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Abstract: Artisanal cheeses are prepared using traditional methods with territorial, regional and
cultural linkages. In Brazil, there is a great diversity of artisanal cheeses (BAC), which have historical,
socioeconomic and cultural importance. The diversity of the BAC between producing regions is due
to the different compositions of raw milk, the steps involved in the process and the maturation time.
The crucial step for cheese differentiation is the non-addition of starter cultures, i.e., spontaneous
fermentation, which relies on the indigenous microbiota present in the raw material or from the
environment. Therefore, each BAC-producing region has a characteristic endogenous microbiota,
composed mainly of lactic acid bacteria (LAB). These bacteria are responsible for the technological,
sensory and safety characteristics of the BAC. In this review, the biotechnological applications of the
LAB isolated from different BAC were evidenced, including proteolytic, lipolytic, antimicrobial and
probiotic activities. In addition, challenges and opportunities in this field are highlighted, because
there are knowledge gaps related to artisanal cheese-producing regions, as well as the biotechnological
potential. Thus, this review may provide new insights into the biotechnological applications of LAB
and guide further research for the cheese-making process.

Keywords: traditional foods; fermentation; bioprospecting; biotechnology

1. Introduction

Lactic acid bacteria (LAB) are a diverse group of Gram-positive bacteria that produce
lactic acid as the main fermentation product of the carbohydrate metabolism. The term
“LAB” is somewhat ambiguous and is often used to refer to bacteria applied in the produc-
tion of fermented foods [1]. These include bacteria with high G+C (Bifidobacterium) and
low G+C content (Firmicute such as Lactobacillus, Lactococcus and Streptococcus). They are
acid-tolerant, meso-aerophilic, not mobile or spore-forming and either rod-shaped (bacilli)
or spherical (cocci) [2]. The term LAB has a rather positive connotation, containing bacteria
generally considered safe for human consumption, although some strains of enterococci
raise concern due to the possible presence of virulence factors and the potential transfer of
antibiotic resistance.

LAB are widely spread in the environment and play an important role in fermentation
processes. They are employed in the production of pickles, sauerkraut, fermented meats,
breads and especially dairy products [3]. Cheese making involves a process of fermentation
by LAB. During this process, milk is coagulated by adding rennet or an acid. The acid may
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be produced by the fermentation of lactose by LAB. Artisanal cheeses are produced by
indigenous LAB present in the raw material or from the environment [4]. For all processes,
LAB are important for acidification and the ripening process. In addition, they produce
key metabolites with antimicrobial activity, including organic acids, ethanol, hydrogen
peroxide, diacetyl, CO2 and bacteriocins [5,6].

In recent years, Brazilian cheeses have been recognized for their quality in several
awards, both at national [7] and international [8] levels. In general, the production of
Brazilian artisanal cheeses (BAC) involves the use of raw milk and an endogenous ferment
consisting of the whey collected the day before, which can be named according to the region,
such as “pingo” for Artisanal Minas Cheeses (AMC), the most famous in the country, or
“repique” for Porungo cheese, produced in São Paulo state. BAC produced with raw milk
must be ripened in accordance with specific legislation in minimum periods in order to
guarantee its safety [9,10].

Several studies have demonstrated the diversity of LAB in BAC, with emphasis on
Lactobacillus, Lactococcus, Enterococcus, Weissella, Pediococcus and Leuconostoc genera [11–13].
Different biotechnological applications of LAB isolated from BAC were detected, including
probiotic potential [11]; diacetyl [14] and exopolysaccharides (EPS) production [14]; and
antimicrobial [5], proteolytic [15] and lipolytic activities [14]. However, there is a lack
of knowledge about the biotechnological potential of LAB isolated from BAC. In this
review, we present the main gaps detected, indicating the under-investigated artisanal
cheese-producing regions, the opportunities for biotechnological exploration, as well as the
need to organize a collection of LAB typical of BAC for the purpose of biotechnological
research and exploitation. With an ultimate goal, this review provides new insights into
the industrial applications of LAB isolated from BAC.

2. Brazilian Artisanal Cheeses (BAC)

In Brazil, there is a great diversity of artisanal cheeses with historical, socioeconomic
and cultural importance. In general, cheese production takes place on small farms and
includes raw milk and traditional methods, which has been transmitted over hundreds of
years by generations of cheesemakers [16,17]. BAC are produced in different geographic
regions (Figure 1), such as Marajó cheese in the north; Coalho and Manteiga cheeses in the
northeast; Caipira cheese in the central region; Colonial, Serrano, KochKäse and Käschmier
in the south; and in the southeast, Artisanal Minas Cheese (AMC), Cabacinha, Parmesan-
type cheeses (Alagoa, Vale do Suaçuí and Mantiqueira de Minas), Porungo and Requeijão
Moreno [4].

Minas Gerais state is responsible for half of all cheese produced in the country, whose
importance is reinforced by the existence of several producing regions. Among them, AMC
production is responsible for 50% of the national production [4]. It is produced in the
micro-regions of Araxá, Campo das Vertentes, Canastra, Cerrado, Serra do Salitre, Serro,
Triângulo Mineiro and, more recently, Serras do Ibitipoca and Entre Serras (Figure 1) [18,19].
The AMC production method has even been recognized as Brazilian intangible heritage.
Its production steps consist of milking, filtration, the addition of rennet and endogenous
ferment, coagulation, curd cutting, draining, molding, pressing, dry salting and ripen-
ing [20]. Its quality has been reinforced by several awards; in 2021, for example, Brazil
was one of the leading countries in the ranking of the most famous world cheese contest,
winning 57 medals; 4 of the 5 medals in the “super gold” modality were won by cheeses
produced in Minas Gerais state [21]. In addition to the socio-cultural relevance of AMC, it
has economic importance, representing the main source of income for thousands of rural
producer families [22].
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3. LAB and Food Industry

LAB produce lactic acid as the main fermentation product, generated from two fer-
mentative metabolic pathways: homofermentative and heterofermentative. In cheese
making, both LAB metabolisms are reported. Homofermentative LAB includes Enterococ-
cus, Lactococcus, Pediococcus, Weissella and Streptococcus which produce lactic acid as an end
metabolite by Pentose Phosphate or the Embden-Meyerhof-Parnas pathway. Heterofer-
mentative LAB includes Leuconosctoc and Oenococcus which produce several other products
in addition to lactic acid, such as ethanol, acetic acid and CO2, from the conversion of
lactose via the 6-P-gluconate/phosphoketolase pathway. Finally, Lactobacillus includes both
homofermentative and heterofermentative species [23–25].

Streptococcus thermophilus, Lactococcus lactis and many lactobacilli grow in the presence
of a maximum of 2% or eventually 4% of salt, in addition to tolerating environments
with a low pH. LAB can also produce several types of glycolytic, lipolytic and proteolytic
enzymes. These characteristics reinforce their importance for different applications in the
food industry [26,27]. In addition, LAB contribute to the sensory development of various
foods, especially flavor (as they produce volatile compounds) and texture (improved by
the production of exopolysaccharides). The safety history of LAB contributes to the GRAS
(Generally Recognized As Safe) or QPS (Qualified Assumption of Safety) status, enabling
its use in food, either as starter cultures or probiotic strains [28]. For fermented foods
produced from previously sanitized or pasteurized raw materials, the use of a LAB starter
culture is necessary [27]. In addition, there are also non-starter LAB (NSLAB) that are
especially important for cheese ripening, for example [26].

In recent years, several studies have explored the potential of LAB to be used as
live vectors for in situ synthesis, i.e., the production and delivery of biomolecules at their
site of use/application, without removing or transporting them to another site. This is
only possible due to the GRAS status of the LAB strains. Another path consists of the
direct application of compounds obtained by ex situ synthesis, which means applying
the compounds in a place or environment outside their place of use or application [29].
However, in situ synthesis is advantageous as it allows the use of LAB strains instead
of purified compounds, enabling the development of polyfunctional cultures, as well as
reducing the costs of downstream isolation and purification steps. This strategy may
also be better accepted by consumers, because purified compounds are considered food
additives [30].

Recent studies have evaluated the use of in situ LAB for the synthesis of gamma-
aminobutyric acid (GABA) from L-glutamate—an amino acid released during milk fer-
mentation. This non-essential amino acid plays an important role in the central nervous
system as an inhibitory neurotransmitter. Its properties include antidepressant, anxiolytic
and antihypertensive activity, as well as the ability to regulate hormone secretion [6]. The
production of GABA by LAB appears to be directly related to the acid stress response; thus,
LAB strains able to produce GABA could be employed for functional purposes, especially
in foods with reduced pH values [31]. Challenges related to the use of LAB in situ include
its ability to resist certain types of stress, especially the osmotic pressure resulting from the
use of salts by the food industry [32]. In this context, the isolation of LAB from artisanal
cheeses aiming at its in situ application is notoriously promising, given its survival in
ripened cheeses, which generally have high amounts of salt [11]. Thus, it may represent, in
the near future, a promising strategy for the food industry.

Finally, the biotechnological potential of LAB also includes the encapsulation of
metabolites produced ex situ by them for the controlled release or application in active
packaging. Microencapsulation technology allows food-grade ingredients or bioactive
components to be adequately protected and released in a controlled manner over long
periods, including at specific sites [33]. The microencapsulation of LAB with probiotic
properties for use in livestock, for example, has already been demonstrated [34]. As for
the active packaging, antibacterial bioplastic film incorporated with purified bacteriocin
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from Lactilactobacillus sakei was able to reduce the contamination of Coalho cheese by
coagulase-positive staphylococci and thermotolerant coliforms [35].

4. LAB Isolated from BAC

In general, BAC are produced from raw milk, which presents a pH close to neutrality,
high water activity and significant nutritional value. It also has rich microbiota, mainly
composed of LAB [36,37], essential for the fermentation process and, consequently, for the
cheese quality and safety [38,39]. The relevant sensory characteristics of artisanal cheeses
are provided by the activity of autochthonous LAB, especially related to the production of
organic acids, fatty acids and amino acids, as well as peptidases and lipases [40–44].

In BAC, the most frequently reported genera of LAB are Lactobacillus, Lactococcus,
Enterococcus, Pediococcus, Leuconostoc, Streptococcus and Weissella (Table 1). No data were
found regarding the LAB isolated from Cabacinha, Parmesan-type cheeses, Porungo and
KochKäse and Käschmier cheeses. It should also be noted that LAB also correspond to the
majority group in an endogenous ferment used in the production of various types of BAC,
in addition to the milking and production environment; therefore, the LAB diversity of BAC
is influenced by the geographic location, climatic conditions and processing steps [15,43,44].

Table 1. LAB isolated from BAC produced in several producing regions.

BAC LAB * References

Caipira Enterococcus sp., E. faecium, E. durans, E. faecalis, E. hermanniensis, Lactococcus, Lb.
plantarum subsp. plantarum, Lb. paracasei subsp. paracasei, Lb. casei. [12,39]

Coalho

Enterococcus sp., E. faecium, E. casseliflavus, E. durans, E. faecalis, E. gallinarum,
E. italicus, E. hermanniensis, Lactobacillus sp., Lb. acidophilus, Lb. curvatus, Lb.
fermentum, Lb. paracasei subsp. paracasei, Lb. plantarum subsp. plantarum, Lb.

rhamnosus , Lactococcus sp., Lc. lactis, Lc. lactis subsp. lactis, Lc. garvieae, Leuconostoc
sp., Lc. mesenteroides subsp. mesenteroides, Streptococcus sp., S. infantarius, subsp.
infantarius, S. lutetiensis, S. macedonicus, S. waiu, Weisella sp., W. paramesenteroides

[12,39,45–47]

Colonial
E. faecium, E. durans, E. faecalis„ E. hermanniensis, Lactococcus sp., Lc. lactis, Lc.
piscium, Lc. raffinolactis group, Lactobacillus sp., Lb. brevis, Lb. casei-paracasei,

Leuconostoc sp., S. equinus-lutetiensis, S. parauberis, S. porcorum/sanguinis
[12,39,48]

Manteiga E. faecium, E. durans, E. faecalis, E. hermanniensis, Lactobacillus sp., Lactococcus sp.,
Leuconostoc sp., Streptococcus sp [12,39]

Marajó E. durans, E. faecium, E. faecalis, E. gilvus, E. hermanniensis, Lactobacillus sp.,
Lactococcus sp., Leuconostoc sp., Streptococcus sp [12,39,49]

Artisanal Minas

Enterococcus spp., E. durans, E. faecalis, E. faecium, E. gilvus, E. hermanniensis, E.
raffinosus, E. rivorum, Lactobacillus sp., Lb. casei, Lb. paracasei subsp. paracasei, Lb.
plantarum subsp. plantarum, Lb. paraplantarum, Lb. rhamnosus, Lb. hilgardii, Lb.

brevis, Lb. buchneri subsp. buchneri, Lb. parabuchneri, Lb. acidipiscis, Lactococcus spp.,
Lc. lactis, Lc. garvieae, Leuconostoc sp., Ln. mesenteroides, Pediococcus sp., P. acidilactici,
Streptococcus sp., S. agalactiae, S. macedonicus, S. porcorum/sanguinis, S. thermophilus,

S. infantarius, W. paramesenteroides

[39,40,44,48,50–55]

Serrano

Enterococcus sp., E. faecium, E. durans, E. faecalis, E. hermanniensis. Lactobacillus sp.,
Lb. casei, Lb. plantarum subsp. plantarum, Lb. paracasei subsp. paracasei, Lb.

rhamnosus, Lb. acidophilus, Lb. curvatus, Lb. fermentum, Lactococcus sp., Lc. lactis, Lc.
piscium, Lc. raffinolactis, Leuconostoc sp., Ln. mesenteroides, Streptococcus sp., S.

equinus-lutetiensis-infantarius, S. parauberis, S. porcorum/sanguinis.

[39,56–58]

* Lactobacillus species updated according to the reclassification [59]. E. = Enterococcus, Lc. = Lactococcus, Lb. = Lacto-
bacillus, Ln = Leuconostoc, S. = Streptococcus, P. = Pediococcus, W. = Weissella.

The importance of LAB in cheese production is due to the presence of starter cultures
and NSLAB. Starter cultures, mainly Lc. lactis and S. thermophilus, are responsible for
converting lactose into lactic acid at a controlled rate. This process results in a gradual
decrease in pH, which has a significant impact on various aspects of cheese production
and ultimately determines the cheese’s composition and quality. During the early stages of
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cheese ripening, Lb. delbrueckii and Lb. helveticus play a critical role, breaking down proteins,
metabolizing lactose, producing aromatic compounds and providing substrates that can
be further consumed by other microbial groups, such as NSLAB [60]. NSLAB mainly
include the facultative heterofermentative Lactobacillus genus, followed by Pediococcus
pentosaceus [61]. They can impact the cheese flavor and texture due to the production of
compounds from the catabolism of amino acids, mainly methionine, aromatic amino acids
and branched-chain amino acids, in addition to the synthesis of EPS [39,61–63]. In addition,
bacteriocins, hydrogen peroxide, diacetyl and CO2 are also produced by NSLAB, acting as
biopreservatives and contributing to the cheese safety [5,11,64,65].

5. Biotechnological Potential of LAB Isolated from BAC

The self-sufficiency in inputs, the increasing demand for clean-label products and
food production in the bioeconomy context have stimulated the development of research
for bioprospecting microbial and bioactive compounds from different types of products,
especially fermented foods [66,67]. Among them, dairy products stand out due to their
recognized microbial diversity, especially LAB. In this context, artisanal cheeses have
proved to be an important source for the isolation of microorganisms with biotechnological
purposes [11].

Recent studies have demonstrated the potential for the industrial application of
LAB, such as the production of enzymes, diacetyl, EPS, antimicrobial compounds, pro-
biotic and prebiotic effects, among others, aimed mainly at improving food quality and
safety [32,68,69]. In Brazil, research has been carried out to discover novel LAB strains
isolated from BAC for industrial exploitation (Table 2). In the next sections, the main
biotechnological applications of LAB identified in BAC by different studies published in
recent years are discussed.

Table 2. Biotechnological potential of LAB isolated from BAC.

BAC Biotechnological Potential References

Marajó Antimicrobial activity against L. monocytogenes, St. aureus and Es. coli, lipolytic
activity, proteolytic activity, acidification capacity, diacetyl production [11,14,49,70,71]

Manteiga
Antimicrobial activity against L. monocytogenes and St. aureus, lipolytic activity,

proteolytic activity, acidification capacity, diacetyl production,
probiotic potential

[11,14,39,72]

Coalho
Antimicrobial activity against Listeria sp., B. cereus, B. subtilis, E. faecalis,

St. aureus, Es. coli, K. pneumoniae and P. aeruginosa, lipolytic activity, proteolytic
activity, acidification capacity, probiotic potential, β-galactosidase synthesis

[11,14,39,47,72–74]

Serrano
Antimicrobial activity against L. monocytogenes, St.aureus, Es. coli, S. enterica
and Penicillium, lipolytic activity, proteolytic activity, acidification capacity,

diacetyl production, probiotic potential
[11,14,39,72,75]

Caipira
Antimicrobial activity against L. monocytogenes and St.aureus, lipolytic activity,

proteolytic activity, acidification capacity, diacetyl production,
probiotic potential

[11,14,39,72]

AMC
Antimicrobial activity against Listeria sp., Enterococcus sp., St. aureus, S.
Typhimurium and S. Enteritidis, lipolytic activity, proteolytic activity,

acidification capacity, diacetyl production, probiotic potential, EPS production
[11,14,39,43,72,76–83]

Colonial
Antimicrobial activity against L. monocytogenes and St. aureus, lipolytic activity,

proteolytic activity, acidification capacity, diacetyl production,
probiotic potential

[11,14,39,72]

L. = Listeria, St. = Staphylococcus, Es. = Escherichia, K. = Klebsiella, P. = Pseudomonas, B. = Bacillus, S. = Salmonella.
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5.1. Bacteriocin Production

Bacteriocins are proteins or peptides ribosomally synthesized by Gram-positive and
-negative bacteria, with recognized antimicrobial activity (bacteriostatic, bactericidal or
bacteriolytic) against taxonomically related or unrelated microorganisms [84–86]. They can
be broad spectrum, inhibiting a wide variety of bacteria, or narrow spectrum, inhibiting
taxonomically close bacteria [86,87]. In general, they are cationic and exhibit amphipathic
properties, with the cell membrane being, in most cases, the target of their activity [88].
The first studies about the antimicrobial activity of LAB date back to the 1920s, with the
discovery of colicin V; the discovery of nisin, in 1969, intensified the search for bioactive
peptides synthesized by LAB, more specifically bacteriocins. Its use by the food and
medical industries represents an alternative to the use of chemical additives and antibiotics,
respectively, which has stimulated the interest in novel research in the area [31,89–91].

The industrial application of bacteriocins has several advantages, such as the activity
against pathogens and spoilage microorganisms in foods, relative stability in different pH
and temperature values, possibility of use as natural preservatives in foods and selective
toxicity and inactivation by digestive proteases, with little influence on gut microbiota. Fur-
thermore, a genetic determinant is usually encoded by plasmids, which allows facilitated
genetic manipulation [92,93]. In addition, bacteriocins produced by LAB are considered
GRAS, which favors their industrial application. However, the only bacteriocin approved
by the Food and Drug Administration (FDA) for use as a preservative in foods is nisin,
produced by Lactococcus lactis and commercially available as Nisaplin® [94]. Nisin can also
be applied in veterinary practice, for example, in the treatment of mastitis as an alternative
to conventional antibiotics [95,96]. However, the low stability and solubility of nisin at
neutral pH, the hydrophobic nature and the selection of resistant bacteria reinforce the
importance of studies focused on the discovery of new bacteriocins [97,98].

In this context, artisanal cheeses consist of an important source of bacteriocins [39].
A recent evaluation of the phylogenetic distribution of the LAB bacteriocin repertoire
associated with artisanal cheeses reported bacteriocins not yet characterized, for example,
two novel putative glycocins and one lasso peptide in the genome of some strains belonging
to the E. faecalis species, reinforcing their relevance as a potential source [84]. Pediocins
produced by four different strains of Pediococcus pentosaceus isolated from AMC were able
to inhibit the growth of Listeria monocytogenes, a relevant foodborne pathogen [98]. The
Pediococcus and Lactobacillus strains isolated from sheep cheese produced in southern Brazil
and artisanal cheese produced in Minas Gerais state have also been identified as producing
bacteriocins with anti-listeria activity [99,100]. In addition to this pathogen, Bacillus cereus,
one of the most important causes of food poisoning, and Pseudomonas fluorescens, common
spoilage bacteria, were inhibited by bacteriocins (not identified yet) produced by the LAB
isolated from Colonial cheese produced in southern Brazil [101].

5.2. Acidification Capacity

The acidification capacity is a widely studied aspect in LAB isolated from artisanal
cheeses and can vary significantly depending on the strain and substrate. LAB are mainly
responsible for the acidification of the raw milk, resulting in the pH decreasing and,
consequently, affecting the activity of the rennet. Acidification also contributes to the
solubilization of calcium phosphate, impacting the cheese texture, as well as the syneresis
process, with reflections on its centesimal composition. Finally, acidification plays an
important role in the microbial succession during cheese ripening, favoring the enzymatic
activity of NSLAB, with desirable effects on the cheese flavor and texture [62,102,103].

Furthermore, the decreasing pH resulting from the production of organic acids can
inhibit the growth of spoilage and pathogenic microorganisms. The release of short-chain
weak organic acids, especially lactic, acetic, sorbic and propionic, during the fermentation
process corresponds to one of the main mechanisms of biopreservation in fermented
foods [104]. The increase in the lipid solubility of organic acids under conditions of high
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acidity interferes with the cell membrane potential, impairing the metabolic functions of
undesirable microorganisms [105].

The acidification capacity of LAB isolated from BAC varied according to the microbial
species and producing region; Lacticaseibacillus paracasei and Levilactobacillus brevis were
more efficient in acidifying the substrate under the LAB isolated from AMC, Coalho and
Caipira cheeses and presented a high acidification capacity [11], which was attributed to
the type of herd feeding, differences in the cheese pressing stage, as well as the higher
proportion of carbohydrate in the cheese. A low acidification capacity was observed for
Weissella spp. isolated from BAC [71], reinforcing that acidification depends on the LAB
species. It is also worth mentioning that the acidification capacity may vary according
to the culture medium used for isolation; LAB isolated from M17 agar showed a greater
acidification capacity than those isolated from MRS agar, which makes it difficult to compare
the results of LAB isolated from different culture media [43].

5.3. Probiotic Potential

According to the Food and Agriculture Organization [106], probiotics are live microor-
ganisms that, when administered in adequate amounts, confer health benefits on the host.
The term prebiotic refers to substrates that, when metabolized by the host’s gut microbiota,
result in health benefits. However, prebiotics can also be found in other sources, such as
food, where they can stimulate the growth or activity of beneficial microorganisms [107].
The consumption of probiotics and/or prebiotics corresponds to one of the most efficient
ways to maintain the balance of the intestinal microbiota (eubiosis) [108].

A probiotic strain must present some requirements, such as the ability to resist the
acidic conditions, adhere to the gut environment, inhibit pathogens, modulate the immune
system and confer benefits on the host’s health; in addition, it does not present virulence
factors. Several LAB strains meet these requirements, which make them even more relevant
for application by the food industry [109]. Regarding probiotic food, it must comply with
legal rules, demonstrating that viable microorganisms confer health benefits and are in a
sufficient minimum number until the expiration date. If the food does not meet all these
requirements, it only contains probiotics but is not considered as a probiotic food. This is
mainly applied for artisanal fermented foods, in which the microbial species present, as
well as their quantities, are generally not known [110].

Several probiotic LAB strains are widely used by the food industry, especially in
the production of functional foods. Recent studies have demonstrated different types of
benefits of probiotic LAB and their respective functional applications [111–113]. Many of
these properties are related to the increasing values of proteins, minerals and vitamins in
foods. In addition, the releasing of products from microbial metabolism, such as peptides,
GABA, conjugated linoleic acids (CLA) and EPS, can contribute to health promotion [114].
Other benefits of probiotic LAB include the prevention of cardiovascular diseases, diarrhea,
allergies, certain types of cancer and immunomodulation, among others [115].

The probiotic potential of LAB isolated from BAC has been demonstrated by different
studies. Strains isolated from Colonial cheese showed high resistance to gastric acidity,
with significant potential for use as a probiotic [116]. In vitro and in vivo probiotic potential
was demonstrated for a Lb. plantarum strain isolated from AMC produced in the Canastra
region, Minas Gerais state [117]. Lb. plantarum and Lb. rhamnosus isolated from the same
type of cheese have already been evaluated as probiotic cultures in fermented milk [76].

Regarding the prebiotic property of compounds produced by LAB, it is generally
related to the production of EPS (as will be discussed further in the next section), because it
can favor the growth of probiotic strains. In cheeses, the supplementation with prebiotics
can increase the populations of viable probiotic microorganisms; for example, the use of
galactooligosaccharides (GOS), fructooligosaccharides (FOS) and inulin as nutraceuticals
has stimulated the growth, survival and activity of probiotic strains in cheeses [118]. In
artisanal cheeses, lactulose promoted the growth of lactobacilli and induced the production
of short-chain fatty acids (SCFA) in Portuguese Serpa cheese [29]. SCFA contribute to health
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benefits, such as the regulation of energy metabolism, protection against colorectal cancer
and inflammatory bowel disorders and obesity prevention [119]. At this moment, the
prebiotic potential of LAB isolated from artisanal cheeses still remains unexplored in Brazil.

5.4. Exopolysaccharide (EPS) Production

Exopolysaccharides are biopolymers produced by microorganisms, whose compo-
sition and production yield are strain-dependent, both impacted by fermentation condi-
tions [120,121]. Xanthomonas campestris and Acetobacter xylinum are recognized as excellent
EPS-producing species; however, for industrial use, it is preferable that the producing
microorganisms are GRAS, which reduces costs with purification processes. Furthermore,
the application of purified EPS results in different effects on food when compared to EPS
produced in situ, with better results [120].

The production of EPS by LAB has already been reported for Lactobacillus, Lactococcus,
Leuconostoc and Streptococcus genera [122–124]. Lb. rhamnosus and Lactobacillus kefiranofaciens
are even recognized as excellent EPS-producing species [109]. Leuconostoc mesenteroides and
Streptococcus salivarius subsp. thermophilus, for example, have already been identified as
producing species of dextran and fructan homopolysaccharides, respectively [120]. In this
sense, the EPS production by LAB is especially important for the food industry, mainly for
obtaining viscosity, stabilizing, emulsifying or gelling agents [109,125].

In cheeses, the production of EPS by NSLAB results in curd strengthening and the
reduction of syneresis as a result of its binding with water molecules in the casein net-
work [126]; thus, it contributes especially for the improvement in appearance and texture
attributes in cheeses. In addition, EPS can minimize the harmful effects of bacteriophages
during the fermentation process of dairy products, as they make the virus adsorption on
the surface of the microbial cell difficult [127]. In BAC, the potential for EPS production
by LAB has been little explored, with the first results indicating the AMC from Canastra,
Campo das Vertentes, Serro and Cerrado, as well as Serrano cheese, as a source of LAB
for this purpose [39]. These authors reinforce that obtaining EPS from the LAB of BAC
constitutes a cheap, natural and sustainable strategy, with lower exploration costs, aiming
at application in dairies.

In addition to the technological properties of EPS, its prebiotic effect stands out, rein-
forcing the relevance of the LAB (Table 2). The EPS produced by LAB favor the tolerance of
probiotic strains to gut stress conditions, resulting in increased viability [109,121]. Because
they can be metabolized in the gut, EPS constitute a substrate for the growth of probiotic
strains, favoring the health benefits already demonstrated for this microbial group. For
example, EPS produced by Lb. plantarum favored the growth of probiotic bacteria [128],
and it also showed a bifidogenic effect, reducing the damages related to putrefactive
bacteria [109].

5.5. Diacetyl Production

Diacetyl (2,3-butanedione) is a volatile compound produced by some LAB species
during the conversion of citrate to pyruvate in the fermentation process, although it is not
an exclusive feature of LAB [74,129,130]. The presence of diacetyl in certain foods is desir-
able, contributing to the buttery aroma and flavor [39,131]. It also presents antimicrobial
activity against food pathogens, for which the mechanism of action consists of blocking the
binding site of the microbial enzyme responsible for the use of arginine, affecting protein
synthesis [129,132].

The production of diacetyl by Lc. lactis subsp. lactis biovar diacetylactis isolated from
raw goat milk has already been reported [105]. In BAC, the LAB isolated from Marajó,
Manteiga and AMC cheeses were able to produce diacetyl (Table 2). The Leuconostoc and
Streptococcus strains isolated from Coalho cheese also showed this ability [74]. Finally, it was
found that strains of Weissella cibaria and Weissella paramesenteroides isolated from cheeses
produced in several regions of Brazil can produce diacetyl; W. paramesenteroides also stood



Fermentation 2023, 9, 409 10 of 18

out as an excellent producer of protease and had a high acidification capacity, desirable
characteristics for cultures used in the dairy industry [71].

Interestingly, the occurrence of diacetyl-producing LAB may vary in BAC depending
on the type of endogenous ferment used in the cheesemaking process. [78] evaluated the
diacetyl production capacity in LAB isolated from “pingo” (the endogenous ferment used
in the production of AMC) and from “rala”, a kind of alternative inoculant consisting of
portions of grated cheese; 66% of the “rala” isolates were able to produce diacetyl, much
higher compared to the “pingo” isolates (25%). This difference can be explained by the
predominance of NSLAB in the “rala” (a group that includes the main producers of diacetyl),
because it is obtained from cheeses ripened for 3 to 5 days, unlike the “pingo” which consists
of the whey collected from the still-fresh cheese produced on the previous day.

5.6. Proteolytic and Lipolytic Activities

Microbial cultures presenting proteolytic activity are widely used in the food industry,
such as in the production of several types of dairy products, including cheeses and fer-
mented milks; in the meat industry, to improve its texture, aroma and color; in the bakery
industry, to break down the gluten net, improving the bread texture; in the alcoholic and
non-alcoholic beverage industry, to reduce turbidity; and even in the production of animal
feed [133].

In cheeses, proteolytic LAB play important roles for their quality, especially in ripened
cheeses; therefore, the use of proteolytic cultures or purified enzymes is of great relevance
for the cheese industry [134,135]. Proteolytic LAB strains can be used as adjunct cultures,
acting on the peptide bonds of the matrix with the consequent release of amino acids and
improvement in the cheese aroma, flavor and texture [70]. In addition, they can be used
in the elaboration of dairy products with lower allergenic potential, reducing the risks for
consumers with greater sensitivity to milk proteins [32].

Pediococcus acidilactici and Weissella viridescens proteolytic strains were isolated from
ripened BAC [136], in addition to Enterococcus spp. isolates from AMC produced in the
Campo das Vertentes, Serro and Cerrado regions, and from Coalho, Colonial, Serrano and
Caipira cheeses [14]. The cheese-producing region can influence the microbial diversity
of the product and, consequently, the occurrence of LAB with proteolytic activity. The
LAB isolated from the AMC produced in the Campo das Vertentes region showed greater
proteolytic activity than the LAB from cheeses produced in the Canastra region [43].

The contribution of LAB to the lipolysis processes in BAC is secondary, being more
relevant for certain types of cheeses, such as blue cheeses (Gorgonzola and Roquefort)
and cheddar [62]. However, lipases play an important role in the releasing of free fatty
acids, precursors of volatile aromatic compounds that improve the sensory quality of the
product [32,130]. It has been shown that BAC are good sources for the isolation of LAB
with lipolytic activity, especially LAB isolated from AMC produced in the Araxá, Canastra
and Serro regions, as well as from Colonial and Serrano cheeses, in addition to Pediococcus
acidilactici isolated from Marajó cheese [11] and Enterococcus spp. isolated from AMC
produced in the Araxá, Campo das Vertentes and Cerrado regions [14].

5.7. β-Galactosidase Activity

β-galactosidases are widely used for the hydrolysis of lactose by the food industry,
with the aim of reducing its content in dairy products. This enzyme prevents crystalliza-
tion and increased sweetness, flavor and solubility in several types of dairy products. In
addition, the hydrolysis of lactose into D-glucose and D-galactose enables the development
of lactose-free products, suitable for intolerant consumers, who correspond to about 70% of
the world’s adult population [137]. β-galactosidases are also able to catalyze transgalacto-
sylation reactions, being successfully applied in the synthesis of lactose-based prebiotics,
such as GOS, lactulose and lactosaccharose [138].

Another application of β-galactosidases that has been evaluated in recent years is the
increase in safety due to the reduction in pH during the fermentation process. The glucose
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released from its activity can be consumed by the microbiota with the consequent produc-
tion of lactic acid, increasing acidification rates, and thus contributing to the inhibition
of pathogens [73]. Furthermore, β-galactosidases have also been used for the treatment
of whey. Its inadequate disposal has been shown to be a serious environmental problem,
especially regarding the eutrophication of rivers and water courses. In this context, the
application of β-galactosidases can help to mitigate the damage resulting from the disposal
of whey, in addition to allowing its reuse for the production of ingredients to be used in
confectionery and bakery products [139].

To the best of our knowledge, there are no reports of the isolation of β-galactosidase-
producing LAB from BAC. The production of β-galactosidase by strains of Lacticaseibacillus
casei and Limosilactobacillus fermentum isolated from buffalo mozzarella has been demon-
strated [140]; a strain of Leuconostoc mesenteroides subsp. mesenteroides with β–galactosidase
activity, also from buffalo mozzarella, has been reported [141]. In BAC, only one study
demonstrated the production of β-galactosidases in the strains of E. durans and E. faecium
isolated from Coalho cheese [73].

6. Underexplored Biopotential and Opportunities for LAB from BAC

Brazil is one of the largest economies in the world, but it still depends on the import
of inputs widely used in different industries, such as food, pharmaceuticals and biofuels,
among others [142]. It is a paradox, given that the country has the greatest biodiversity on
the planet and, therefore, a practically inexhaustible source for prospecting microorganisms
with biotechnological potential. In this context, Brazilian fermented foods represent a
relevant source of bacteria and fungi aimed at industrial exploitation; among these, BAC
has stood out in recent years [11,66].

For this review, studies about LAB with biotechnological potential isolated from
BAC were evaluated. Despite considerable progress in recent years, reinforced by the
promising results presented here, there is still a gap to be filled by further studies. Most
of the research carried out has focused mainly on the evaluation of antimicrobial activity,
acidification capacity and enzyme and diacetyl production by LAB (Table 2). A few studies
demonstrated the EPS production in different LAB isolated from BAC [39,71,78]. A similar
situation was observed for the β-galactosidase synthesis, more specifically by LAB strains
isolated from Coalho cheese [47,73]. As for prebiotics, there are no studies, so far, that have
demonstrated their potential for use in LAB isolated from BAC.

In addition, most of the studies have been carried out in traditional and nationally
recognized cheese-making regions, especially those involved in the production of AMC
(Figure 2). Therefore, some types of cheese still lack information about their microbial
diversity; for example, there are no studies of the isolation and identification of LAB isolated
from Cabacinha cheeses, Parmesan-type cheeses, Porungo and KochKäse and Käschmier
cheeses, produced in the south by German immigrants. It is, therefore, a niche opportunity
for exploring the biotechnological potential of LAB; new insights into the genetic heritage of
these traditional products can be provided from studies with cheesemakers in these regions.

Finally, it is worth to emphasize the urgent necessity to create and maintain a Brazilian
collection of LAB that includes researchers from different regions in the country. Consider-
ing the continental dimension of Brazil, it is a complex and onerous effort. However, the
articulation of researchers from universities and research institutions with public agents
is essential to obtain human and financial resources aiming at the establishment of a na-
tional collection of LAB with scientific legitimacy and that becomes a reliable source of
microorganisms for future research. We believe that this collection will have the potential
to become a world reference in the cataloguing of LAB strains isolated from cheeses, with
inestimable biotechnological value.
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7. Conclusions

This review demonstrated the challenges and opportunities little explored for the
application of LAB isolated from BAC. The discovery and characterization of new LAB
strains isolated from BAC allow to increase the knowledge of the variety of compounds
and enzymes produced by these bacteria and, consequently, expand the opportunities
of applications. The use of producer strains or even isolated substances can be used
for the elaboration of new functional foods, with improved sensorial and rheological
characteristics, and also with greater microbiological safety.
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