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Abstract This work was developed with the objec-
tive of characterizing the variability and genetic 
structure of matrices and progenies of the Mangaba 
genebank of Embrapa Tabuleiros Costeiros, to define 
a core collection. From the matrix of seven acces-
sions, 289 individuals were generated, evaluated by 
nine SSR markers. The characterization of genetic 
variability was performed from the estimates: average 
number of alleles observed (Na = 5.63) and effective 
(Ne = 2.71); Shannon Information Index (I = 1.04); 
Heterozygosity observed (Ho = 0.45) and expected 
(He = 0.51); Fixation index (f = 0.13); Percent poly-
morphism (%P = 90.47); and, Number of private 
alleles (Nap = 20). The analysis of molecular variance 
(AMOVA) identified that the largest proportion of 
genetic variation is present within accessions (92%). 
The estimates of genetic differentiation  (GST and  RST) 
were considered low (< 0.05) to moderate (0.05–0.15) 
magnitude. Multivariate analyses (PCoA, Rogers and 
Bayesian genetic diversity) did not discriminate the 
accessions according to origin. The formation of the 
core collection allowed retaining 94.9% of the identi-
fied alleles. The accessions present genetic variability 

to be explored in mangaba conservation and genetic 
improvement programs. In the future data related 
to agronomic and morphological characterization 
should be used to support the formation of this core 
collection, since the combination of this information 
contributes to the design of more efficient strategies 
for the use of this genetic resource.
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Introduction

The genus Hancornia is monospecific and consists 
of the species Hancornia speciosa Gomes (Jimenez 
et  al. 2015). Popularly known as mangaba, the 
species belongs to the Apocynaceae family with a 
wide distribution in the Neotropics, being reported in 
Brazil, Paraguay, Bolivia and Peru (Collevatti et  al. 
2018; Fajardo et  al. 2018). In Brazil, it can be seen 
from Amapá, in the North, to Paraná, in the South, 
in different phytophysiognomies associated with the 
Cerrado and the Atlantic Forest (Silva et al. 2021).

The mangaba is hermaphrodite and presents 
a self-incompatibility system, a mechanism that 
favors allogamy, being pollinated mainly by moths 
(Darrault and Schlindwein 2005). Its fruits have 
small oval seeds, which are mainly dispersed by 
medium and large mammals (Costa et al. 2017).
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The species is used in folk medicine and differ-
ent parts of the plant have been used to treat various 
diseases, such as gastric ulcers and hypertension 
(Dórea et al. 2021). Additionally, it presents edible 
pulp with relevant nutritional properties (Jimenez 
et al. 2015), factors that have contributed to its use 
by the local population. The fruits are consumed in 
natura and used in the preparation of jellies, juices, 
cookies, ice cream, playing an important role for the 
local economy (Collevatti et al. 2016; Chaves et al. 
2020). It is one of the most important raw materials 
for the juice and ice cream agroindustry among the 
native fruits in the Northeast and Midwest of Bra-
zil, but the supply is unsatisfactory. According to 
Soares et al. (2019), despite its importance for local 
populations and its agro-industrial potential, the 
exploitation of the species has been carried out to 
a greater extent in natural populations, that is, in an 
extractivist manner (Soares et al. 2019).

The form of exploitation associated with the 
process of fragmentation of the areas of natural 
occurrence makes mangaba one of the genetically 
endangered fruit species in Brazil. Considering its 
ecological and economic importance, the collection, 
conservation, and characterization of available 
mangaba genetic resources are fundamental 
(Jimenez et al. 2015).

The adoption of in situ and ex situ conservation 
strategies is necessary for the maintenance of the 
remaining genetic variability of the species. The 
seeds are classified as recalcitrant, thus ex situ 
conservation should be accomplished through 
in  vitro and/or in  vivo field collections (Almeida 
et al. 2019).

Due to the reduction of natural areas and 
the social, economic and cultural importance 
of mangaba, Embrapa Tabuleiros Costeiros, a 
research center of Brazilian Agricultural Research 
Coporation (Embrapa) has been developing 
conservation strategies for the species for more than 
15  years. The Mangaba genebank was established 
in 2006 and is accredited by the Ministry of the 
Environment (MMA)/Genetic Heritage Management 
Council  (CGEN) as the depositary of the species 
in Brazil. It currently consists of 21 accessions 
represented by 299 plants, collected over a wide 
geographic range (Silva et al. 2021).

There is no improvement program, nor mangaba 
cultivars. In the Mangaba genebank some accessions 

were preliminarily identified and selected as early 
(Silva et  al. 2019a, b, c), with low seasonality 
(Machado et  al. 2020), and as excellent sources of 
vitamin C and antioxidants (Silva et  al. 2012, 2021; 
Silva et al. 2017a, b; Santos et al. 2020; Santana et al. 
2021).

Knowledge of the genetic variability present in 
a BAG is essential for the efficient management 
and use of this resource (Bernard et  al. 2018). This 
characterization can be accomplished through 
morphological, agronomic, chemical, and molecular 
variables. DNA markers have been used as key 
tools in the molecular characterization of different 
accessions, as they are not influenced by environment 
and plant development stage, and are more accurate, 
efficient and reliable for the discrimination of related 
genotypes. The genetic diversity of the accessions of 
the Mangaba genabank was carried out following its 
expansion (Costa et al. 2011; Silva et al. 2011; Silva 
et al. 2019a, b, c). With the need to form an area of 
progenies from this genebank, aiming at a breeding 
program, the proposal of this work was built.

Microsatellites (SSR) are important tools for 
characterizing genetic diversity and structure due to 
technical simplicity, speed, high resolving power, 
reproducibility, high level of polymorphism, and 
codominant inheritance (Kölliker et  al. 2010; 
Silva et  al. 2019a, b, c). These markers have been 
successfully used for different purposes in mangaba, 
such as in research to estimate gene flow among 
cultivars (Collevatti et  al. 2016), characterize spatial 
genetic structure (Costa et  al. 2017), and quantify 
the genetic variability present in natural populations 
(Amorim et al. 2015; Rodrigues et al. 2015; Chaves 
et  al. 2020), in germplasm (Silva et  al. 2019a, b, c) 
and progenies (Soares et al. 2018).

Genebanks are considered valuable reservoirs 
of allelic variability for different traits of economic 
and ecological importance that can be exploited in 
conservation and genetic improvement programs 
(Campoy et  al. 2016). However, the preservation 
and maintenance of a large number of accesses is 
labor intensive and expensive. The establishment of 
a core collection is a strategy that allows maximizing 
genetic diversity in a smaller number of accessions, 
reducing the number of redundant genotypes, which 
is an alternative for reducing maintenance costs 
(Pereira et al. 2020).
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In view of the above, this work was carried out 
with the objective of characterizing the variability and 
genetic structure of mangaba progenies from matrices 
of the genebank, using SSR markers, and to define a 
core collection for the germplasm, with the purpose 
of generating information for the conservation, 
management and efficient use of this genetic resource.

Material and methods

The Mangaba genebank (Fig.  1) is located in Itapo-
ranga d’Ajuda, Sergipe state, Brazil (11° 06′ 40″ S 
and 37° 11′ 15″ W).

Seven accessions with matrices in fruiting were 
selected for the production of the progenies, which 
were evaluated together with the 289 progenies 
generated, totaling 296 accessions (seven matrices 
and 289 progenies) (Table 1).

To obtain the progenies, fruits were collected from 
each access used as matrix. The fruits were pulped, 
and the seeds treated with 2.5% sodium hypochlo-
rite solution for 3 min. After, they were washed and 
dried in the shade. For seedling production, the seeds 
were sown in polyethylene bags containing washed 

sand and identified according to the matrix accession 
(Fig. 2). At 6 months after sowing, leaves were taken 
from each progeny for genomic DNA extraction. The 
collected leaves were stored at − 80  °C until DNA 
extraction.

DNA extraction was performed using the method 
described by Doyle and Doyle (1990) modified by 
Alzate-Marin et al. (2009). The extracted DNA was 
diluted in 50  μL of TE and its quantification was 

Fig. 1  Mangaba Genebank 
of Embrapa Tabuleiros 
Costeiros. Itaporanga 
d’Ajuda, Sergipe, Brazil

Table 1  Accessions, procedence and number of progenies 
present in the Mangaba genebank of Embrapa Tabuleiros 
Costeiros. Itaporanga d’Ajuda, Sergipe, Brazil

Acession/Code Procedence N° of progeny

Preguiça—PR Indiaroba, SE 17
Lagoa Grande—LG Mata de São João, Bahia 59
Pontal—PT Indiaroba, Sergipe 56
Barra de Itariri—BI Conde, Bahia 32
Terra Caída—TC Indiaroba, Sergipe 52
Água Boa—AB Salvaterra, Pará 55
Costa Azul—CA Jandaíra, Bahia 18

289
Total 7 matrices + 289 

progenies
296
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performed by spectrophotometry using Nanodrop 
2000c (Thermo Scientific, USA). Nine pairs of 
microsatellite primers (Table  2) developed by 
Rodrigues et  al. (2015) were used to characterize 
genetic diversity and structure.

In each amplification reaction a total of 13 μL of 
solution containing: 9 ng DNA, 0.25 mg  mL−1 BSA 
(bovine serum albumin), 0.2  μM of each primer 
(25 pmol), 1 × PCR buffer (10X), 0.25 mM dNTPs 
mix (2.5  mM), 1 U of Taq DNA polymerase and 
sterile ultrapure water.

The amplifications were performed in a Veriti 
96 Fast thermal cycler (Applied Biosystems/USA). 
The PCR reaction consisted of an initial step at 
94  °C for 1 min, followed by 35 cycles (95  °C for 
1 min for denaturation of the DNA strands, primer 
annealing temperature (Table  2) for 1  min, and 
72  °C for DNA strand extension for 1  min), and a 
final extension step performed at 72 °C for 20 min. 
To test for contamination by exogenous DNA, a 
negative control containing all PCR components 

except DNA (replaced by water) was included in 
each experiment.

The amplification results were visualized by 
electrophoresis on a 2% (w/v) agarose gel stained 
with ethidium bromide (0.5  µg   mL−1) (Sambrook 
et  al. 1989) and photodocumented under ultraviolet 
light (Kodac Gel Logic 200 Imaging System). For 
size comparison of the amplified fragments the DNA 
marker 1 Kb Ladder (Invitrogen) was used.

For the analyses of the fragments obtained by 
each SSR primer pair used, 1  µL of each reaction 
was mixed with 10 µL of HiDi formamide (Applied 
Biosystems, Foster City, CA) and 1 µL of the inter-
nal marker carboxy-X-rhodamine (ROX), developed 
by Brondani and Grattapaglia (2001). The result-
ing solution was denatured for 5 min at 95 °C. Then, 
fragment separation was performed in an ABI 3730 
automated DNA analyzer (Applied Biosystems, Fos-
ter City, CA). Fluorescence peak detection and geno-
typing were performed with the program Genemap-
per version 4.1 (Applied Biosystems). Allele size was 

Fig. 2  Fruits, processing 
and mangaba progeny for-
mation

Table 2  Annealing 
temperature (AT), repeat 
motifs, allele amplitude 
(pb) and fluorescence of 
microsatellites used to 
characterize the diversity 
and genetic structure 
of mangaba genebank 
of Embrapa Tabuleiros 
Costeiros

bp base pairs

Primer AT (°C) Repeat motifs Allele amplitude (bp) Fluorescence

HS01 56 (GCA)6(TC)20(GCA)8 250 a 310 HEX
HS03 56 (CT)5(CT)5 120 a 180 6-FAM
HS05 56 (GA)15(TGC)6 200 a 300 HEX
HS06 54 (GA)14 100 a 150 HEX
HS08 52 (CA)6(CT)17 200 a 250 6-FAM
HS10 56 (CT)14(CT)8 100 a 200 HEX
HS16 54 (GA)12 100 a 150 6-FAM
HS27 54 (GA)14 100 a 150 6-FAM
HS33 56 (AG)24 80 a 120 6-FAM
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adjusted for allele classes defined by the AlleloBin 
program (Prasanth and Chandra 2006).

The statistics allele frequency, number of alleles 
per locus, expected and observed heterozygosity, 
and PIC (Polymorphic Information Content) were 
estimated for each SSR primer pair using Power 
Marker 3.25 software (Liu and Muse 2005).

The genetic variability of the accessions was 
characterized by estimates of the number of 
alleles observed (Na) and effective (Ne); Shannon 
Information Index (I); Heterozygosity observed 
(Ho) and expected (He); calculated according to 
the proportions expected by Hardy–Weinberg 
Equilibrium (Nei 1978); Fixation index (f); 
Percentage polymorphism (%P); and; Number of 
private alleles (Nap).

Analysis of Molecular Variance (AMOVA) was 
performed to estimate the genetic variance existing 
between and within accessions, and the level of 
significance was determined at 9999 permutations. 
Genetic differentiation among accessions  (GST) (Nei 
1973), which corresponds to the proportion of genetic 
variation within accessions compared to the total 
genetic variation, was estimated and its significance 
tested using 10,000 bootstraps. Additionally, Nei 
genetic distance was estimated among the accessions. 
Analyses were performed using Genalex 6.5 software 
(Peakall and Smouse 2012).

Genetic distance among the accessions was 
assessed using Rogers (1972) genetic distance and 
visualized by constructing a dendrogram using 
the UPGMA (Unweighted Pair Group Method 
with Arithmetic Means) algorithm. The analysis 
was performed with the help of the poppr package 
(Kamvar et  al. 2014) for R (R Core Team 2016). 
Ten thousand bootstraps were performed to infer on 
the reliability of the clusters. The software FigTree 
1.4.1 was used to format the obtained dendrogram. 
Principal coordinate analysis (PCoA), at the 
individual level, was performed using Genalex 6.5 
software (Peakall and Smouse 2012).

Bayesian analysis was performed to estimate 
the genetic structure of the accessions using 
Structure v.2.3.4 software (Pritchard et  al. 2000). 
Genetic clustering values (k) ranging from 1 to 7 
(number of accessions) were tested, and for each k, 
10 independent repetitions were performed. Each 
repetition consisted of a burn in period of 50,000 
iterations, followed by 100,000 MCMC (Markov 

Chain Monte Carlo) iterations, assuming the 
admixture ancestry model and uncorrelated allele 
frequency. The number of gene groups (k) was 
identified by the ΔK method described by Evanno 
et  al. (2005), implemented in Structure Harvester 
software (Earl and Vonholdt 2012). Accessions with 
membership values lower than 0.8 were considered to 
be of mixed ancestry.

The core collection is a subsample of the 
germplasm and is established to represent the 
genetic diversity present in the collection in a 
smaller number of accessions. The maximum length 
sub tree function implemented in DARwin 6.0.14 
(Perrier and Jacquemoud-Collet 2006) was used to 
identify the accessions to compose the mangaba core 
collection. This function eliminates accessions that 
are considered redundant and allows the selection of 
accessions that retain the most genetic variation. Ten 
thousand bootstraps were performed to infer on the 
reliability of the result.

Results and discussion

A total of 98 alleles were detected using nine SSR 
markers (Table  3). The number of alleles per locus 
ranged from six (HS03, HS10 and HS27) to 20 
(HS01), with an average of 10.89, and fragment 
size ranged from 103 to 343  bp. The expected het-
erozygosity (He) ranged from 0.04 (HS03) to 0.87 
(HS01), and the observed heterozygosity (Ho) ranged 
from 0.01 (HS03) to 0.72 (HS06). The HS03 marker 

Table 3  Maximum frequence (fmax), number of alleles 
observed (Na), expected heterozygosity (He), observed het-
erozygosity (Ho) and polymorphic information content (PIC) 
for nine SSR markers

SSR markers fmax Na He Ho PIC

HS01 0,23 20 0.87 0.67 0.86
HS03 0,98 6 0.04 0.01 0.04
HS05 0,34 14 0.83 0.40 0.82
HS06 0,30 13 0.78 0.72 0.75
HS08 0,40 7 0.68 0.68 0.62
HS10 0,68 6 0.49 0.31 0.44
HS16 0,48 17 0.66 0.69 0.61
HS27 0,58 6 0.56 0.15 0.48
HS33 0,40 9 0.76 0.43 0.72
Averange 0.49 10.89 0.63 0.45 0.59



 Genet Resour Crop Evol

1 3
Vol:. (1234567890)

showed the lowest heterozygosity value (0.04), indi-
cating that the analyzed accessions did not show 
diversity for this locus. The PIC values ranged from 
0.04 (HS03) to 0.86 (HS01).

The PIC value represents the probability of 
detecting polymorphism between two random 
samples (Ismail et  al. 2019). With the exception of 
primer HS03, the primers showed high discrimination 
power, with PIC values higher than 0.44 (HS10). 
Considering the PIC formula, the observed values are 
dependent on the number of detected alleles and their 
relative frequency (Guzmán et  al. 2020). Therefore, 
the observation of one or two alleles with high 
frequency will contribute to low PIC values, as could 
be observed for primer HS03 that presented one allele 
with frequency equal to 0.98 (Table 3).

The use of nine SSR primers allowed the 
characterization of the variability and genetic 
structure among the progenies and seven matrix 
accessions of the Mangaba genebank. The number of 
alleles per locus detected (6–20) is indicative of the 
allelic richness of the population, and was considered 
sufficient to meet the objective of the present study 
since for SSR markers the detection of two to seven 
alleles per locus is considered satisfactory (Aljumaili 
et al. 2018). The high heterozygosity values detected 
for the SSR markers used may be related to the 
reproductive system (interbreeding) of the species 
(Table 3).

The average number of alleles per locus is an 
indication of genetic diversity, and ranged from 3.67 
(CA) to 7.22 (PT) (Table 4). The average was lower 
than that observed by Collevatti el al. (2018) in a 
study with 28 natural mangaba subpopulations (9.6) 
using SSR markers. The effective number of alleles 
was lower than the observed number of alleles, sug-
gesting that many alleles are rare (p < 0.05) or have 
low frequency (0.05 > p < 0.25) (Viegas et al. 2011). 
The accessions that presented the lowest number of 
alleles were PR and CA, which may be related to 
the smaller number of individuals analyzed (20). 
The effective number of alleles was lower than the 
observed number of alleles, ranging from 1.98 (CA) 
to 3.46 (BI). And, unique alleles were observed for 
five accessions (Table 4).

Considering the Shannon index, here was less 
genetic diversity in the CA accession (0.76), and 
greater in the BI accession (1.31) (Table  4). The 
high values observed indicate the existence of 
high genetic variability in materials. The estimated 
values were higher than those of their matrices 
for all accessions, when observed by Santos et  al. 
(2017), using ISSR markers, varying from 0.28 
(CA) to 0.42 (BI), proving the occurrence of 
random crossings between the accessions.

Ho ranged from 0.37 (CA) to 0.53 (PR), with 
a mean of 0.45, and He ranged from 0.39 (CA) to 
0.62 (BI), with a average of 0.51 (Table  4). This 
index refers to the proportion of accessions that 

Table 4  Estimates of genetic variability parameters for mangaba genebank accessions of Embrapa Tabuleiros Costeiros

Na Average number of alleles per locus, Ne Effective number of alleles per locus, I Shannon index, Ho Observed heterozygosity, He 
Expected heterozygosity, f fixation index, %P Polymorphism percentage, Nap Number of private alleles

Accession Na Ne I Ho He f %P Nap

PR 3.89 2.33 0.85 0.53 0.44 − 0.19 77.78 0
LG 5.67 3.02 1.04 0.41 0.51 0.25 100 1
PT 7.22 3.20 1.22 0.45 0.59 0.28 100 6
BI 6.78 3.46 1.31 0.48 0.62 0.27 88.89 3
TC 5.78 2.22 0.91 0.43 0.45 0.02 88.89 4
AB 6.44 2.76 1.19 0.48 0.58 0.14 100 6
CA 3.67 1.98 0.76 0.37 0.39 0.04 77.78 0
Average 5.63 2.71 1.04 0.45 0.51 0.13 90.47 20
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are heterozygous for a given locus. With the excep-
tion of the PR access, the others presented He > Ho, 
according to the Hardy–Weinberg Equilibrium. This 
result is an indication of heterozygote deficiency 
in the population, and suggests the occurrence of 
crossing between related individuals (Bernard et al. 
2018), and can be proven by the estimated values of 
the Fixation Index (f) for these accessions (greater 
than zero). The estimates for Ho and He were lower 
than expected for allogamous species (0.63 and 
0.65, respectively) and for long-lived species (0.63 
and 0.68, respectively) (Nybom 2004). The esti-
mates for Ho were lower than those reported by 
Costa et  al. (2017), studying mangaba genotypes 
using SSR markers (0.679–0.714), and similar to 
those observed by Chaves et  al. (2020), also for 
mangaba genotypes evaluated using SSR markers 
(0.428–0.581).

The access PR presented higher Ho than He. This 
result is an indication of excess heterozygosity in 
this progeny (Yun et al. 2020), confirming the result 
obtained for the Fixation Index (f = − 0.19) (Table 4). 
The Fixation Index is one of the most important 
parameters in population genetics, as it presents the 
balance between homozygotes and heterozygotes pre-
sent in the population (Pereira et al. 2020). The aver-
age value for the Fixation Index was 0.13, indicating 
a low level of inbreeding for the accessions evaluated.

Mangaba has a self-incompatibility mechanism 
(Darrault and Schlindwein 2005), which favors cross-
fertilization and reduces the occurrence of inbreeding. 
Thus, the excess of heterozygotes observed for the 
PR access can be explained by the reproductive 
system of the species and, probably, the deficit 
of heterozygotes observed for the other accesses 
occurred due to crossing between related individuals. 
Biparental inbreeding was reported to be the cause of 
the high values observed for the endogamy coefficient 
in natural populations of mangaba sampled in the 
Midwest region of Brazil (Costa et al. 2017).

The percentage of polymorphic loci was higher 
than 75% (Table  4), confirming the presence of 
genetic variability for the accessions evaluated. The 
results were higher than those observed in remaining 
mangaba populations (73.77%) (Silva et  al. 2017a, 
b), which may be related to the marker (SSR), 
which is considered more informative than ISSR, 
and the number of individuals evaluated (296). The 
high genetic variability detected for the accessions 
evaluated is often related to species that have wide 
geographic distribution (Al Salameen et al. 2018), as 
is the case with mangaba.

The estimate for Nei’s genetic distance (Table  5) 
among the accessions ranged from 0.098 to 0.607. 
The lowest genetic distance of Nei was observed 
between the PT and TC accessions (0.098), and the 

Table 5  Nei’s genetic 
distance (above the 
diagonal) and GST (below 
the diagonal) between 
mangaba accessions

PR LG PT BI TC AB CA

PR – 0.478 0.198 0.340 0.188 0.324 0.229
LG 0.162 – 0.261 0.239 0.574 0.607 0.589
PT 0.071 0.08 – 0.182 0.098 0.172 0.155
BI 0.105 0.069 0.043 – 0.250 0.309 0.312
TC 0.087 0.186 0.040 0.085 – 0.144 0.153
AB 0.110 0.154 0.047 0.074 0.058 – 0.341
CA 0.111 0.201 0.064 0.108 0.079 0.125 –

Table 6  Molecular analysis 
of variance (AMOVA) 
among the seven mangaba 
accessions

**Significant at 1% 
probability

Source of variation GL SQ QM Variância % p-value RST

Between accessions 6 1,880,524.440 313,420.740 3230.208 8 0.001** 0.076
Within accessions 605 23,650,842.429 39,092.302 39,092.302 92
Total 611 25,531,366.869 42,322.510 100
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highest, between the AB and LG accessions (0.607). 
The genetic differentiation among accessions (GST) 
ranged from 0.040 (PT and TC) to 0.201 (LG and 
CA) (Table 5).

The values observed for Nei and GST genetic 
distance corroborate with the estimates obtained for 
AMOVA (Table 6), in which the smallest proportion 
of genetic variation (8%) was detected among 
accessions, while the largest proportion (92%) was 
observed within accessions. In general, it is observed 
for species with cross-fertilization, such as mangaba, 
that 10–20% of the genetic variation is found between 
populations and that for autogamous species this 
value is higher than 50% (Al Salameen et al. 2018). 
This pattern was also observed in a study conducted 
on natural populations of mangaba using RAPD 
markers (Fajardo et al. 2018).

The estimated value for the  RST statistic was 
0.076 (Table 6), proving the existence of moderate 
genetic differentiation among the accessions 
evaluated. The lowest genetic distance of Nei was 
observed between the accessions PT and TC (0.098, 
Table  5), which may be associated with the origin 
of these accessions (Indiaroba, Sergipe, Brazil). The 
 GST values between PT and BI (0.043); PT and TC 
(0.040); and PT and AB (0.047) are considered low 
according to the classification proposed by Wright 
(1978). The other values observed are considered 
moderate. The presence of private alleles is an 
indication of differentiation among accessions 
and demands strategies for the conservation of 
accessions possessing these alleles. The PR and CA 
accessions showed no private alleles (Table 2).

The principal coordinates analysis (Fig.  3), per-
formed to evaluate the distribution of genetic vari-
ability among the accessions, did not allow us to 
distinguish them according to origin. The first two 
principal coordinates explained 22.07% of the total 
genetic variance of the 296 accessions, with 13.66% 
explained by coordinate 1 and 8.41% by coordinate 
2.

The genetic distance between the accessions 
was estimated using Rogers’ coefficient (1972) 
and ranged from 0.0 (between accessions BIP2.3 
and BIP2.5) to 1.0 (between accessions PTP2.14 
and LGP1.10; PTP2.14 and PTP2.11; PTP2.14 and 
PTP4; PTP2.14 and ABP2.1) (Fig. 4).

The population genetic structure analysis based 
on Bayesian statistics allowed the identification of 
two clusters (k = 2) (Fig.  5). The first cluster was 
composed of 197 progenies, generated from arrays 
of the accessions PR, PT, BI, TC, AB, and CA. The 
second cluster was composed of 90 accessions, gen-
erated from the LG, PT, and BI accessions. A total 
of nine accessions (membership values less than 
80% for the two clusters detected) showed mixed 
ancestry.

Knowledge of the genetic structure of the 
germplasm is essential for the design of efficient 
strategies for the conservation and genetic 
improvement of the species. Cluster identification 
allows for the selection of genitors for breeding 
programs, which can contribute to increased genetic 
diversity and potential gain from selection (Campoy 
et al. 2016).

Population genetic structure analysis based on 
Bayesian statistics was used to infer on the ancestry 
of the accessions from the molecular information 
(Bernard et al. 2018). This analysis did not discrimi-
nate the accessions according to their origin, confirm-
ing the results obtained for the principal coordinates 
analysis (Fig. 2) and Rogers genetic distance analysis 
(Fig. 3). These results indicate that there is no corre-
lation between the molecular data and the geographi-
cal origin of the analyzed accessions (Ismail et  al. 
2019). It was observed that 57 LG accessions, 17 
PT accessions and 15 BI accessions were grouped in 
the same cluster with the analysis in Structure (green 
color, Fig. 4) and considering the first principal coor-
dinate (Fig.  2), these accessions are grouped on the 
negative side. Analyzing the dendrogram (Fig.  3), Fig. 3  Principal coordinate analysis among mangaba acces-

sions
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these accessions are also grouped together (blue, yel-
low, and green).

The creation/maintenance of a germplasm bank 
presents logistical and economical limitations. Thus, 
the creation of a core collection, which represents 
most of the genetic diversity present in the BAG in 
a smaller number of accessions, is an efficient way 
to reduce costs (Campoy et  al. 2016; Bernard et  al. 

2018) and increase the efficiency of the design of 
conservation and genetic improvement strategies for 
the species. The maximum length sub tree function of 
the DARwin 6.0.14 software was used iteratively to 
eliminate redundant accessions, based on the molec-
ular data, and allowed the selection of 225 acces-
sions to compose the core collection of the Mangaba 
BAG. The seven accessions had representatives in the 

Fig. 4  Dendrogram 
obtained using the UPGMA 
clustering method based 
on the Rogers’s genetic 
distance (Rogers 1972) 
between mangaba acces-
sions

Fig. 5  Estimated popula-
tion structure for 296 Mang-
aba accessions (k = 2)
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composition of the core collection, being 6.67% PR, 
18.22% LG, 20.89% AB, 11.55% BI, 6.67% CA, 20% 
PT, and 16% TC (Fig.  6). The selected accessions 
retained 94.90% of the detected alleles.

The three approaches used to study the genetic 
structure of mangaba accessions (Structure, PCoA, 
and Dendrogram) indicated that the accessions 
used as a matrix have the same genetic background 
and share common alleles among them (Ahmed 
et  al. 2021). Moreover, as the species mangaba 
presents a self-incompatibility mechanism (Darrault 
and Schlindwein 2005), which favors allogamy, 
the maintenance of the parent accessions in the 
same experimental field (BAG) contributed to the 
occurrence of gene flow and, consequently, to the 
genetic similarity observed among the progenies.

The use of SSR molecular markers allowed 
the identification of genetic variability within 

and between progenies and matrices of the acces-
sions of the Mangaba genebank, and contributed 
to the selection of materials to compose the core 
collection of this BAG, implemented in the field 
15 months after sowing (Fig. 7).

Additionally, data related to agronomic and 
morphological characterization should be used to 
support the formation of this core collection, since 
the combination of this information contributes to the 
design of more efficient strategies for the use of this 
genetic resource.

Conclusion

Mangaba progenies from the matrices of seven acces-
sions of the Mangaba genebank show genetic diver-
sity within and among accessions. This diversity can 
be exploited for conservation and direct use of this 
genetic resource, and the formation of the core col-
lection is considered essential for the rational and 
economic management of the collection. The identi-
fication of clusters by analyzing the genetic structure 
of germplasm allows the efficient design of crossings 
(selection of parents) for breeding programs, corrobo-
rating the increase in genetic diversity and gain with 
selection. Additionally, the data obtained can sub-
sidize research related to the identification of genes 
associated with traits of economic interest, through 
the correlation between the molecular marker data 
with the agronomic/morphological.

Fig. 6  Number of accessions selected to compose the Mang-
aba Core Collection

Fig. 7  Production of 
mangaba progenies and 
implementation of the core 
collection area. Itaporanga 
d’Ajuda, Sergipe, Brazil
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