis or any species of theUrochloa genus.

Although assessing different aspects, GP and GWAS possess

complementary advantages, providing robust information for the

identification of potential candidate genes related to agronomically

important traits. Methodologies originally used for GP have been

applied in GWAS to detect loci associated with the trait of interest

(Goddard et al., 2016; Wang et al., 2020; Wolc and Dekkers, 2022).

Conversely, association studies have demonstrated their usefulness

in enhancing GP (Zhang et al., 2014; Bian and Holland, 2017; Jeong

et al., 2020). To further enhance the outcomes of association and

prediction studies, researchers have explored the integration of

machine learning (ML) algorithms. Despite the controversial

incorporation of ML in GP, with some studies highlighting its

advantages (Ma et al., 2018; Waldmann et al., 2020; Aono et al.,

2022) and others refuting them (Crossa et al., 2019; Montesinos-

López et al., 2019; Zingaretti et al., 2020), numerous investigations

consistently demonstrate that ML-based strategies incorporating

feature selection (FS) techniques effectively reduce marker density.

These methods not only maintain or enhance prediction accuracy

but also enable the identification of polymorphisms associated with

phenotypes (Li et al., 2018; Aono et al., 2020; Pimenta et al., 2021;

Aono et al., 2022).

In this study, we assessed the feasibility of family-based

genotyping in autotetraploid U. ruziziensis (2n = 4x = 36) and

investigated the GWFP capability to predict biomass production

and growth traits in both wet and dry seasons. We employed

traditional statistical methods as well as ML algorithms to analyze

the data. To enhance prediction accuracy, we employed FS

strategies to identify subsets of SNP markers with increased

predictive power. Furthermore, we used an ML tree-based

approach to estimate the importance of these variations in

prediction. The most significant markers were then used as a

guide to map RNA-Seq assembled genes, which were considered

putatively associated with the investigated traits. To gain a deeper

understanding of the molecular mechanisms underlying the

regulation of these traits in the different seasons investigated, we
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expanded the set of identified genes by constructing a gene

coexpression network (GCN). Our study not only brings

innovation to GWFP, but also proposes a means of integrating

genomic and transcriptomic data. Moreover, our findings

contribute to the expansion of knowledge on the biological

processes influencing the investigated agronomic traits. The

outcomes of this work offer valuable resources for future studies

and breeding programs targeting the Urochloa genus.
2 Materials and methods

2.1 Urochloa ruziziensis phenotyping

The progenies used in this study were generated as part of the

Urochloa breeding program of the Brazilian Agricultural Research

Corporation (Embrapa) Beef Cattle (EBC), located in Campo

Grande, Mato Grosso do Sul State, Brazil (20°27’S, 54°37’W, 530

m), as described by Simeão et al. (2012), Simeão et al. (2016a),

Simeão et al. (2016b). In 2010, seven sexual autotetraploid-induced

accessions (R30, R38, R41, R44, R46, R47 and R50) were replicated

20 times to create an open pollination randomized field organized

into 26 lines and 12 columns spaced by 2 meters. In 2012, out of the

140 plants, 59 were selected to form breeding progenies and

compose the experiment of the study. This selection was based on

their viable seed production and flowering synchrony. A total of

1,180 individuals (20 seeds from each of the 59 plants selected) were

planted in a randomized block design, with one plant per plot

spaced 1.5 m apart (Simeão et al., 2016a, b). From the 59 half-sibling

progenies, 50 were chosen based on the criterion of selecting the

progenies with more plants that succeeded in the field.

The phenotypic evaluations were performed considering nine

clippings at 15 cm height: (1) March 2012; (2) January 2013; (3)

April 2013; (4) May 2013; (5) September 2013; (6) October 2013; (7)

November 2013; (8) December 2013; and (9) January 2014.

According to the climatological water balance assessed through

the available water capacity (AWC) metric (Supplementary Figure

S1) (Simeão et al., 2016a, b), six clippings were performed in the wet

season (1-3,7-9) and three in the dry season (4-6). In addition to the

nine clippings, we had a total sum (T) evaluation for each

phenotype in the period.

The agronomic traits evaluated in all clippings were green

matter yield (GM) and dry matter yield (DM), both measured in

grams per family, and regrowth (RG), with scores varying from 0 to

6 as described by Figueiredo et al. (2012). In addition, in clippings 2

and 5, approximately 200 g of leaves and stems from each plant

were used to estimate leaf dry matter yield (LDM) and stem dry

matter yield (SDM). Considering that clipping 1 was discarded from

the analysis, we evaluated 33 combinations of agronomic traits and

clippings (clippings 2-9 for GM, DM and RG, and clippings 2 and 5

also for SDM and LDM) (Figure 1), which we considered

different phenotypes.

For each combination of agronomic traits and clippings, we

employed the following linear mixed-effects model:

y = Xr + Zg + e
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where y represents the phenotypic measurements, X is the

design matrix of the fixed repetition effects r, Z is the design

matrix of the random genotypic effects g, and e is the random

residual vector. All the statistical analyses were performed using the

software Selegen - REML/BLUP (Resende, 2002; Colombari-Filho

et al., 2013). Narrow-sense trait heritability estimates were corrected
Frontiers in Plant Science 04
using the Wright’s coefficient of relationship, as described by

Simeão et al., (2016a), Simeão et al., (2016b).

To obtain family measurements, we calculated the average of

each trait per family and scaled the results between 0 and 1 with the

Min-Max technique. To perform a data descriptive analysis of

family traits, we used boxplots to assess the distribution and
FIGURE 1

The approach established in this research can be divided into three main parts: (i) phenotyping and genotyping the population (1); (ii) identifying
phenotypically associated markers through genomic prediction (2 and 3); and (iii) investigating the genes physically linked to the markers in a
coexpression network (4, 5 and 6).
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outliers, computed Pearson’s correlation among all phenotype

clippings and performed a principal component analysis (PCA) to

assess population structure. The descriptive analysis was performed

in R (R Core Team, 2021), and all PCA and plots were performed

with the package pcaMethods (Stacklies et al., 2007) and the

package ggplot2 (Wickham and Chang, 2016), respectively.
2.2 Genotyping

Genomic DNA of all individuals was extracted using the

DNeasy Plant kit (QIAGEN) and pooled according to each

family, totaling 50 samples. GBS libraries were constructed

following the method proposed by Poland et al. (2012) using a

combination of a rare cutting enzyme (EcoT22I) and a frequent

cutting enzyme (MspI). Subsequently, libraries were sequenced as

150-bp single-end reads using the High Output v2 Kit (Illumina,

San Diego, CA, USA) in a NextSeq 500 platform (Illumina, San

Diego, CA, USA). The raw sequence data have been submitted to

the NCBI Sequence Read Archive (SRA) under accession

number PRJNA973612.

We performed quality evaluation of GBS raw sequence reads

using FastQC version 0.11.5 (Andrews, 2010) and SNP calling using

the TASSEL-GBS pipeline (Glaubitz et al., 2014) modified for

polyploids (Pereira et al., 2018a). The reads were aligned to the U.

ruziziensis genome assembly (Pessoa-Filho et al., 2019; GenBank

Assembly GCA_015476505.1) using the BowTie 2.3.1 aligner

(Langmead and Salzberg, 2012), and only uniquely mapped reads

were employed. SNP markers were filtered using VCFtools v0.1.17

(Danecek et al., 2011) with the following criteria: a minimum

sequencing depth of 20 reads, no more than 25% missing data

per site, biallelic SNPs only, and removal of redundant (same

genotypes in all samples) markers from the sets (Figure 1).

The allele frequency for each marker was estimated as the ratio

between the number of reads for the alternative allele and the total

number of reads. Missing data were replaced by the site mean of

allele frequency. Furthermore, a PCA was performed on the

complete genotype data to assess population structure.
2.3 Genomic prediction and
feature selection

To create subsets of markers for each phenotype, three FS

techniques were applied to the SNP data using the Python 3 library

scikit-learn v1.0.2 (Pedregosa et al., 2011): gradient tree boosting

(FS-1) (Chen & Guestrin, 2016), extremely randomized trees (FS-2)

(Geurts et al., 2006), and random forest (FS-3) (Breiman, 2001). For

the FS-1 technique, we employed the mean squared error (MSE) as

the loss function, set the learning rate to 0.1, and considered 100

boosting stages. The criterion for assessing split quality was based

on the MSE with improvement score by Friedman. We established

that a minimum of 2 samples was required to split an internal node,

while a minimum number of 1 sample was required for a leaf node.

Furthermore, we constrained the maximum number of nodes
Frontiers in Plant Science 05
within the trees to 3. For FS-2 and FS-3, the forest consisted of

100 trees, employing the MSE as the quality measurement function.

The minimum number of samples required to split an internal node

and the minimum number of samples required to form a leaf node

were consistent with those of FS-1. In FS-3, the trees had no node

limit, and bootstrapping was employed. Then, to performmodeling,

we created feature intersection (FI) datasets by evaluating the

intersection of the FS methods, considering markers that were

selected by at least two FS techniques (FI-1) and markers that

were selected by all three FS techniques (FI-2), similar to the

approach proposed by Aono et al. (2020) and Aono et al.

(2022) (Figure 1).

As GP strategies, we estimated different models considering

six regression approaches across the 33 combinations of traits

and clippings, as well as both the reduced (FI-1 and FI-2) and

complete versions of the dataset. As conventional GP models, we

employed the semiparametric reproducing kernel Hilbert space

(RKHS) with a Gaussian kernel (GK) as the covariance function

using the R package BGGE v0.6.5 (Granato et al., 2018) and

Bayesian ridge regression (BRR) with the R package BGLR v1.0.9

(Perez and de los Campos, 2014). Both models were estimated

using 20,000 iterations with a thinning of 5 and a burn-in of

2,000. Additionally, we evaluated four ML algorithms using

Python 3 with the scikit-learn library v1.0.2 (Pedregosa et al.,

2011): (i) support vector machine (SVM) (Cristianini and Shawe-

Taylor, 2000); (ii) random forest (RF) (Breiman, 2001); (iii)

adaptive boosting (AB) (Freund and Schapire, 1997); and (iv)

multilayer perceptron (MLP) neural network (Popescu et al.,

2009). For SVM regression, a radial basis function was used as

the kernel, with the gamma coefficient defined as 1=(p� s 2
Z),

where p represents the number of loci and s 2
Z the variance of the

genotype matrix Z. The RF regression was performed with the

same parameters as those described for FS-3. For AB, we

employed a decision tree regressor as the base estimator, used a

linear loss function to assign weights, and limited the maximum

boosting interaction to 50 estimators. Finally, the MLP neural

network was constructed with a single hidden layer comprising

100 neurons activated by the rectified linear unit (ReLU)

function. We employed a quasi-Newton method to optimize

the weights and applied a regularization term of 0.001 strength

in the L2 regularization term.

The evaluation of the previously described models for GP was

performed using a k-fold (k=5) cross validation strategy, repeated

100 times. Two metrics were measured: predictive ability (PA),

quantified as the Pearson correlation coefficient, andMSE (Figure 1).

To compare the models, the phenotype clippings and the

datasets, we used ANOVAs with multiple comparisons by

Tukey’s tests implemented in the agricolae R package (De

Mendiburu and De Mendiburu, 2020) (Figure 1). For PA, we

considered the best scenario to be that in which Tukey’s test had

“a” or “a” combined with other letters, such as “ab” or “abc”, which

represents the highest values. On the other hand, for MSE, a

scenario is better when its MSE value is lower. Therefore, we

considered the best scenarios those with the higher letter or

combined with other letters (i.e., “f”, “ef” or “def”).
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2.4 Major importance markers

After identifying the best dataset of markers for each phenotype

clipping, we used the random forest algorithm (Breiman, 2001) to

estimate the impurity importance of each SNP marker. This

estimation was performed considering the Gini importance,

which quantifies the normalized total reduction in the criterion

(MSE) achieved by each feature (the sum of the feature importance

across all markers is equal to 1). To obtain a more refined subset

comprising only the markers most likely associated with agronomic

traits, we established the major importance set by selecting the top 3

Gini importance markers in each phenotype clipping (Figure 1). In

cases where the sum of these three values did not reach 0.5, we

continued selecting additional values until the condition was

satisfied. Furthermore, a PCA was performed using the major

importance markers dataset.
2.5 Transcriptome assembly, quantification
and annotation

Previous RNA-Seq data of 11 genotypes of U. ruziziensis were

used to assess gene expression (Hanley et al., 2021; NCBI BioProject

PRJNA513453). Raw data were quality-trimmed using

Trimmomatic v0.39 (Bolger et al., 2014). The Illumina adapters,

the first 12 bases of the read, and the leading and trailing bases with

quality less than 3 were trimmed; the sliding window of 4 bases was

set to cut the read when quality/base was less than 20 and only reads

with more than 75 bases were kept. Then, the filtered reads were de

novo assembled by Trinity v2.5.1 (Grabherr et al., 2011) considering

a minimum contig length of 300 bases, and assembly integrity was

evaluated using the Trinity.pl package utility (Figure 1).

SALMON 1.1.0 (Patro et al., 2017) was used to quantify

transcript expression, which was subsequently summarized at the

gene level using the tximport R package (Soneson et al., 2015). We

retained only genes with more than one transcript per million

(TPM) in at least three of the 11 samples, disregarding genes with

low-level expression. The longest isoform for each gene was

selected, and BUSCO v5.2.2 (Manni et al., 2021) was used to

evaluate the annotation completeness against the Viridiplantae

database. Finally, we aligned the filtered assembly to the UniProt

database (Bateman et al., 2020) using Blastx and Blastn 2.10.0

(Altschul et al., 1990) with an e-value cutoff of 1e-10. Gene

Ontology (GO) terms were retrieved using Trinotate software

(Bryan t e t a l . , 2017) , wh ich per fo rmed func t iona l

annotation (Figure 1).
2.6 Genes linked with markers and
GO enrichment

To identify genes physically linked to major importance

markers (section 2.4), we conducted alignments between the

genes derived from the transcriptome assembly (section 2.5)

against the U. ruziziensis genome (Pessoa-Filho et al., 2019).

Therefore, genes that aligned in a window of 5,000 bp up- and
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downstream of the marker position were considered physically

linked. The alignment was performed using Blastn 2.10.0

(Altschul et al., 1990) with a minimum query coverage of 75%

and an E-value cutoff of 1e-6. To visualize the gene position within

the genome, we constructed a physical map using MapChart v2.32

(Voorrips, 2002), including information regarding the phenotype

and the seasonal associations, as well as Gini importance (Figure 1).

In addition, a circular map was constructed using the R package

circlize v0.4.14 (Gu et al., 2014) to show the associated genes that

were duplicated.

Finally, to obtain a functional profile of the genes linked to the

markers, biological process GO term enrichment analysis was

performed. This step was achieved with the R package topGO

(Alexa and Rahnenfuhrer, 2022), and GO terms with p values< 0.01

in Fisher’s exact test were considered significantly enriched.
2.7 Coexpression network

We modeled a GCN using the transcript quantifications

normalized in transcripts per million (TPM) and the highest

reciprocal rank (HRR) (Mutwil et al., 2009) approach,

considering a limit of 30 edges. From the GCN, we selected the

genes associated with the agronomic traits and included highly

correlated genes that were not considered in the network ranking

(Pearson correlation coefficient ≥ 0.9 and a maximum p value of

0.01 with Bonferroni correction). From this defined gene set, we

selected the first and second gene neighbors in the GCN. To

evidence the gene associations with the two seasons, we

highlighted genes related to phenotype clippings 2,3,7,8 and 9,

considering them as components of a wet-season associated

network. Similarly, genes associated with clippings 4, 5 and 6

were selected to form the dry-season associated network.

Network visualization and evaluation were performed using

Cytoscape software v3.9.1 (Shannon et al., 2003). For each gene, we

calculated the degree centrality measure with the methods of

Barabási and Oltvai, 2004, and considered the genes with outlier

values as hubs. Finally, biological process GO term enrichment

analyses were performed for the selected genes, including first and

second neighbors, to produce a general and seasonal functional

profile of the metabolic pathways associated with the agronomic

traits with the same method described in 2.6 (Figure 1).
3 Results

3.1 Phenotypic and genotypic
data analyses

In our study, we evaluated five important traits for forage grasses

(GM, DM, RG, LDM, and STM) across various clippings selected based

on wet and dry seasons. Individual measurements were averaged at the

subfamily level, and we excluded data from the first clipping. The

descriptive analysis of subfamily based phenotypic data did not reveal

any discernible patterns concerning the dispersion and skewness of the

traits (Supplementary Figure S2). We did not identify any outliers in 17
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out of the 33 traits. Despite the absence of any apparent similarity in

phenotypic dispersion between the phenotypes evaluated, the

correlation analysis yielded significant values for all the comparisons

conducted (Supplementary Figure S3). We observed an average R

Pearson correlation coefficient of 0.72 (Supplementary Figure S3), with

the strongest correlations (~1) observed between the same clippings of

GM and DM. Additionally, early clippings (2 and 3) tended to be less

correlated with all other measures. This pattern was particularly more

pronounced for GM, DM, and SDM. In contrast, SDM in clipping 2

exhibited the lowest correlation with all other phenotypes

(Supplementary Figure S3). The progeny mean narrow-sense

heritabilities for all phenotype clippings showed a mean value of

0.79, ranging from 0.44 (SDM in clipping 2) to 0.92 (LDM in

clipping 5) (Supplementary Table S1).

The GBS experiment generated ~720 million reads, which were

processed into 1.3 million tags using the Tassel pipeline. We

identified a total of 77,413 SNP markers in this step. After

applying quality filters, estimating allele frequencies, and

imputing missing genotypes, we retained 28,106 of these markers.

This final dataset of markers is referred to as the “complete

data” (CD).

By using the phenotypic and genotypic data, we performed

PCAs, plotting the dispersion of subfamilies using the scores of the

first two principal components (PCs) (Supplementary Figures S4,

S5). Although arising from different sources of variation (the

proportion of variance explained by the first two PCs was 85.2%

and 57.2% for the phenotypic and genotypic data, respectively),

similar patterns could be observed. To corroborate such a similarity,

we colored the samples from the genotypic PCA scatter plot using

PC1 of the phenotypic data. Even without a pronounced presence of

3 groups, as in the phenotypic PCA, the coloring in the genotypic

PCA evidenced a clear association between both PCA results

(Supplementary Figure S5).
3.2 Genome-wide family prediction

The predictive performance of the GP models at the family level

using the CD was assessed through the consideration of two

conventional approaches (RKHS and BRR) across 33 phenotypes.

Employing a 100-times 5-fold CV strategy, the RKHS model

exhibited slightly superior results compared to BRR, with a mean

PA of ~0.762 and mean MSE of ~0.025, contrasted to a mean PA of

~0.745 and a mean MSE of 0.026 in BRR. We observed a maximum

PA of ~0.875 in the DM-8 trait and a minimum PA of ~0.490 in

SDM-2. Aiming to achieve higher performance levels, we evaluated

four ML algorithms (SVM, RF, AB andMLP). Among these models,

SVM exhibited the best overall performance, with a mean PA of

~0.759 and a mean MSE of ~0.026; however, it did not surpass the

performance of the RKHS approach. By considering Tukey’s test

results for MSE, it became evident that the RKHS model

significantly outperformed SVM, emerging as the superior

approach in 30 traits compared to 13 of SVM (Supplementary

Tables S2-S4). Our results indicate that when using CD for

prediction, the ML algorithms were unable to outperform the

performance of conventional models.
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To increase our predictive accuracy and assess potential

associations between traits and markers, we selected specific

subsets of SNPs for each of the 33 traits based on the

intersections established between FS sets. Each FS approach

yielded a distinct quantity of markers: FS-1 selected sets with

quantities ranging from 129 to 175 markers (mean of ~150,

0.53% of the CD); FS-2 from 484 to 1154 (mean of ~848, 3% of

the CD); and FS-3 from 563 to 853 (mean of ~699, 2.5% of the CD).

By considering the intersection approaches established, we obtained

FI-1 with SNP quantities ranging from 76 to 122 markers (mean of

~102, 0.36% of the CD) and FI-2 with quantities varying from 5 to

23 markers (mean ~11, 0.04% of the CD) (Supplementary Table

S5). In addition to obtaining more restricted sets, these markers

selected by FI have more evidence of trait associations, as they were

selected by multiple algorithms. In this sense, model performances

using the CD were contrasted with the use of models created from

the datasets selected by FI-1 and FI-2.

The employment of the FI datasets increased the performance

of all models for all traits. This improvement was particularly

pronounced in the AB and RF models, which presented the

highest levels of accuracy, overcoming RKHS in both FI sets.

Among the six models evaluated, the FI-1 approach presented an

improved overall performance when compared to FI-2, being

considered by Tukey’s test the best approach in 168 (FI-2 = 100)

and 136 (FI-2 = 89) scenarios for PA and MSE, respectively

(Supplementary Table S6). However, individual results for the

best models in each scenario were similar, as indicated by the best

model in FI-1 (AB with a mean PA of ~0.894 and a mean MSE of

~0.013) and FI-2 (RF with a mean PA of ~0.893 and a mean MSE of

~0.013) (Supplementary Tables S2-S4). Furthermore, when

analyzing the clippings of a phenotype, we observed that the best

performances for clippings in the combinations AB-FI-1 and RF-

FI-2 varied in GM and DM, but for RG (clipping 3), SDM (clipping

5) and LDM (clipping 5), the results were equivalent

(Supplementary Tables S2-3 and 7).

In this sense, we observed that for the prediction task, both

combinations AB-FI-1 and RF-FI-2 can be employed with

comparable performance levels. However, for investigating trait

−marker associations and catalogs of putative associated genes, FI-2

represents a more restrictive approach. With sets (mean of ~11

markers) approximately ten times smaller than the sets of FI-1

(mean of ~102 markers), FI-2 markers provide a group of markers

with a probable reduced number of false positive associations.

Therefore, we considered the combination RF-FI-2 as the most

promising approach to be employed in our datasets. In addition to

the significant decrease in marker density through FI-2, the RF

algorithm demonstrated high efficiency for prediction with a PA

increase of 6.9% and an MSE reduction of 22.6% when compared to

the RKHS using the FI-2 dataset or 17% when compared to the

RKHS using the CD dataset (Table 1).
3.3 Major importance markers

Given that the FS strategies employed in our study relied on ML

algorithms estimated through a combination of decision trees, and
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TABLE 1 Comparison of RKHS and RF model predictive ability and mean squared error for all phenotype clippings using the FI-2 datasets.

Phenotype Clipping
Predictive ability Mean squared error

RKHS RF Diff. Diff. (%) RKHS RF Diff. Diff. (%)

Green Matter

2 0.857 0.850 -0.007 -0.8% 0.018 0.018 0 0.0%

3 0.870 0.869 -0.001 -0.1% 0.016 0.017 0.001 6.3%

4 0.894 0.912 0.018 2.0% 0.015 0.013 -0.002 -13.3%

5 0.866 0.917 0.051 5.9% 0.016 0.012 -0.004 -25.0%

6 0.863 0.903 0.040 4.6% 0.018 0.012 -0.006 -33.3%

7 0.844 0.923 0.079 9.4% 0.019 0.010 -0.009 -47.4%

8 0.881 0.913 0.032 3.6% 0.020 0.015 -0.005 -25.0%

9 0.897 0.944 0.047 5.2% 0.012 0.008 -0.004 -33.3%

T 0.867 0.937 0.070 8.1% 0.018 0.009 -0.009 -50.0%

Mean 0.871 0.908 0.037 4.2% 0.017 0.013 -0.004 -24.6%

Regrowth

2 0.868 0.896 0.028 3.2% 0.015 0.014 -0.001 -6.7%

3 0.940 0.956 0.016 1.7% 0.011 0.008 -0.003 -27.3%

4 0.859 0.911 0.052 6.1% 0.017 0.012 -0.005 -29.4%

5 0.826 0.869 0.043 5.2% 0.016 0.013 -0.003 -18.8%

6 0.833 0.884 0.051 6.1% 0.024 0.016 -0.008 -33.3%

7 0.862 0.896 0.034 3.9% 0.015 0.011 -0.004 -26.7%

8 0.860 0.872 0.012 1.4% 0.014 0.013 -0.001 -7.1%

9 0.813 0.843 0.030 3.7% 0.017 0.014 -0.003 -17.6%

T 0.886 0.932 0.046 5.2% 0.013 0.008 -0.005 -38.5%

Mean 0.861 0.895 0.035 4.1% 0.016 0.012 -0.004 -22.8%

Dry Matter

2 0.537 0.638 0.101 18.8% 0.044 0.035 -0.009 -20.5%

3 0.802 0.840 0.038 4.7% 0.014 0.013 -0.001 -7.1%

4 0.935 0.941 0.006 0.6% 0.010 0.009 -0.001 -10.0%

5 0.882 0.895 0.013 1.5% 0.014 0.015 0.001 7.1%

6 0.884 0.917 0.033 3.7% 0.016 0.011 -0.005 -31.3%

7 0.849 0.913 0.064 7.5% 0.017 0.011 -0.006 -35.3%

8 0.911 0.915 0.004 0.4% 0.016 0.016 0 0.0%

9 0.787 0.925 0.138 17.5% 0.022 0.011 -0.011 -50.0%

T 0.912 0.943 0.031 3.4% 0.013 0.009 -0.004 -30.8%

Mean 0.833 0.881 0.048 6.5% 0.018 0.014 -0.004 -19.8%

Leaf Dry Matter

2 0.835 0.875 0.040 4.8% 0.019 0.014 -0.005 -26.3%

5 0.899 0.924 0.025 2.8% 0.012 0.011 -0.001 -8.3%

T 0.900 0.952 0.052 5.8% 0.011 0.007 -0.004 -36.4%

Mean 0.878 0.917 0.039 4.5% 0.014 0.011 -0.003 -23.7%

Stem Dry Matter

2 0.664 0.818 0.154 23.2% 0.033 0.021 -0.012 -36.4%

5 0.904 0.921 0.017 1.9% 0.011 0.012 0.001 9.1%

T 0.694 0.835 0.141 20.3% 0.025 0.015 -0.010 -40.0%

Mean 0.754 0.858 0.104 15.1% 0.023 0.016 -0.007 -22.4%

Overall Mean 0.839 0.892 0.052 6.9% 0.018 0.013 -0.004 -22.6%
F
rontiers in Plant Scienc
e
 08
 fro
ntiersin.org

https://doi.org/10.3389/fpls.2023.1303417
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Martins et al. 10.3389/fpls.2023.1303417
that the top-performing models for FI-1 and FI-2 were AB and RF,

respectively, we employed an additional approach to assess marker

−trait associations using decision tree structures. We ranked the

markers based on RF scores obtained from the FI-2 selected

markers. We selected the top three Gini importance markers for

each trait, and if the sum of importance for these top three markers

did not reach at least 0.5 (out of a total of 1.0), we continued

selecting markers from the ranking until we reached half of the total

importance score. This process allowed us to compile a list of

markers with the highest feature importance, thus preventing

underrepresentation of importance across traits. From the 283 FI-

selected markers across the 33 traits, we identified a subset of 69

markers with significant predictive relevance. Notably, only for

SDM clipping 5, we had to select four markers instead of three

(Supplementary Table S8).

Furthermore, we performed a PCA to evaluate the subfamily

dispersion considering this set of 69 major importance markers.

The first two PCs explained 67.5% of the data variance, an

intermediate value between the complete set of SNPs (57.2%) and

the phenotypic data (85.2%) (Supplementary Figure S6). Although

the values of the first PCs seem to be inverted in such a PCA when

compared to the others performed, we observed a similar dispersion

pattern (Supplementary Figures S4, S5). As we expected, the scatter

plot displayed a group formation visually closer to the phenotypic

PCA. Since the markers were selected through associations with the

traits, there was a strong relation between the major importance

data PC1 and the samples colored using the phenotypic PC1 values

(Supplementary Figure S7).

To assess the physical distribution of the FS-selected markers,

we constructed a physical map for U. ruziziensis using the values

obtained from the species’ genome. In addition to the set of 69

major importance markers, we incorporated all the FI-2 markers

into the constructed map (Figure 2). Regarding the distribution of

these markers, we observed associations across all chromosomes

without a clear pattern, except for the presence of extensive regions

with little or no markers, primarily located in the central regions of

chromosomes 1, 2, 5, 7 and 8. We speculate that these regions

correspond to the centromeric regions (Figure 2). Chromosome 1

presented the highest number of associations when considering

both FI and major importance marker sets, with relatively

consistent representativeness. However, it was also the

chromosome with the highest number of identified SNPs

(Table 2). On the other hand, chromosomes 5 and 6 presented

the lowest presence of associations, while chromosome 4

experienced a significant change in representativeness, with a 7%

reduction from FI to major importance (Table 2). Furthermore,

especially in chromosomes 1, 4 and 7, we observed regions

characterized by a high density of minor importance markers

near major importance markers, which may suggest the presence

of QTL regions associated with agronomic traits.

The major importance set was composed of various markers

associated with more than one trait. As evidenced in the physical

map, the marker associated with more trait clippings is on

chromosome 7, position 42,826,434. This marker was associated

with four of the five phenotypes evaluated and was selected for nine

clippings, three of which had a Gini importance higher than 0.4 and
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in six Gini importance between 0.2 and 0.4 (Figure 2). Other

markers were associated with various trait clippings, such as a

marker on chromosome 1 position 69,834,400, which was

associated with six trait clippings, and three other markers with

four associations in chromosomes 1 and 3 (Figure 2).

When evaluating the markers for each of the five traits without

separating them by clippings, we analyzed the intersections of sets

to quantify markers associated with multiple traits (Supplementary

Figure S7). Despite the variation in marker quantities between the

FI-2 and major importance sets, the logical relationships among the

trait sets remained consistent: GM, DM, and LDM shared the

highest number of markers, while RG and SDM had a higher

proportion of exclusive markers. Interestingly, SDM and RG

exhibited generally lower correlations with the other traits as well.
3.4 Marker genes associated
with phenotypes

To obtain a set of genes expressed by the species and

subsequently assess their coexpression, we employed a previously

published transcriptome of 11 U. ruziziensis genotypes. The

sequencing of the libraries produced a total of ~1.7 billion reads,

with 95.5% (Supplementary Table S9) being retained and used for

de novo assembly. The resulting transcriptome encompassed

575,524 transcripts, of which 223,593 were categorized as

unigenes, featuring a transcript N50 length of 1,227 bp. Following

filtration based on expression levels, the dataset was reduced to

288,487 transcripts, representing 49,445 unigenes. The evaluation of

assembly completeness was performed by comparing the 49,445

unigenes against the Viridiplantae database. From the 425 total

BUSCO groups searched, we found 297 complete sequences

(69.8%), 48.2% as a single copy and 21.6% as duplicated copies,

in addition to 74 (17.4%) and 54 (12.8%) fragmented and missing

sequences, respectively.

In the process of functional annotation, we aligned the

transcripts to the UniProt database and obtained 197,045

associated GO terms. Among these, 6,156 were unique GO terms.

This collection of genes and GO terms was then employed to

perform a biological process GO term enrichment analysis of the

genes linked to the major importance markers.

After aligning transcripts with the reference genome of U.

ruziziensis and considering a window of 5,000 bp up/downstream

of the marker positions, we mapped a total of 217 genes (264

considering genes with multiple copies) in close physical proximity

to 58 markers (Figure 2 and Supplementary Table S8). We did not

detect genes linked to all markers, such as on chromosome 1, where

no genes were found within a marker region associated with six

traits clippings, or on chromosome 5, where out of the four major

importance markers, two lacked associated genes (Figure 2).

As previously stated, we identified genes with multiple copies

that are linked to more than one major importance marker region.

There were 22 genes meeting this criterion, and they are highlighted

in red in Figure 2. To facilitate a more comprehensive investigation

of these genes, we represented their distribution in a circular map

that illustrates their genomic positions. Additionally, we combined
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information about copy number variation, trait/season associations,

and Gini importance (Figure 3). Among these genes, we identified

five genes with six copies. Notably, three of these genes are found

together, and collectively, they are associated with seven different

trait categories. Furthermore, we identified genes with 4, 3 and 2

copies, all linked to all the evaluated traits, albeit with varying levels

of importance, demonstrating no clear pattern.
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Regarding the functional annotation of the genes associated with

the phenotypes, we identified proteins/enzymes and GO terms for 100

of the 217 genes (Supplementary Table S8). In the region associated

with more traits, on chromosome 7 (position 42,826,434), seven

annotated genes were mapped, some of which were cinnamoyl-CoA

reductase 1, and DEAD-box ATP-dependent RNA helicase 25.

Furthermore, on chromosome 1 (position 11,178,365), which is
FIGURE 2

Physical map with the markers and genes associated with the phenotypes evaluated in the U. ruziziensis population, with Gini importance (GI) and
season indicated. Duplicated genes and minor importance markers (FI-2) mapped are represented in red and purple, respectively.
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associated with four traits, there are genes annotated to the

multidomain protein RHM2/MUM4 which is involved in UDP-D-

glucose to UDP-L-rhamnose conversion (Supplementary Table S8).

Considering the genes with multiple copies, only three had functional

annotation, which translates into AIM25-altered inheritance rate of

mitochondria protein 25, cinnamoyl-CoA reductase 1 and E3

ubiquitin-protein ligase SINAT5.

Beyond specific protein annotation, to obtain a general functional

profile of the proteins identified, we performed an enrichment

analysis of the biological process GO terms and obtained a profile

with 18 significant terms (p value< 0.01). The enrichment analysis

identified terms associated with various phenotype clippings, such as

“lignin biosynthetic process”, “auxin efflux” and “flavonol

biosynthetic process” (Supplementary Table S10).
3.5 Coexpression network

To provide deeper insights into the functional patterns of genes

associated with the agronomic traits evaluated, we modeled a GCN

using the gene quantifications from the U. ruziziensis accessions. From

a total of 49,445 genes, we identified significant interactions between

14,141 genes, represented as nodes in the network structure, connected

by 17,812 edges (Supplementary Figure S8). Within this GCN, we

found 54 genes from the 217 genes associated with the major

importance markers. As we restricted the GCN created to the top 30

gene associations, we expanded the collection of 54 selected genes to

more than 109 by considering correlations with a minimum Pearson

coefficient of 0.9 and a Bonferroni corrected p value of 0.01. This group

of 153 genes was considered directly associated with the traits evaluated.

The potential of a GCN to elucidate metabolic pathways lies in

its ability to identify genes that, despite not being selected by the

prediction methodology, exhibit coexpression with them. To this

end, we extended the set of 153 genes previously selected to the
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GCN first (308 genes) and second gene neighbors (2233 genes),

creating a comprehensive agronomic trait network comprising a

total of 2704 genes (nodes) and 3453 edges (Figure 4).

The functional profile of the general agronomic traits network

was determined through an enrichment analysis of biological

process GO terms, which revealed 11 significant terms (p< 0.01)

for the gene set excluding the second neighbors and 16 terms when

considering all genes in the network (Supplementary Table S11).

When examining the restricted set, which excluded the second

neighbors, we found enriched terms related to hormones, such as

auxin efflux and abscisic acid transport, as well as biosynthetic

processes involving molecules such as flavonoids. In the broader set

that included second neighbors, we identified terms associated with

DNA metabolism, including mismatch repair, DNA replication,

and DNA duplex unwinding. Additionally, other enriched terms

were linked to responses to stress, such as response to chitin and

regulation of circadian rhythm.

To further explore the differences in functional gene patterns

associated with the different seasons, we separated the general

agronomic trait network into two seasonal parts. The genes

associated with the traits in clippings 2,3,7,8 and 9 were selected

for the wet season-associated network, and the genes associated

with the traits in clippings 4, 5 and 6 were selected for the dry

season-associated network. The wet and dry-season networks

encompassed 33 and 22 genes associated with the major

importance markers, 58 and 54 highly correlated genes, 102 and

231 first neighbors, 1322 and 1359 second neighbors, and a total of

1515 and 1666 genes (nodes) with 1801 and 2205 edges, respectively

(Figures 4A, B). Comparing the seasonal functional profiles, we

found shared terms such as flavonol biosynthetic process, auxin

efflux and mitotic recombination-dependent replication fork

processing. Additionally, we discovered season-specific terms such

as abscisic acid transport, isoleucine biosynthetic process, response

to nematode and chaperone-mediated protein folding for the wet

season. In contrast, the dry season featured enriched terms such as

pyridoxal phosphate biosynthetic process, response to water

deprivation and response to chitin, all of which are related to

stress response (Supplementary Tables S12, S13).

Another remarkable aspect of using GCNs to investigate the

regulation of metabolic pathways lies in their ability to define hub

genes, which possess a high number of connections in the network,

as determined by the degree metric. The hub genes play an

important role in regulating the functionality of numerous other

genes, thereby potentially influencing the expression of the

phenotypes that we are studying. In our modeled agronomic

traits network, we found 235 hub genes (degree > 4), of which 14

had a degree > 40. Considering the seasonal networks, there were

107 and 158 hubs in the wet and dry season networks, respectively.

Among the highest degree hub genes (>40), we found some present

in both season networks, such as the genes that encode the 60S

ribosomal protein L9 and the 14-3-3 protein zeta (Supplementary

Table S14). While specific to the wet season, we found hub genes of

the proteins ELF4-LIKE 4, SUV2 and lipid-transfer DIR1

(Supplementary Table S15) and to the dry season, 60S ribosomal

L9, fatty acid-binding and 3-hydroxyacyl dehydratase FabZ

(Supplementary Table S16).
TABLE 2 Number and percentage of SNP markers identified/selected in
each chromosome considering the complete data (CD), feature
intersection (FI-2) and top Gini importance datasets.

Chromosome Complete
Data

Feature
Intersection
- 2

Top
Gini
Importance

1 4722 (16.8%) 69 (23.4%) 16 (23.2%)

2 3565 (12.7%) 36 (12.2%) 10 (14.5%)

3 3249 (11.6%) 28 (9.5%) 9 (13%)

4 3552 (12.6%) 42 (14.2%) 5 (7.2%)

5 1384 (4.9%) 15 (5.1%) 4 (5.8%)

6 2508 (8.9%) 23 (7.8%) 2 (2.9%)

7 3796 (13.5%) 37 (12.5%) 8 (11.6%)

8 2127 (7.6%) 18 (6.1%) 8 (11.6%)

9 2426 (8.6%) 22 (7.5%) 5 (7.2%)

Scaffolds 777 (2.8%) 5 (1,7%) 2 (2.9%)

Total 28106 (100%) 295 (100%) 69 (100%)
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4 Discussion

4.1 Genome-wide family prediction

Recent advances in omics approaches and computational

methods for polyploid species have enabled the emergence of

studies in important Urochloa breeding areas. These include

genome assembly (Pessoa-Filho et al., 2019; Worthington et al.,
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2021), contaminant identification (Martins et al., 2021),

transcriptomics (Vigna et al., 2016a; Salgado et al., 2017; Hanley

et al., 2021; Jones et al., 2021; Worthington et al., 2021), linkage and

QTL mapping (Ferreira et al., 2016; Thaikua et al., 2016; Vigna

et al., 2016b; Worthington et al., 2016; Worthington et al., 2019;

Worthington et al., 2021), GWAS (Matias et al., 2019b), and GS/GP

(Matias et al., 2019a; Aono et al., 2022). Even with the recent

progress, there are no studies employing integrative methodologies
FIGURE 3

Circular map of the U. ruziziensis genome, indicating multiple copy genes identified as associated with the phenotypes evaluated, indicating Gini
importance and season. The same genes are indicated with the same color, except genes with two copies.
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in the genus. Therefore, by leveraging the limited genetic resources

available and employing biocomputational techniques, we have

pioneered the first multiomic approach in the Urochloa genus,

thereby expanding the molecular knowledge available for breeding.

In our initial approach to evaluating GWFP, we employed the

complete marker dataset (CD) with conventional parametric and

semiparametric GP models (BRR and RKHS). Our findings

consistently yielded either higher or, at the very least, equivalent

PA when compared to the achievements reported in other GWFP

studies. While we achieved a high mean PA of ~0.8 for the DM

clippings, in the case of alfalfa, the authors observed values below

0.7 for the same trait in both 10-fold and leave-one-group-out

cross-validation scenarios (Murad Leite Andrade et al., 2022).

Additionally, for ryegrass, an even lower PA value of 0.34 was

observed in a leave-one-family-out cross-validation scenario (Guo

et al., 2018). If we consider the GWFP results for other phenotypes,

such as rust resistance and heading date in alfalfa (Murad Leite

Andrade et al., 2022), as well as lignin content, stiffness and

diameter in loblolly pine (Rios et al., 2021), they consistently

exhibited smaller PA values compared to our results, which

presented a mean PA of ~0.762 across the 33 traits. We attribute

this PA in our predictions primarily to the relatively small

population size and limited genetic diversity among our samples.

This combination has been previously reported to enhance

predictive accuracy, as demonstrated in wheat (Edwards et al.,

2019). Moreover, increasing the population with genetically

distant samples tends to increase the complexity of the prediction

task, subsequently reducing its accuracy, as highlighted in previous

studies (Lorenz and Smith, 2015; Berro et al., 2019).

The performance we achieved seems even more promising

when compared to GP conducted at the individual level in

tropical forages. Studies with U.ruziziensis interspecific hybrids

(Matias et al., 2019a), U. decumbens (Aono et al., 2022), M.

maximum (de C. Lara et al., 2019; Aono et al., 2022), and P.

virgatum (Lipka et al., 2014) have yielded PAs ranging from values
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close to zero to maximum values of 0.7 when evaluating several

agronomic and morphological traits and employing different cross-

validation schemes. In addition to the well-known advantages of

genomic selection, such as its potential to shorten the breeding

process (Simeão-Resende et al., 2014) and reduce phenotyping costs

(Crossa et al., 2017), the use of GWFP offers other advantages,

particularly in forage breeding programs, which typically rely on

family- or plot-level phenotyping for conventional breeding (Rios

et al., 2021). Furthermore, when GWFP is conducted using ML

models combined with FS/FI strategies, it has the potential to

significantly lower genotyping costs.

Moreover, for the application of GWFP in breeding programs

or for future research, we recommend prioritizing experimental

designs featuring a greater number of families rather than

increasing the number of individuals within each family. Studies

with tetraploid full-sibling families have concluded that using six

individuals is sufficient to effectively capture family variation, both

in terms of genotyping and phenotyping (de Bem Oliveira et al.,

2020; Rios et al., 2021). Furthermore, it is worth noting that to a

certain extent, enlarging the training population holds the potential

to enhance the performance of GWFP, as indicated by previous

research (Fè et al., 2015).

The application of ML algorithms in GP has been extensively

explored across various species and phenotypes (Grinberg et al.,

2016; Lello et al., 2018; Liang et al., 2020; Chung et al., 2021; Islam

et al., 2021; Sandhu et al., 2021). Although there is no concrete

empirical evidence supporting the superiority of ML over linear

methods (Zingaretti et al., 2020; Varshney, 2021), ML techniques

have consistently demonstrated superior or at least equivalent

performance compared to conventional models in diverse

scenarios (Bellot et al., 2018; Abdollahi-Arpanahi et al., 2020;

Liang et al., 2021; Wang et al., 2022). ML methods have the

potential to outperform conventional GP models, especially when

handling intricate phenotypes influenced by significant dominance

and epistatic effects (Wang et al., 2018; Tong and Nikoloski, 2021).
A B

FIGURE 4

Selected and correlated gene coexpression network with first and second neighbors. Each node represents a gene, and each connection represents
their correlation. (A) Genes associated with wet season trait clippings. (B) Genes associated with dry season trait clippings.
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Moreover, there are no studies investigating the applicability of ML

methods in GWFP. Thus, we evaluated four classical ML algorithms

(SVM, RF, AB and MLP). Surprisingly, none of these algorithms

was able to outperform the RKHS model. Although SVM

demonstrated competitive performances for PA, it was not as

good for MSE. RF and AB exhibited intermediate performances,

whereas MLP markedly underperformed (Supplementary Tables

S2-4). The poor performance of MLP may be attributed to the

limited sample size of our dataset and the lack of hyperparameter

tuning. Neural network methods are well known for their need for

substantial datasets and meticulous hyperparameter tuning to

achieve high prediction accuracy (Bellot et al., 2018; Montesinos-

López et al., 2021).
4.2 Major importance markers

Our study goes beyond the applicability analysis of GWFP in U.

ruziziensis. We also aimed to investigate the metabolic regulation of

agronomic traits. As an initial step to achieve this objective, we

aimed to establish potential marker-phenotype associations. To this

end, the strong performance improvement observed using the FS/FI

approach indicates that the selected sets of markers are likely to be

near QTLs, and can therefore be used to define genomic regions

involved in phenotypic variation (Steinfath et al., 2010; Heer et al.,

2018; Zhou et al., 2019; Aono et al., 2020; Pimenta et al., 2021; Aono

et al., 2022; Pimenta et al., 2022). Additionally, by utilizing allele

proportions for genotyping the family, this approach can be

extended to other crop species that employ the family as the unit

for conducting GS.

In contrast to other approaches aimed at identifying genotype-

phenotype associations, FS techniques do not rely on specific

biparental populations (RILs, NILs, F2, etc.), which are necessary

for QTL mapping (Mohan et al., 1997; Dhingani et al., 2015).

Moreover, FS techniques have the ability to uncover nonlinear and

complex associations, addressing a limitation of linear models used

in GWAS (Korte and Farlow, 2013).

ML models based on decision trees offer good prediction

interpretability since it is possible to assess feature importance. In

the context of GP, these models can rank markers based on their

association strength with the modeled phenotype (Azodi et al.,

2019; Bayer et al., 2021; Medina et al., 2021). Therefore, given that

the best model for each FI dataset type was equivalent, we computed

the RF Gini importance for the more restricted FI-2 datasets and

selected the most significant features to create an even smaller and

more reliable set of putatively agronomic trait-associated markers.

By using half-sibling families’ bulks as a representation of the

genetic variability available for breeding, genotyping similar

agronomic traits in various clippings and selecting only the most

influential markers in the predictions, we were able to minimize the

limitations of the method due to small sample size and obtain a

reliable set of markers.

In this major importance set, we identified markers associated

with multiple phenotypes. Notably, the number of shared markers

was more pronounced for GM, DM and LDM, which is in

accordance with the observed correlations among phenotype
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clippings, where SDM and RG exhibited lower correlations with

the other traits (Supplementary Figures S3, S6). The high overall

correlation, with a mean of 0.72, among traits and the overlap of the

identified markers were as expected. This is because the assessed

biomass characteristics are highly similar and likely influenced by

the same metabolic processes. The DM phenotype was determined

by drying the GMmaterial, while SDM/LDM phenotyping involved

separating the DM into stems and leaves. Furthermore, biomass

production is dependent on the plant’s growth capacity (RG).

Consequently, the narrow-sense heritabilities of these traits within

the families were also very similar. As discussed in other studies,

modeling performance is strongly influenced by heritability (Wang

et al., 2018; Xu et al., 2018; Murad Leite Andrade et al., 2022).

Therefore, our prediction performances did not vary significantly

and were correlated with the heritabilities (Supplementary Tables

S1-S3).

In the absence of genome annotation, we employed RNA-Seq

data in a multiomic approach to map genes physically associated

with the major importance markers. Considering the similarity of

the agronomic traits employed and the potential involvement of the

same biological processes in their regulation, we then conducted a

functional analysis that considered the annotation of all genes

collectively. This allowed for an overview of the most influential

processes governing biomass production and growth.

The enrichment of GO terms related to the annotated genes

provides evidence of the methodological capacity to identify QTL

regions influencing the evaluated agronomic traits (Supplementary

Table S10). Associated with various phenotype clippings, terms

related to the lignin biosynthetic process stood out. Previous

research has established its significant impact on plant

development (Yoon et al., 2015; Bahri et al., 2020). Mutants of

lignin biosynthesis genes have shown phenotypes of dwarfism/

reduced plant growth (Schilmiller et al., 2009; Li et al., 2009; Song

and Wang, 2011), altered morphology (Elkind et al., 1990; Jones

et al., 2001; Franke et al., 2002), and tissue browning (Bout and

Vermerris, 2003; Xu et al., 2011; Saballos et al., 2012). Furthermore,

terms associated with auxin efflux were identified, which are known

for their importance in growth regulation. Auxin hormone effects

depend on concentration and are primarily produced in

meristematic and specific regions (Blakeslee et al., 2005). The

transport and distribution of auxin within plant tissues

constitutes an essential aspect of its function in plant

organogenesis and morphogenesis (Woodward and Bartel, 2005).

This transport is facilitated by influx and efflux carrier proteins,

providing essential directional and positional cues for various

developmental processes, including vascular differentiation, apical

dominance, organ development, and tropic growth (Benková et al.,

2003; Blancaflor and Masson, 2003; Friml et al., 2003; Blilou et al.,

2005; Grieneisen et al., 2007).

Furthermore, the flavonol biosynthetic process, which is

another enriched term identified in our results, is known to

regulate plant growth and development by controlling auxin

transport. Its effects are primarily observed in root elongation,

quantity and gravitropic response (Jacobs and Rubery, 1988;

Brown et al., 2001; Santelia et al., 2008; Grunewald et al., 2012).

Flavonols can influence auxin transportation by different
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mechanisms, such as modulating the transcription of genes

encoding auxin transport proteins (Peer et al., 2004), acting as

kinase inhibitors that regulate the phosphorylation status of auxin

transport proteins (Agullo et al., 1997; Peer and Murphy, 2007), or

altering the cellular redox state (Fernández-Marcos et al., 2013). In

addition, flavonols have antioxidant functions, acting in response to

stress such as UV radiation, wounding, drought, metal toxicity, and

nutrient deprivation. These conditions lead to the accumulation of

reactive oxygen species (ROS), which can damage cellular

components and consequently impact plant development

(Winkel-Shirley, 2001; Baskar et al., 2018; Agati et al., 2020). The

list of terms associated with plant growth, development and stress

response continues with the folic acid biosynthetic process

(Stakhova et al., 2000; Gorelova et al., 2017), galactolipid

metabolic process (Jouhet et al., 2007; Kobayashi et al., 2007;

Botté et al., 2011), and cellular response to cold.

The enriched terms provided an overview of the biological

function of the identified genes. However, for the genes with

multiple copies, limited information was generated, as only three

out of the 22 genes had functional annotation. Nevertheless, these

three genes appear to have a significant impact on the evaluated

agronomic traits. One of these genes, DN91682_c3_g2 (cinnamoyl-

CoA reductase 1), which was identified in two copies, is involved in

the lignin biosynthetic process (Lauvergeat et al., 2001), circadian

rhythm, and response to cold (Carpenter et al., 1994). The second

gene, DN64763_c1_g1 (E3 ubiquitin-protein ligase SINAT5), also

found in two copies, is known to play key roles in multiple plant

developmental stages and several abiotic stress responses (Shu and

Yang, 2017). Furthermore, although it has been reported in yeast,

the gene DN92072_c5_g1 (AIM25-altered inheritance rate of

mitochondria protein 25), which was found in six copies linked

to major importance markers, acts in the cellular response to heat

and oxidative stress (Aguilar-Lopez et al., 2016) (Figure 3)

(Supplementary Table S8).

As a result of diverse mechanisms, such as whole-genome

duplication, tandem duplication, and transposon-mediated

duplication, plant genomes have an abundance of duplicated

genes (Panchy et al., 2016). These duplicate copies can persist for

several reasons: insufficient time for the accumulation of deleterious

mutations or selection pressure to preserve redundant functions

(Panchy et al., 2016). This pressure can arise from four mechanisms:

gene dosage increase (Ohno, 1970), subfunctionalization (Force et

al., 1999), gene balance (Freeling and Thomas, 2006), and paralog

interference (Baker et al., 2013). Beyond identifying multiple copies

of genes associated with agronomic traits, further investigation into

the mechanisms influencing their retention and how these copies

interact and impact the trait may provide valuable insights for

improving breeding methods to achieve higher genetic gains.
4.3 Gene coexpression network

We conducted additional multiomic investigations to gain a

deeper understanding of the metabolic pathways and regulatory

mechanisms that govern the evaluated agronomic traits. We

modeled a GCN and isolated the previously identified genes and
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their coexpressed neighbors (Figure 4). This integration has been

successfully employed in different species and has produced

noteworthy results (Calabrese et al., 2017; Schaefer et al., 2018;

Yan et al., 2020; Francisco et al., 2021). The ability of such networks

to simulate complex biological systems and uncover novel

biological associations has transformed molecular biology

research (D’haeseleer et al., 2000; Liu et al., 2020), enabling the

exploration of regulatory relationships, inference of metabolic

pathways, and transfer of annotations (Rao and Dixon, 2019).

Following the “guilt-by association” principle, GCNs typically

reveal interactions among genes with correlated biological

functions (Oliver, 2000; Wolfe et al., 2005; Childs et al., 2011).

Furthermore, this strategy can contribute to initiatives aimed at

exploring targets for molecular perturbations, such as CRISPR.

These inferences hold the potential to reveal genes capable of

enhancing the loss or gain of functions, thereby influencing

phenotypes relevant to breeding programs.

In this context, we could expand our set of identified genes

through coexpression analysis, providing broader insight into the

metabolic pathways influencing the observed phenotypes.

Moreover, the annotated genes within these modules can serve as

a basis to infer the biological functions of the unannotated genes.

Our network modeling has extended our understanding of genes

associated with the previously discussed enriched terms. It has also

enabled the identification of new genes involved in biological

processes related to DNA integrity, stability and metabolism.

These genes act in mismatch repair, telomere capping, and duplex

unwinding, all of which are known to impact the normal growth

and development of plants to varying degrees (Tuteja, 2003; Kim

and Kim, 2018; Karthika et al., 2020). Additionally, our network

also expanded the genes involved in regulating the abscisic acid

(ABA) transport. Modulating hormone levels within tissues and

cells is critical for maintaining a balance between defense

mechanisms and growth processes, especially in suboptimal

environments. This regulation also plays an important role in

controlling stomatal closure (Seo and Koshiba, 2011; Chen et al.,

2020). Furthermore, the network has elucidated genes involved in

regulating the circadian rhythm. Such a process not only allows

plants to adapt to daily environmental changes but also enables

them to anticipate and prepare for these challenges in advance

(Millar, 2016; Kim et al., 2017; Creux and Harmer, 2019). Notably,

the gene ELF4-LIKE 4, a key player in the circadian rhythm (Doyle

et al., 2002), stands out as one of the hub genes with the highest

degree value in the network (Supplementary Table S12). Finally, we

also identified genes related to response to chitin, an important

component of the plant immune system activated in the presence of

pathogens such as fungi, arthropods, and nematode egg shells

(Kombrink et al., 2011; Sánchez-Vallet et al., 2015).

Furthermore, by separating the general agronomic trait network

into two seasonal parts, we were able to investigate the potential

impact of metabolic processes on plant development and

production during both wet and dry periods. In our findings, we

identified enriched terms related to auxin efflux and flavonol

biosynthetic processes in both networks. These results have

already been discussed in the context of auxin transport

regulation, indicating the importance of the hormone regardless
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of the season. During the wet season, in addition to the previously

mentioned abscisic acid transport, we observed terms associated

with plant development, such as the isoleucine biosynthetic process

(Yu et al., 2013) and the response to nematodes, which are

pathogens capable of modifying Plant Physiol., development,

metabolism, and immunity (Eves-van den Akker, 2021). In

contrast, within the dry network, we found enriched terms related

to responses to water deprivation and protein transport. This

provides evidence of the metabolic mechanisms required to deal

with abiotic stress.

Network degree analysis provided a means to identify hub

genes, which are the most highly connected genes in the network.

These hubs typically encompass genes with broad regulatory

functions or associations with essential roles in biological

processes (Carlson et al., 2006; Reverter and Chan, 2008; Amrine

et al., 2015). In our analysis, in addition to the previously mentioned

ELF4-LIKE 4 protein, we identified several ribosomal protein genes

as hubs, such as 40S S6 and S15a-2, 60S L9 and L14-2, 54S L12, and

Ubiquitin-40S S27a-1. The heterogeneity of ribosome composition

is well-known and forms the foundation of the specialized ribosome

theory, which states that different groups of ribosomes are tailored

to translate specific sets of mRNAs (Gilbert, 2011; Xue and Barna,

2012; Genuth and Barna, 2018). Although the major discussion in

this field is concentrated in elucidating how changes in ribosome

composition might facilitate the translation of specific groups of

mRNAs (Norris et al., 2021), our results indicate another intriguing

aspect of this theory. Although the precise connection between the

observed hub ribosomal proteins and the translation of the genes

linked to the hubs has yet to be established, we hypothesize that

their coexpression may result from a coregulatory mechanism that

ensures the availability of specific tailored ribosomes in sufficient

quantities for translating the mRNAs of these linked genes.

Regarding the relationship between ribosomal proteins and the

characteristics evaluated in this research, it has been reported that

A. thaliana mutants in these proteins are often smaller and have

simplified/aberrant vasculature and polarity defects (Van

Lijsebettens et al., 1994; Ito et al., 2000; Fujikura et al., 2009;

Horiguchi et al., 2011), which can directly impact attributes

related to regrowth and biomass production.

In addition, among the highest degree hubs in the network, we

found genes associated with lipid metabolism. These specific genes

encode important proteins, including the lipid-transfer

protein DIR1, fatty acid-binding protein, 3-hydroxyacyl-ACP

dehydratase, and 3-Ketoacyl-CoA Synthase 4. These proteins play

roles in fatty acid biosynthesis (Supplementary Table S14). Fatty

acids, which are common components of complex lipids, are

reported to have important roles in plant biology, including cell

structure and response to different stresses such as temperature

changes (Routaboul et al., 2000; Iba, 2002; Hou et al., 2006), salinity,

drought (Mikami and Murata, 2003; Gigon et al., 2004; Zhang et al.,

2005), exposure to heavy metals (Verdoni et al., 2001; Chaffai et al.,

2007; Maksymiec, 2007), and pathogens (Kachroo et al., 2003;

Nandi et al., 2005). Fatty acids, as integral components of cellular

membranes, suberin, and cutting waxes (Beisson et al., 2007),

contribute to stress resistance by modulating membrane fluidity,

releasing a-linolenic acid (Grechkin, 1998), serving as precursors
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for bioactive molecules (Hou et al., 2016), and acting as modulators

of plant defense gene expression (Kachroo et al., 2003).

Another gene with broad activity identified as a hub is

2-oxoglutarate/Fe(II)-dependent dioxygenase (2-ODD)

(Supplementary Table S14). This highly versatile enzyme facilitates

numerous oxidative reactions, playing a crucial role in biosynthetic

pathways for normal organismal function and the production of high

value specialized metabolites (Farrow and Facchini, 2014). Its roles

extend across various pathways, including DNA repair, histone

demethylation, posttranslational modifications, auxin and salicylic

acid catabolism, and biosynthesis of gibberellin, ethylene, flavonoid

and glucosinolate. 2-ODD is reported to have a significant impact on

plant growth and development (Farrow and Facchini, 2014).

Another important aspect of the methodology employed lies in

its ability to identify regions associated with known genes linked to

specific traits. Equally important is its capacity to elucidate

unannotated genes that should be investigated. In our results, more

than half of the identified genes linked to the major importance

markers lacked functional annotation. Remarkably, some of these

unannotated genes seemed to be highly important, as they were

observed to have multiple copies and associations with various traits

(Figure 3). When we expanded our analysis to the GCN, even more

unannotated genes emerged, including important hub genes

evidenced by their high degree values (Supplementary Table S14).

These genes/regions are important targets to expand the knowledge

on the metabolic regulation of agronomic traits and represent

valuable information that can be applied in species breeding.

Our work is innovative in different aspects and represents a

significant advance in the field of molecular breeding techniques

applicable to tropical forages. This study marks the first exploration

of the applicability of GWFP in a Urochloa species, being the first

time that FS and ML algorithms have been employed in GWFP.

These techniques not only enhance prediction metrics but also

drastically reduce the number of makers required for accurate

prediction. Furthermore, employing a multiomic approach, we

integrated the selected markers with transcriptome data to

construct a coexpression network capable of providing insights

into the regulation of plant growth and biomass production in the

species. The results demonstrate the great potential of molecular

breeding in reducing breeding costs, expediting the release of new

cultivars, and facilitating metabolic investigations, even in orphan

species with high genomic complexity, such as tropical forages.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found in the article/Supplementary Material.
Author contributions

FM: Conceptualization, Formal analysis, Writing – original draft,

Writing – review & editing. AA: Conceptualization, Formal analysis,

Writing – original draft, Writing – review & editing. AM: Writing –
frontiersin.org

https://doi.org/10.3389/fpls.2023.1303417
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Martins et al. 10.3389/fpls.2023.1303417
original draft, Writing – review & editing. RF: Writing – original draft,

Writing – review & editing. MV: Resources, Writing – review &

editing. MP: Resources, Writing – review & editing. MM: Supervision,

Writing – review & editing. RS: Conceptualization, Resources,

Supervision, Writing – review & editing. AS: Conceptualization,

Resources, Supervision, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by grants from the Fundação de Amparo à Pesquisa

de do Estado de São Paulo (FAPESP), the Conselho Nacional de

Desenvolvimento Cientı ́fico e Tecnológico (CNPq), the

Coordenação de Aperfeiçoamento de Pessoal de Nıv́el Superior

(CAPES - Computational Biology Programme and Financial Code

001), Embrapa and UNIPASTO. FM received a PhD fellowship

from CAPES (88882.329502/2019-01). AA received a PhD

fellowship from FAPESP (2019/03232-6); RF received a PD

fellowship from FAPESP (2018/19219-6); and AS received a

research fellowship from CNPq.
Acknowledgments

We would like to acknowledge the Fundação de Amparo à

Pesquisa de do Estado de São Paulo (FAPESP), the Conselho

Nacional de Desenvolvimento Cientıfíco e Tecnológico (CNPq),
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Jouhet, J., Maréchal, E., and Block, M. A. (2007). Glycerolipid transfer for the
building of membranes in plant cells. Prog. Lipid Res. 46 (1), 37–55. doi:
10.1016/j.plipres.2006.06.002

Juliana, P., He, X., Marza, F., Islam, R., Anwar, B., Poland, J., et al. (2022). Genomic
selection for wheat blast in a diversity panel, breeding panel and full-sibs panel. Front.
Plant Sci. 12. doi: 10.3389/fpls.2021.745379

Kachroo, A., Lapchyk, L., Fukushige, H., Hildebrand, D., Klessig, D., and Kachroo, P.
(2003). Plastidial fatty acid signaling modulates salicylic acid– and jasmonic acid–
mediated defense pathways in the Arabidopsis ssi2 mutant. Plant Cell 15 (12), 2952–
2965. doi: 10.1105/tpc.017301

Karthika, V., Babitha, K. C., Kiranmai, K., Shankar, A. G., Vemanna, R. S., and
Udayakumar, M. (2020). Involvement of DNA mismatch repair systems to create
genetic diversity in plants for speed breeding programs. Plant Physiol. Rep. 25, 185–199.
doi: 10.1007/s40502-020-00521-9

Kim, M. K., and Kim, W. T. (2018). Telomere structure, function, and maintenance
in plants. J. Plant Biol. 61 (3), 131–136. doi: 10.1007/s12374-018-0082-y

Kim, J., Kim, H.-S., Choi, S.-H., Jang, J.-Y., Jeong, M.-J., and Lee, S. (2017). The
importance of the circadian clock in regulating plant metabolism. Int. J. Mol. Sci. 18
(12), 2680. doi: 10.3390/ijms18122680

Kobayashi, K., Kondo, M., Fukuda, H., Nishimura, M., and Ohta, H. (2007).
Galactolipid synthesis in chloroplast inner envelope is essential for proper thylakoid
biogenesis, photosynthesis, and embryogenesis. Proc. Natl. Acad. Sci. 104 (43), 17216–
17221. doi: 10.1073/pnas.0704680104

Kombrink, A., Sánchez-Vallet, A., and Thomma, B. P. H. J. (2011). The role of chitin
detection in plant–pathogen interactions. Microbes Infection 13 (14–15), 1168–1176.
doi: 10.1016/j.micinf.2011.07.010

Korte, A., and Farlow, A. (2013). The advantages and limitations of trait analysis with
GWAS: a review. Plant Methods 9, 29. doi: 10.1186/1746-4811-9-29

Langmead, B., and Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2.
Nat. Methods 9 (4), 357–359. doi: 10.1038/nmeth.1923
frontiersin.org

https://doi.org/10.3389/fpls.2021.770461
https://doi.org/10.1590/s1984-70332012000400002
https://doi.org/10.1590/s1984-70332012000400002
https://doi.org/10.1093/genetics/151.4.1531
https://doi.org/10.3389/fpls.2021.768589
https://doi.org/10.1046/j.1365-313x.2002.01267.x
https://doi.org/10.1046/j.1365-313x.2002.01267.x
https://doi.org/10.1101/gr.3681406
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1038/nature02085
https://doi.org/10.1111/j.1365-313X.2009.03886.x
https://doi.org/10.1111/j.1365-313X.2009.03886.x
https://doi.org/10.1534/genetics.110.114397
https://doi.org/10.1016/j.molcel.2018.07.018
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1093/aob/mch150
https://doi.org/10.1016/j.tibs.2010.12.002
https://doi.org/10.1371/journal.pone.0090346
https://doi.org/10.1098/rspb.2016.0569
https://doi.org/10.3389/fchem.2017.00021
https://doi.org/10.1038/nbt.1883
https://doi.org/10.1534/g3.118.200435
https://doi.org/10.1016/s0163-7827(98)00014-9
https://doi.org/10.1038/nature06215
https://doi.org/10.3389/fpls.2016.00133
https://doi.org/10.1073/pnas.1121134109
https://doi.org/10.1093/bioinformatics/btu393
https://doi.org/10.1093/bioinformatics/btu393
https://doi.org/10.3389/fpls.2018.01165
https://doi.org/10.1007/s00122-020-03703-z
https://doi.org/10.1007/s00122-020-03703-z
https://doi.org/10.1093/aob/mcab101
https://doi.org/10.1093/aob/mcab101
https://doi.org/10.1111/mec.14538
https://doi.org/10.1111/j.1365-313X.2010.04457.x
https://doi.org/10.1007/s11746-006-5011-4
https://doi.org/10.1111/pce.12666
https://doi.org/10.1146/annurev.arplant.53.100201.160729
https://doi.org/10.1002/tpg2.20148
https://doi.org/10.1046/j.1365-313x.2000.00728.x
https://doi.org/10.1126/science.241.4863.346
https://doi.org/10.1071/CP13319
https://doi.org/10.1038/s41598-020-76759-y
https://doi.org/10.1038/s41598-020-76759-y
https://doi.org/10.3389/fpls.2018.01220
https://doi.org/10.3389/fpls.2021.637956
https://doi.org/10.1046/j.1365-313x.2001.01021.x
https://doi.org/10.1016/j.plipres.2006.06.002
https://doi.org/10.3389/fpls.2021.745379
https://doi.org/10.1105/tpc.017301
https://doi.org/10.1007/s40502-020-00521-9
https://doi.org/10.1007/s12374-018-0082-y
https://doi.org/10.3390/ijms18122680
https://doi.org/10.1073/pnas.0704680104
https://doi.org/10.1016/j.micinf.2011.07.010
https://doi.org/10.1186/1746-4811-9-29
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.3389/fpls.2023.1303417
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Martins et al. 10.3389/fpls.2023.1303417
Lauvergeat, V., Lacomme, C., Lacombe, E., Lasserre, E., Roby, D., and Grima-
Pettenati, J. (2001). Two cinnamoyl-CoA reductase (CCR) genes from Arabidopsis
thaliana are differentially expressed during development and in response to infection
with pathogenic bacteria. Phytochemistry 57 (7), 1187–1195. doi: 10.1016/s0031-9422
(01)00053-x

Lello, L., Avery, S. G., Tellier, L., Vazquez, A. I., de los Campos, G., and Hsu, S. D.H.
(2018). Accurate genomic prediction of human height. Genetics 210 (2), 477–497.
doi: 10.1534/genetics.118.301267.

Li, X., Yang, Y., Yao, J., Chen, G., Li, X., Zhang, Q., et al. (2009). FLEXIBLE CULM 1
encoding a cinnamyl-alcohol dehydrogenase controls culm mechanical strength in rice.
Plant Mol. Biol. 69, 685–697. doi: 10.1007/s11103-008-9448-8

Li, B., Zhang, N., Wang, Y.-G., George, A. W., Reverter, A., and Li, Y. (2018).
Genomic prediction of breeding values using a subset of SNPs identified by three
machine learning methods. Front. Genet. 9. doi: 10.3389/fgene.2018.00237

Liang, M., Chang, T., An, B., Duan, X., Du, L., Wang, X., et al. (2021). A stacking
ensemble learning framework for genomic prediction. Front. Genet. 12.
doi: 10.3389/fgene.2021.600040

Liang, M., Miao, J., Wang, X., Chang, T., An, B., Duan, X., et al. (2020). Application
of ensemble learning to genomic selection in chinese simmental beef cattle. J. Anim.
Breed. Genet. 138 (3), 291–299. doi: 10.1111/jbg.12514

Lipka, A. E., Lu, F., Cherney, J. H., Buckler, E. S., Casler, M. D., and Costich, D. E. (2014).
Accelerating the switchgrass (Panicum virgatum L.) breeding cycle using genomic selection
approaches. PloS One 9 (11), e112227. doi: 10.1371/journal.pone.0112227

Liu, C., Ma, Y., Zhao, J., Nussinov, R., Zhang, Y. C., Cheng, F., et al. (2020).
Computational network biology: data, models, and applications. Phys. Rep. 846, 1–66.
doi: 10.1016/j.physrep.2019.12.004

Lorenz, A. J., and Smith, K. P. (2015). Adding genetically distant individuals to
training populations reduces genomic prediction accuracy in barley. Crop Sci. 55 (6),
2657–2667. doi: 10.2135/cropsci2014.12.0827

Ma, W., Qiu, Z., Song, J., Li, J., Cheng, Q., Zhai, J., et al. (2018). A deep convolutional
neural network approach for predicting phenotypes from genotypes. Planta 248, 1307–
1318. doi: 10.1007/s00425-018-2976-9

Maksymiec, W. (2007). Signaling responses in plants to heavy metal stress. Acta
Physiologiae Plantarum 29 (3), 177–187. doi: 10.1007/s11738-007-0036-3

Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A., and Zdobnov, E. M. (2021).
BUSCO update: novel and streamlined workflows along with broader and deeper
phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol.
Biol. Evol. 38 (10), 4647–4654. doi: 10.1093/molbev/msab199

Martins, F. B., Moraes, A. C. L., Aono, A. H., Ferreira, R. C. U., Chiari, L., Simeão, R.
M., et al. (2021). A semi-automated SNP-based approach for contaminant
identification in Biparental polyploid populations of tropical forage grasses. Front.
Plant Sci. 12. doi: 10.3389/fpls.2021.737919

Mateescu, R. G., Garrick, D. J., and Reecy, J. M. (2017). Network analysis reveals putative
genes affecting meat quality in Angus cattle. Front. Genet. 8. doi: 10.3389/fgene.2017.00171

Matias, F. I., Alves, F. C., Meireles, K. G. X., Barrios, S. C. L., do Valle, C. B.,
Endelman, J. B., et al. (2019a). On the accuracy of genomic prediction models
considering multi-trait and allele dosage in Urochloa spp. interspecific tetraploid
hybrids. Mol. Breed. 39 (7), 1–16. doi: 10.1007/s11032-019-1002-7

Matias, F. I., Vidotti, M. S., Meireles, K. G. X., Barrios, S. C. L., do Valle, C. B., Carley,
C. A. S., et al. (2019b). Association mapping considering allele dosage: an example of
forage traits in an interspecific segmental allotetraploid Urochloa spp. panel. Crop Sci.
59, 2062–2076. doi: 10.2135/cropsci2019.03.0185

Medina, C. A., Kaur, H., Ray, I., and Yu, L.-X. (2021). Strategies to increase
prediction accuracy in genomic selection of complex traits in alfalfa (Medicago
sativa L.). Cells 10 (12), 3372. doi: 10.3390/cells10123372

Meuwissen, T. H. E., Hayes, B. J., and Goddard, M. E. (2001). Prediction of total
genetic value using genome-wide dense marker maps. Genetics 157, 1819–1829. doi:
10.1093/genetics/157.4.1819

Mikami, K., and Murata, N. (2003). Membrane fluidity and the perception of
environmental signals in cyanobacteria and plants. Prog. Lipid Res. 42 (6), 527–543.
doi: 10.1016/s0163-7827(03)00036-5

Millar, A. J. (2016). The intracellular dynamics of circadian clocks reach for the light
of ecology and evolution. Annu. Rev. Plant Biol. 67, 595–618. doi: 10.1146/annurev-
arplant-043014-115619

Mohan, M., Nair, S., Bhagwat, A., Krishna, T. G., Yano, M., Bhatia, C. R., et al. (1997).
Genome mapping, molecular markers and marker-assisted selection in crop plants.
Mol. Breed. 3 (2), 87–103. doi: 10.1023/A:1009651919792
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