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Abstract
Staphylococcus aureus is one of the agents of bovine mastitis of hardest control due to a complex pathogenesis comprising 
a variety of virulence factors, which ensures its persistence in the mammary gland, causing significant health and economic 
losses. Therefore, understanding the pathogenesis of this agent is imperative. Galleria mellonella has stood out as an inver-
tebrate animal model for the study of infectious diseases that affect several hosts. This work aimed to evaluate G. mellonella 
larvae as an experimental model for the study of virulence phenotypes in an S. aureus population isolated from bovine mas-
titis. Thirty genetically divergent S. aureus strains were chosen based on PFGE analysis. After experimental infection, larvae 
survival rates, bacterial growth in hemolymph, melanization intensity of the dorsal vessel, and histological characteristics of 
the infected tissues were evaluated. The G. mellonella model showed a clear diversity in the S. aureus pathogenicity pattern, 
allowing the differentiation of strains with virulence phenotypes ranging from high to low degrees. Histological analysis 
confirmed that the strains tested were capable of inducing the formation of nodules and melanization spots in the dorsal 
vessels of the larvae in different magnitudes. The strains 16S-717, 19C-828, and 31S-1443 presented the highest virulence 
intensity among the bacteria tested and will be used further for the generation of S. aureus mutant populations to prospect 
genetic targets aimed to develop control strategies of bovine mastitis. Altogether, our results suggest that G. mellonella is an 
attractive and low-cost animal model for characterizing virulence phenotypes of large S. aureus populations.
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Introduction

Staphylococcus aureus is responsible for multiple pathol-
ogies in humans and animals. Bovine mastitis is one of 
the most frequent and economically important diseases 
in dairy cattle due to its large economic impact on dairy 
farms and industries [1]. The losses caused by this dis-
ease are related to the drop in milk production, milk dis-
posal from animals under treatment, high drug costs, early 
replacement of cows, and eventually death. In dairy cows, 
losses result from changes in the physicochemical charac-
teristics of milk, such as reduced fat and casein, in addition 
to an increase in the somatic cell count, leading to the loss 
of dairy product yield. Mastitis is also important from the 
aspect of impaired animal welfare [2].

S. aureus is among the most common etiological agents 
of mastitis in Brazil [3–5] and worldwide [6], being 
responsible for clinical, subclinical, and chronic cases with 
occasional difficult-to-control clinical manifestations [7], 
due to the complex pathogenesis, involving multiple viru-
lence factors that favor its survival and multiplication in 
mammary gland [8]. A better understanding of the infec-
tion process by S. aureus in the udder microenvironment 
is needed in order to increase knowledge of the patho-
gen-host relationship, which will enable the development 
of more effective forms of control and prevention of the 
disease.

The severity of S. aureus infection generally depends on 
the expression of several virulence genes. At the outset, sur-
face adhesins recognize host structures, facilitating coloniza-
tion and subsequent multiplication of the microorganism [9]. 
Moreover, different enzymes (e.g., hyaluronidase, proteases, 
and nucleases), non-enzymatic activators (e.g., coagulase 
or staphylokinase), and exotoxins (e.g., cytolytic toxins, 
exfoliative toxins, leukocidins, enterotoxins, enterotoxin-
like proteins, and toxin-1 toxic shock syndrome) promote 
bacterial escape from the host immune response [10]. This 
sequential expression of virulence factors seems to be cru-
cial to the pathogenesis of mastitis caused by S. aureus [11].

Among the main virulence factors in S. aureus, the 
components of the microbial surface that recognize matrix 
adhesive molecules (MSCRAMMs) have been widely 
studied [12]. They are proteins that promote the adhesion 
of S. aureus to host tissues, including clumping factors A 
and B, encoded by the genes clfA and clfB, fibronectin-
binding proteins (fnbps), collagen-binding adhesin (cna), 
and elastin-binding protein (ebps). Some staphylococcal 
toxins weaken the host response as they degrade host cells 
and manipulate the innate and adaptive immune responses, 
which allows pathogen escape and contributes to the pro-
liferation of S. aureus, such as hemolysin (e.g., hla hlb), 
and leukotoxins (e.g., luk- ED) [13].

Studies on S. aureus virulence have been performed in 
several models, such as cell culture [14], mammary gland 
tissue (explant) [15], vertebrates, such as mice [16] and 
rabbits [17], and invertebrates, such as Drosophila mela-
nogaster [18], Tenebrio molitor and G. mellonella [19]. 
Invertebrate models are cheaper and easier to establish 
and maintain in laboratories in comparison to vertebrate 
ones. Besides these benefits, invertebrates can be reared 
on a large scale and are not subject to the same ethical 
considerations [20].

G. mellonella larvae have been widely used to study 
pathogenesis and virulence for different microbial species 
because, in addition to the aforementioned advantages, 
they allow incubation at 37 °C (ideal growth temperature 
of various pathogens) and are relatively large, facilitating 
manipulation [21]. Additionally, the innate (cellular and 
humoral) immune response of G. mellonella shares many 
similarities with the mammalian innate immune response 
and, as a consequence, can be exploited to assess the viru-
lence of microbial pathogens and produce results compara-
ble to those obtained with mammalian systems [22]. In G. 
mellonella, the cellular response is mediated by hemocytes 
and involves processes such as phagocytosis, nodulation, 
and coagulation. Humoral defenses are composed of sol-
uble effector molecules, such as antimicrobial peptides, 
complement-like proteins, and products created by proteo-
lytic cascades, such as the phenoloxidase pathway, which 
are capable of immobilizing or destroying pathogens [23, 
24]. This response can be measured and partially com-
pared to the mammalian immune response because attenu-
ated strains in mammalian models show lower virulence in 
G. mellonella and strains that cause severe infections are 
generally highly virulent for larvae [19, 25].

Several studies have evaluated G. mellonella as an 
experimental model to understand host–pathogen interac-
tions [26], pathogenic characteristics in different strains 
[19, 27, 28], and the effectiveness of antimicrobial agents 
on S. aureus isolated from human diseases [29–31]. How-
ever, few investigations have been carried out with strains 
isolated from bovine mammary gland infections [32] that 
are generally genetically different from those isolated from 
human diseases [33]. Nevertheless, studies characterizing 
the virulence of different strains of S. aureus, isolated from 
cases of mastitis in cattle in the model G. mellonella, to 
the best of our knowledge do not yet exist.

The use of an alternative animal model allows the 
screening and study of S. aureus, through mass pheno-
typing, allowing the study of virulence in large bacterial 
populations. This knowledge is indispensable for the iden-
tification of genes and regulatory elements that contribute 
to specific phenotypes and influence the host–pathogen 
relationship. Herein we proposed this approach that aimed 
to evaluate the G. mellonela model to study virulence 
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phenotypes in genetically diverse strains isolated from 
bovine mastitis.

Materials and methods

Bacterial isolates and G. mellonella larvae 
cultivation

The S. aureus isolates (n = 157) used in this study are part of 
a collection of microorganisms maintained under freezing 
(− 70 ºC). All of them were previously isolated from clini-
cal (n = 53) and subclinical mastitis (n = 104) cases from 22 
dairy cattle herds located in the Minas Gerais state Brazil, 
and their identification and partial genotypic characteriza-
tion were reported elsewhere [3].

The G. mellonella larvae were reared with an artificial 
diet at 25 °C according to Jorjao et al. [34] until the begin-
ning of the infection experiments. All larvae used were at 
the last instar and weighed from 250 to 300 mg.

Molecular characterization of the S. aureus isolates 
by pulsed‑field gel electrophoresis (PFGE)

The PFGE technique was used to evaluate the genetic diver-
sity of the S. aureus isolates using a homogeneous electric 
field device (CHEF DRII, Bio-Rad®, USA). Bacteria were 
plated on BHI (brain heart infusion) agar (Sigma-Aldrich®, 
India) and incubated for 18 h at 37 °C. Hereafter, a colony of 
each isolate was transferred to tubes containing 3 ml of BHI 
broth (Sigma-Aldrich®, India) and incubated at 37 °C for 20 
to 24 h. The pellets were obtained by centrifuging 650 μl of 
the cultures at 12,000 × g for three minutes and suspended 
in 350 μl of TE (10 mM Tris–HCl, 5 mM EDTA, pH 8.0). A 
350-μl aliquot of each isolate suspension was added to 350 µl 
of 2% low-melting-point agarose (Bio-Rad®, USA) and kept 
melted at 55 °C until use; that mixture was used to fill the 
wells. After solidification, the plugs were incubated for at 
least 4 h at 37 °C in EC buffer (6 mM Tris–HCl, 1-M NaCl, 
100 mM EDTA, 0.5% Brij-L23, 0.2% sodium deoxycholate, 
0.5% lauroylsarcosine) and lysostaphin (1 mg/ml). The plugs 
were then washed five times in TE (10 mM Tris–HCl, 5 mM 
EDTA, pH 8.0) and stored in 3 mL of TE at 4 °C until use. 
A 3-mm slice from each plug was incubated in 100 μl of 
restriction endonuclease buffer (Sigma-Aldrich®, India) at 
37 °C for 30 min. The buffer was discarded, and the plug 
was digested in 100 μl of restriction endonuclease solution 
containing 20 U of SmaI enzyme (Sigma-Aldrich®, India) 
for 24 h at 37 °C.

After restriction with SmaI, the plugs were placed in 
the wells of a 1.5% agarose gel in 0.5 × TBE (0.9 M Tris 
Base, 0.9 M Boric Acid, 1 mM EDTA pH 8.0) at 14 °C. The 
Lambda PFGE Marker (New England Biolabs®, USA) was 

included as a molecular size marker. The gel was run at 6 V/
cm for 23 h with an initial pulse of 5 s and a final pulse of 
40 s, and then stained with ethidium bromide (50 μg/mL) 
and photographed under ultraviolet light on an L-Pix Chemi 
Photo Digitizer (Loccus Biotecnologia®, Brazil). The band 
pattern was analyzed visually and using the software Bionu-
merics version 7.5 (Applied Maths®, Belgium). The bands 
were automatically assigned by the computer and manually 
corrected after the original images were visually checked 
and evaluated. Cluster analysis was performed based on 
the Dice coefficient. By the unweighted pair group method 
with arithmetic mean (UPGMA), a minimum spanning tree 
(MST) was generated to evaluate the association of the clus-
ters of isolates and virulence profiles.

Evaluation of virulence phenotypes of S. aureus 
strains using G. mellonella larvae model

In order to select a subset of strains to evaluate the viru-
lence in the G. mellonella model, preliminary tests were 
performed in a pilot experiment using infective doses rang-
ing from  105 to  108 S. aureus CFU/larva for 30 strains previ-
ously identified by PFGE as genetically distinct. In this first 
step, 40 larvae were used to assess each strain (10 larvae 
per dilution) in the same conditions as described before in 
this study. This screening enabled us to identify 10 isolates 
presumptively presenting divergent virulence phenotypes 
and define the bacterial dose (S. aureus CFU/larva) to be 
inoculated in the subsequent experiments.

For a full examination of the G. mellonella model, the lar-
vae experimental infection was carried out according to the 
conditions established in the present study. The following 
parameters were evaluated: larvae survival up to 72 h post-
inoculation; development of S. aureus in the hemolymph at 
1, 2, 4, 18, and 24 h after infection; immunological response 
of G. mellonella through macroscopic visualization of the 
melanization intensity of the dorsal vessel; and histological 
examination of larvae from each test 4 h after the experi-
mental infection.

Preparation of S. aureus suspension and infections

The S. aureus strains were cultured in blood agar and incu-
bated at 37 °C for 24 h, and then isolated colonies were 
transferred to 5 mL of Mueller Hinton broth (Himedia® 
France) until reaching an OD (optical density) of 0.1 
at 620 nm. Afterwards, they were incubated in the same 
medium at 37 °C for 4 h to reach the exponential growth 
phase. Cultures (1 mL) were washed three times with sterile 
phosphate-buffered saline (PBS), and centrifugations were 
performed at 12,000 × g for 3 min between washes. The sus-
pensions OD were measured to ensure inoculation of  106 S. 
aureus CFU/larva. A 10-μL aliquot containing  106 CFU of 
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each isolate was injected into the last left proleg of the larvae 
using BD insulin syringes (BD-Becton Dickinson®, USA). 
Groups of uninoculated and PBS-alone inoculated larvae 
were used as controls. Larvae inoculated with S. aureus 
ATCC29213, already described elsewhere as quite virulent 
for G. mellonella (Peleg et al. 2009), were used as controls. 
After inoculation, larval feeding was discontinued.

In all experiments, there was a positive control (larvae 
infected with S. aureus ATCC-29213); negative controls 
(uninoculated and PBS inoculated larvae); and 10 tests in 
which larvae were inoculated with S. aureus strains isolated 
from mastitis cases (4S-158, 16S-717, 16S-721, 17S-762, 
31S-1443, 36S-1698, 12C-525, 13C-561, 19C-828 and 
23C-999). After inoculations, the larvae were stored in Petri 
dishes lined with filter paper, protected from light, and incu-
bated at 37 °C. The number of larvae used, the incubation 
time, and the periods of observation differed among the dif-
ferent experiments performed, and are described in the next 
sections. In all experimental infection tests, at the end of the 
inoculations, 50 μl of the inoculum was plated on Mueller 
Hinton Agar (Himedia® France) in triplicate for counting 
and confirmation of the inoculated dose  (106 CFU/larva), by 
the microdrop technique.

Tests of larvae survival

After inoculations, groups of 10 larvae in each test were 
placed in Petri dishes lined with filter paper. The Petri dishes 
were also protected from light and incubated at 37 °C for 
72 h. The Petri dishes were visually inspected every 24 h, 
dead larvae were removed, and the results were recorded. 
Larvae were considered dead if they did not exhibit any 
movement in response to the physical stimulus according to 
Pereira et al. [35]. The results were analyzed by SigmaPlot 
software version 14.0 (Systat Software, Inc.®, USA) using 
the Kaplan–Meier method. Differences in survival rates were 
calculated using the log-rank test, and multiple comparisons 
were performed using the Log-rank test, with a significance 
level of 5%. These analyzes enabled us to define isolates 
of high, medium, and low virulence and to establish sur-
vival curves. Experiments were performed in biological and 
experimental triplicates (n = 10 larvae per replicate, totaling 
90 larvae per test).

Quantification of S. aureus in larvae hemolymph

The quantification of S. aureus in the larvae was performed 
at 1, 2, 4, 18, and 24 h after infection for each of the tests. 
Before hemolymph harvest, the larvae were kept for 5 min 
in ice, 5 min in 70% alcohol, and 5 min in sterile PBS. A 
puncture was performed on the posterior part of the larva, 
close to the last prolegs, with the aid of a needle. Slight 
compression was applied to the larval body, and 20 μl of 

hemolymph was collected from each larva using an auto-
matic pipette. For each of the tests, samples from 3 larvae 
were collected at each time point. The collected hemolymph 
(20 μl) was serially diluted until  10−8, and an aliquot of each 
dilution was plated on mannitol salt agar (Kasvi®, Brazil), 
incubated at 37 °C for 24 h. The CFU count was determined 
using the microdrop technique, determining the number of 
bacteria recovered at each time point in a volume of 10 μl 
(same injected volume). The results were analyzed in Sisvar 
Software (UFLA, Brazil) using Tukey’s test, in which a p 
value < 0.05 was considered statistically significant.

Evaluation of the intensity of larvae dorsal 
melanization and histological exams

A group of 5 larvae for each test was kept in a bacteriologi-
cal incubator at 37 °C for 4 h, following the methodology 
described before in this study. After this period, the melani-
zation of the dorsal vessel was evaluated macroscopically 
and recorded photographically.

After photographing, 3 larvae in each test were sectioned 
in the posterior portion of the body by using scissors and 
fixed in PBS solution containing 10% formaldehyde to pre-
pare the histological slides. The samples were dehydrated in 
an ethanol series (70–100%) and embedded in paraffin. The 
blocks were sectioned (3–4 mm) in a microtome (Leica Bio-
systems®), and the sections were mounted on microscope 
slides and stained with hematoxylin and eosin. The forma-
tion of nodules and melanization regions in the fat bodies 
and the pericardial cells were analyzed for the different iso-
lates tested, and the integrity of the tissues was evaluated in 
the uninoculated and PBS-inoculated groups. Images were 
recorded under light microscopy.

Screening detection of virulence genes

The presence of virulence genes was evaluated by PCR in 
individual reactions of 25 ul according to conditions and 
primers indicated in Table 1. Ster et al. [36] (genes clfA, clfB, 
fnbpA, and hla), Tristan et al. [37] (ebps gene), and Jarraud 
et al. [38] (luk-ED gene) were used with some adaptations.

Individual reactions were performed for each of the target 
genes and contained 1X buffer, 0.25 mM of each dNTP, 
2.5 mM  MgCl2, 0.25 mM of each primer, 1.5 U Taq pol-
ymerase, and 50 ng of template DNA. Amplification was 
performed in a GeneAmp® PCR System 9700 thermocy-
cler (Applied Biosystems®, USA) programmed for initial 
denaturation at 95 °C for 5 min, followed by 35 cycles at 
95 °C for 30 s, 53 °C for 30 s, and 72 °C for 30 s, with a final 
extension at 72 °C for 5 min. The amplified DNA fragments 
were visualized after electrophoresis in agarose gel (1.5%, 
w/v), and stained with ethidium bromide solution (0.005%, 
w/v). A 100-bp DNA ladder (Ludwig®, Brazil) was used as 



893Brazilian Journal of Microbiology (2024) 55:889–900 

1 3

a size marker. The images were recorded in an L-Pix Chemi 
Photo Digitizer (Loccus Biotecnologia®, Brazil).

Correlation analysis

The correlation between the presence of virulence genes and 
virulence level in the G. mellonella model was assessed for 
all strains together. Pearson’s correlation coefficients were 
calculated with 95% confidence intervals, with the software 
R, version 4.1.1.

Results

Screening of S. aureus strains

Based on DNA macro-restriction fragments by PFGE analy-
sis, genetically distinct S. aureus strains (n = 30) were chosen 
from 157 isolates for the pilot experiment with G. mellonella 
larvae. Then, strains (n = 10) belonging to 9 herds with dif-
ferent virulence phenotypes were selected for the subsequent 
steps of the study (Fig. 1).

Characterization of S. aureus virulence in G. 
mellonella model

Pilot tests of larvae survival analyzes indicated that the best 
infective dose was  106 CFU/larva. Figure 2 shows the lar-
val survival percentage at 24, 48, and 72 h after infection. 
The lethality rates of the strains tested showed variations in 
larval when  106 CFU/larva was used. Among the strains, 
16S-717 caused the highest number of larval deaths 24 h 
after infection and was considered the most virulent. How-
ever, at the end of the experiment (72 h post-inoculation) 
there was no statistical difference (p > 0.05) in the lethality 
rate compared to the strains 16S-717, 19C-828, 31S-1443, 
17S-762, 4S-158, and ATCC-29213, which were classified 
in the high virulence group. The strains 12C-525, 36S-1698, 
13C-561, and 23C-999 presented a medium lethality rate; 
however, did not differ statistically (p > 0.05), and comprised 
the moderate virulence group. On the other hand, strain 16S-
721 had the lowest lethality rate, statistically different from 
the others (p < 0.05), being considered the isolate with the 
lowest virulence.

The ability of strains to infect, survive, and multiply in 
G. mellonella larvae was confirmed by determining the 

Table 1  Primers used in PCR 
tests to search for S. aureus 
virulence genes

Genes encoding clumping factor proteins (clfAandclfB), fibronectin−binding protein (fnbpA), toxins 
(hlaandluk−ED), and elastin−binding protein (ebps)

Target genes Products size Sequence (5′-3′) References

clfA 104 pb F: TGC AAC TAC GGA AGA AAC GCCG 
R: CCT CCG CAT TTG TAT TGC TTG ATT G

Ster et al. (2005)

clfB 194 pb F: TGC AAG TGC AGA TTC CGA AAA AAA C
R: CCG TCG GTT GAG GTG TTT CAT TTG 

Ster et al. (2005)

fnBPA 132 pb F: CGA CAC AAC CTC AAG ACA ATA GCG G
R: CGT GGC TTA CTT TCT GAT GCC GTT C

Ster et al. (2005)

hla 195 pb F: GCG AAG AAG GTG CTA ACA AAA GTG G
R: CGC CAA TTT TTC CTG TAT CAT CAC C

Ster et al. (2005)

ebps 186 pb F: CAT CCA GAA CCA ATC GAA GAC 
R: CTT AAC AGT TAC ATC ATC ATG TTT ATC TTT G

Tristan et al. (2003)

luk-ED 269 pb F: TGA AAA AGG TTC AAA GTT GAT ACG AG
R: TGT ATT CGA TAG CAA AAG CAG TGC A

Jarraud et al. (2002)

Fig. 1  Dendrogram by UPGMA 
clustering of PFGE fingerprints 
for S. aureus strains used in the 
G. mellonella infection. Cluster-
ing using the Dice coefficient 
generated a minimum spanning 
tree (MST)
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CFU/10 μl (same inoculated volume) in larval hemolymph 
at different post-infection times (Fig. 3). The only statisti-
cally significant difference was observed for isolate 16S-721 
at 24 h, which at this time did not differ from the control and 
PBS tests (p < 0.05). There was a decrease in the number 
of bacteria recovered at the end of the observation period 
for tests in larvae challenged with ATCC-29213, 19C-828, 
16S-717, and 13C-561. Therefore, the bacteria recovered in 
greater quantities at 18 and 24 h coincide with the strains 
identified with high virulence in the survival analysis.

The larvae inoculated with different isolates presented 
different melanization levels 4 h after experimental infec-
tion, and melanization spots in the dorsal vessel were 
observed in all tests, except in control and PBS (Fig. 4). 

Melanization was observed more intensively among iso-
lates exhibiting higher virulence in the larvae survival 
analysis: 16S-717, 19C-828, 31S-1443, ATCC-29213, 
17S-762, and 4S-158.

Histological analysis of infected tissue demonstrated 
that S. aureus strains were able to activate the cellular and 
humoral immune response in G. mellonella larvae, lead-
ing to the formation of nodules with adherent hemocytes 
and melanization spots. Histological evaluation of the lar-
vae inoculated with PBS (Fig. 5a) revealed the integrity 
of tissues, with no melanization of the fat body or peri-
cardial cells. On the other hand, the histology of the lar-
vae infected with 12C-525 (Fig. 5b) and 19C-828 strains 
(Fig. 5c) pointed out immune response, represented by 
regions of melanization, nodule formation, and circulating 
hemocytes near the melanization spots.

Screening of virulence genes

A PCR to search for S. aureus virulence factors encoding 
genes into the genome of the isolates revealed 2 virulence 
profiles, which varied only in the presence or absence of the 
ebps gene. Strains 16S-721, 12C-525, 23C-999, and 36S-
1698 were found to belong to the profile one, harboring the 
genes clfA, clfB, fnbpA, hla, luk-ED, and the isolates 16S-
717, 19C-828, 31S-1443, 17S-762, 4S-158, and 13C-561 
belonged to profile two, containing the genes clfA, clfB, 
fnbpA, hla, luk-ED and ebps. The strains belonging to pro-
file one were genetically more related based on the similarity 
analysis of PFGE fingerprints (Fig. 6).

The number of virulence genes is positively correlated 
with the level of virulence in the G. mellonella model 
(p = 0.005446). Considering that the presence of the ebps 
gene was the only variable found in the profile of the viru-
lence genes of the strains, it is possible to affirm that the 
presence of this gene is positively correlated with the greater 
virulence of strains in the G. mellonella model (Table 2).

Fig. 2  Kaplan–Meier survival curves of G. mellonella larvae at 24, 
48, and 72  h after infections with S. aureus strains (Log-rank test–
p < 0.05). G. mellonella larvae were inoculated with 10  µl contain-
ing 10.6 CFU of S. aureus strains isolated from bovine mastitis and 
incubated at 37 °C. Negative controls: uninoculated (CONTROL) and 
PBS. Positive control: ATCC-29213. The difference between the high 
(reddish curves), moderated (yellowish curves) and low virulence 
(greenish curves) groups were strongly supported with p = 0.000

Fig. 3  S. aureus counts in 
hemolymph of G. mellonella 
larvae at 1, 2, 4, 18, and 24 h 
after infection. G. mellonella 
larvae were inoculated with 
10 µl containing 10.6 CFU of 
S. aureus strains isolated from 
bovine mastitis and incubated at 
37 °C. Negative controls: unin-
oculated (CONTROL) and PBS. 
Positive control: ATCC-29213
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Discussion

The use of invertebrate models for the study of in vivo 
virulence in several pathogens has been of interest to the 
scientific community. The G. mellonella larvae have been 
established as a screening model, allowing the study of 
pathogenesis by monitoring larval survival, bacterial count 
in hemolymph, immune response of infected larvae, and 
histological data [20]. To the best of our knowledge, this 
study describes for the first time the use of G. mellonella 
larva as an alternative host for studying virulence in 
genetically different S. aureus strains isolated from bovine 
mastitis.

The S. aureus population (n = 10) used in the last step of 
this study comprised 10 different pulsotypes, as determined 
by PFGE analysis. They were sufficient to identify a varia-
tion of virulence phenotypes, enabling the identification of 
strains with high (16S-717, 19C-828, 31S-1443, 17S-762, 
and 4S-158), moderated (12C-525, 36S-1698, 13C-561, and 
23C-999) and low (16S-721) virulence in G. mellonella, 
mainly by the larvae survival analysis. Indeed, the use of 
ATCC-29213, previously described as highly virulent for 
G. mellonella [25], as a positive control, confirms the patho-
genic potential of the strains evaluated in this work, since 
the strains belonging to the high virulence group, which 
includes ATCC-29213, did not differ statistically (p > 0.05) 
from each other.

Fig. 4  Melanization of the 
dorsal vessel of G. mellonella 
larvae 4 h after the experi-
mental infection by S. aureus 
strains isolated from mastitis 
cases. Larvae were injected 
with 10-μL aliquot containing 
10.6 CFU of each strain into the 
last left proleg. High virulence 
(HV), moderate virulence 
(MV), low virulence (LV), and 
control (C)

Fig. 5  Cellular and humoral immune responses of G. mellonella lar-
vae 4 h after infection. a PBS group with healthy tissues, fatty body 
(FB), and pericardial cells (PC). b Group 12C-525 (moderated viru-
lence) with the formation of nodules (N) and regions of low-intensity 
melanization, there is no melanization in the fatty body. c Group 19C-

828 (high virulence) with intense melanization regions, melanization 
points in the pericardial cells, mature nodules with melanization in 
the center, and melanization points in the fatty body. Black arrows 
indicate bacterial cells 10 µm bars
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Regarding staphylococci counts in larvae hemolymph, the 
initial decrease in the number of recovered bacteria occurred 
for all strains because the larval immune response is more 
intense in the first hours after infection, hindering bacte-
rial multiplication [23]. Another aspect that may explain 
the drop in the initial count is the dilution of the inoculum 
in the total larval hemolymph. The bacterial recovery rate 
increased after the first 4 h after inoculation, indicating that 
S. aureus can adapt to the new host, possibly due to the 

expression of important virulence factors in the host/patho-
gen relationship, resisting the immune response of the larvae 
and multiplying itself. However, at the end of the period 
evaluated (24 h after infection), the recovery rate decreased 
for some strains (ATCC-29213, 19C-828, and 16S-717) of 
the high-virulence group. This may be a consequence of 
the intense melanization of the larvae, as the melanin bar-
rier formed around the invading microorganisms, in addi-
tion to having toxic effects, immobilizes the microorganism 
and prevents it from reaching the nutrients necessary for its 
development [39].

In turn, for 13C-561, which showed moderated viru-
lence, this observation must be due to the effectiveness of 
the immune response of the larva and the inability of these 
bacteria to continue multiplying in the face of host defenses.

G. mellonella, like other invertebrates, does not have an 
adaptive immune system, although its innate system shares 
many similarities with that of mammals. It includes a cel-
lular response in which hemocytes (immune cells close to 
mammalian neutrophils) are responsible for cellular events 
and a humoral response with soluble effector molecules 
[20]. G. mellonella has a melanin-phenoloxidase system, a 
component of its humoral immune system, responsible for 
hemolymph coagulation, which can be observed by melani-
zation and assists in the elimination of bacterial pathogens 
[40, 41]. In general, bacterial strains that were more virulent 
for larvae in survival analysis led to higher levels of melani-
zation [35, 42]. As observed by Pereira and collaborators 
(2015), melanization began in the dorsal vessel region of 
the larva, and strains of high and moderate virulence provide 
more intense melanization in this region than those of low 
virulence (Fig. 4).

Histological analysis showed that all strains tested, 
including ATCC-29213, had the ability to activate the lar-
val immune system, leading to the formation of nodules 
and melanization regions in different tissues. The most vir-
ulent strains, such as 19C-828, led to an intense immune 
response, characterized by greater melanization of the dor-
sal vessel, the presence of mature nodules, melanization 

Fig. 6  PFGE minimum spanning tree (MST) of S. aureus used in G. 
mellonella larvae virulence study. The colors green and red represent 
virulence profiles one and two, respectively. The MST displays the 
highest overall score and reliability was calculated using UPGMA 
(unweighted pair method using arithmetic averages) associated with 
the priority rule and resampling permutation

Table 2  Correlation between 
the virulence in G. mellonella 
and the virulence gene profile of 
S. aureus strains

Strains Virulence genes profile In vivo virulence Correlation coefficient p value

16S-721 clfA, clfB, fnbpA, hla, luk-ED Low 0.8000947 0.005446
12C-525 clfA, clfB, fnbpA, hla, luk-ED Moderate
23C-999 clfA, clfB, fnbpA, hla, luk-ED Moderate
36S-1698 clfA, clfB, fnbpA, hla, luk-ED Moderate
16S-717 clfA, clfB, fnbpA, hla, luk-ED, ebps High
19C-828 clfA, clfB, fnbpA, hla, luk-ED, ebps High
31S-1443 clfA, clfB, fnbpA, hla, luk-ED, ebps High
17S-762 clfA, clfB, fnbpA, hla, luk-ED, ebps High
4S-158 clfA, clfB, fnbpA, hla, luk-ED, ebps High
13C-561 clfA, clfB, fnbpA, hla, luk-ED, ebps Moderate
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spots close to pericardial cells, and melanization spots in 
the fat bodies. Less virulent strains also demonstrated the 
ability to activate the immune system, with the formation 
of nodules and melanization spots on a smaller scale.

The larvae survival rates, bacteria quantification in the 
hemolymph, and melanization 4 h after infection showed 
that the isolates with high virulence had a greater ability to 
multiply in larval tissues, being recovered in larger quan-
tities 18 and 24 h later, resulting in greater melanization 
of the larval tissues. The results show that the parameters 
used in this study were efficient in evaluating the virulence 
of S. aureus strains from bovine mastitis by G. mellonella 
model.

Regarding the screening of virulence genes by PCR, the 
results identified 2 virulence profiles (1 and 2), which dif-
fered only with respect to the presence of the ebps gene, 
which encodes elastin-binding protein, and the profile 2 
comprises strains that possessed this gene. The group of 
high virulence strains was composed only of profile 2, while 
among those with moderate and low virulence; only 13C-
561 belonged to this profile. A positive correlation was 
observed (p = 0.005446) between the presence of the ebps 
gene and the virulence of staphylococci strains isolated 
from bovine mastitis. However, further investigations must 
be carried out to confirm the importance of this gene in the 
pathogenesis of the strains studied in G. mellonella larvae, 
given the variety of other virulence determinants that may 
be present in S. aureus [2].

The ebps gene has been detected in S. aureus strains from 
humans with endocarditis and osteomyelitis [37]. In cattle, 
previous studies reported the high presence of this gene in 
subclinical mastitis staphylococcal isolates from China, Iran, 
and Poland [43–45 respectively]  and recent genomic stud-
ies using data from the National Center for Biotechnology 
Information database (NCBI) confirmed the high occurrence 
of this gene in clinical and subclinical mastitis isolates from 
several countries, including Brazil [46, 47]. The presence 
of ebps gene in bovine mastitis isolates is attributed to the 
fact that it mediates binding to surface proteins or soluble 
elastin peptides in mammary gland cells, and its importance 
is related to the first step of S. aureus infection: binding to 
the host [46].

In this study, the frequency of 6 virulence genes, 4 of 
them belonging to the virulence factors MSCRAMMs (clfA, 
clfB, fnbpA, and ebps) and 2 related to toxins activity (hla 
and luk-ED) were evaluated, which allowed the clusteriza-
tion of virulence genotypes. Notably, the S. aureus strains 
studied were originally associated with intramammary infec-
tions in cattle, and therefore, the virulence determinants 
evaluated herein could be more relevant for infection in the 
mammary gland of this species [9, 48]. In fact, studies ana-
lyzing bovine and human isolates have shown that although 
there are common features between strains of both species, 

there are predominant genotypes and combinations of viru-
lence genes for each host [33, 49].

It is not possible completely to extrapolate the results 
obtained in larvae to those expected in the mammary gland; 
nevertheless, other studies applying this model to inquire 
about S. aureus virulence and pathogenesis have shown a 
good correlation between G. mellonella and mammalian 
models [22]. The work performed by Peleg et al. [25] stands 
out, in which an association between virulence in larvae and 
virulence in a mammal model (mouse) was demonstrated. 
In that study, the authors used a knockout strain for the agr 
gene, a virulence regulator that was already shown to be 
important in the infection of several hosts. When comparing 
the virulence caused by the mutant strain and the wild strain, 
it was evident that the mutant strain caused lower lethality 
than the wild strain, both in G. mellonella and in mice.

A study conducted by Sharma-Kuinkel et al. [19] reaf-
firmed the association between S. aureus virulence results 
in mice and in G. mellonella. In both models, there was an 
increase in survival of the hosts infected by clonal complex 
30 strains when compared to other strains used in the same 
experiment. In addition to the use of mice and larvae, the 
study evaluated the molecular characteristics of the strains 
through genome and transcriptome sequence analyses, show-
ing that pathogenicity traits are related to the genomic profile 
and suggested that specific S. aureus genotypes are related 
to different types of infection [19].

A recent study reported a strong interaction of S. aureus 
strains with the humoral and cellular immune response of 
G. mellonella: the infection in the larvae resulted in nodule 
formation in insects with similar structures to those found 
in human abscesses [26]. This result reveals that S. aureus 
virulence factors are recognized by the larval immune sys-
tem, and its elimination occurs through mechanisms similar 
to those of its natural mammalian host [12].

To date, there are no comparative studies involving 
bovines and invertebrate models to evaluate virulence 
for mastitis pathogens. A previous study using the G. 
mellonella model to test the virulence of S. aureus from 
bovine mastitis was performed by Silva [50], but only 2 
genetically similar strains were used. The present study 
was the first to use G. mellonella larvae to evaluate a vari-
ety of molecularly characterized staphylococci strains that 
cause bovine mastitis. The results indicate a diversity of 
genotypes and phenotypes in the studied population, con-
firming the genetic diversity and complexity of the patho-
genesis of mastitis caused by S. aureus. Indeed, the course 
of the disease depends on the pathogen and host features, 
especially regarding the intensity of the immune response. 
The mammary gland has a complex innate and adaptive 
response that leads to defense against invading organ-
isms and prevents damage to host tissues, which may be 
partially associated with the immunity that G. mellonella 
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larvae triggered in response to infection, showing that its 
use may be interesting in the study of pathogens that cause 
mastitis.

As future prospects, the use of an alternative animal 
model also allows the study of large populations of S. 
aureus, as well as the screening of attenuated mutants by 
random mutagenesis, which is a powerful genetic tool for the 
identification of genes and regulatory elements that contrib-
ute to specific phenotypes [51]. In this scenario, the adoption 
of invertebrate models for virulence studies brings benefits, 
such as cost and time reduction, due to the shorter life cycle 
in relation to mammalian models (the cow for the study of 
the pathogenesis of mastitis, for example), greater/immu-
nological uniformity of the animal due to greater control of 
environmental conditions, and mainly decreases the use of 
vertebrate animals that have ethical restrictions. Since these 
strains of S. aureus are genetically distinct, a broader charac-
terization of their genomes (genomic sequencing, for exam-
ple) would be interesting to better understand the genetic 
background of virulence in this bacterial population and to 
prospect genetic targets aimed to develop control strategies 
of bovine mastitis. Omics tools would also allow compari-
sons of these strains with others used in different studies.

Conclusion

Our study showed that G. mellonella larvae constitute a 
practical and attractive model to evaluate virulence phe-
notypes in S. aureus strains from bovine mastitis, allowing 
for the distinction of more and less virulent strains. This 
knowledge will allow identifying key factors for patho-
genesis in larvae, which may help in understanding the S. 
aureus host–pathogen interaction.
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