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Abstract
Early yield information of perennial crops is crucial for growers and the industry as it enables cost reduction and facilitates 
crop planning. However, assessing the yield of perennial crops using computational models poses challenges due to the 
diverse aspects of interannual variability that affect these crops. This review aimed to investigate and analyze the literature 
on yield estimation and forecasting modeling in perennial cropping systems. We reviewed 49 articles and categorized them 
according to their yield assessment strategy, modeling class, and input variable characteristics. The strategies of yield 
assessment were discussed in the context of their principal improvement challenges. Our investigation revealed that image 
processing and deep learning models are emerging techniques for yield estimation. On the other hand, machine learning 
algorithms, such as Artificial Neural Networks and Decision Trees, were applied to yield forecasting with reasonable time 
in advance of harvest. Emphasis is placed on the lack of representative long-term datasets for developing computational 
models, which can lead to accurate early yield forecasting of perennial crops.

Keywords Yield modeling · Spatio-temporal analysis · Computational intelligence · Machine learning · Decision support

Introduction

Precision Fruit Growing (PFG) is a branch of traditional 
Precision Agriculture that focuses on understanding and 
improving the production of perennial fruit species. This 
is achieved through the assessment of a cycle repeated 
annually—from tree implantation to eradication [31]. To 
effectively implement PFG, it is relevant to consider the 
orchard's lifetime, which, for apple trees, can range from 20 
to 25 years [48].

The influence of previous cycles on the present yield of 
perennial crops adds complexity to these systems. This can 
be exemplified by irregular production between crop years 
[24]. Consequently, one of the first steps in applying PFG 
is to comprehend the factors that determine the spatial and 

temporal patterns of yield [11]. Given that the tree pro-
duction in a particular year corresponds to the cumulative 
impact of various variables, it is not strategic to solely rely 
on annual variables when evaluating the orchard's yield. 
Therefore, the use of computational methods to assess fruit 
growing outcomes must align with the management con-
cepts derived from Precision Agriculture. This approach 
involves acknowledging the inherent spatial and temporal 
variability within each productive area on the rural property, 
rather than evaluating system productivity based on arbitrary 
divisions (such as plots or blocks) generated for personal 
convenience, time, or location.

Additionally, considering temporal and spatial aspects for 
developing more efficient and relevant methods of evalu-
ating the yield of perennial crops can contribute to their 
better operational use [65, 77]. These advanced evaluation 
methods have the potential to enhance decision-making pro-
cesses and increase productivity [47]. Therefore, there is a 
growing interest from both industry and the academic com-
munity in exploring yield assessment models for various 
crops, including apple, coffee, citrus, and even jujube [1, 9, 
55, 75]. In this context, this review investigated the existing 
literature on the use of computational models for evaluating 
the yield of perennial fruit crops, offering insights into the 
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main strategies and technologies employed for estimating 
and forecasting yield. Furthermore, it provides directions 
for future studies in this field.

The content of this review is organized as follows: the 
section “Contextual aspects related to the yield of perennial 
crops” addresses general aspects related to the final yield of 
perennial fruit crops; the section “Review protocol” presents 
the review methodology of the literature; the section “Yield 
assessment of perennial crops” discusses the methods of 
yield assessment based on differences between estimation 
and forecasting models; the section “Temporal data scale 
challenges in perennial fruit crop modeling: insights and 
future directions” summarizes challenges and perspectives 
for future studies of yield assessment modeling strategies; 
finally, conclusions on the subject are presented in the sec-
tion “Conclusions”.

Contextual Aspects Related to the Yield of Perennial 
Crops

Yield is a variable at the end of the productive period that 
integrates the cumulative effects of climate and manage-
ment practices throughout the season. The yield of a crop 
can be influenced by exogenous or endogenous factors [30]. 
Endogenous factors are associated with morphological and 
physiological aspects that influence tree behavior from the 
induction of sprouting to the period of fruit growth and fruit 
maturation. The extent to which endogenous factors affect 
yield can be attributed to the biological response of the tree 
(genetic factor) or determined by the cultivar and specific 
environmental conditions. On the other hand, environmental 
aspects are classified as exogenous factors [35]. These cor-
respond to external interferences, such as climatic variables 
and anthropic actions related to crop management.

In the case of perennial crops, the final yield is not only 
influenced by the annual interferences of endogenous and 
exogenous factors but also by the cumulative effects expe-
rienced over the lifetime of the trees [3, 48]. Some man-
agement actions can impact yield for longer periods than 
one season, such as pruning and thinning practices. In 
such cases, the effects produced on the tree can extend at 
least until the next season, indicating a strong relationship 
between yield and temporal response parameters.

The temporal variability, as well as the spatial variability, 
related to yield can be associated with a stochastic process, 
in which at least one variable of the system behaves ran-
domly over time [65]. Furthermore, several authors reported 
the occurrence of alternate bearing between years of high 
and low yield in perennial crops [13, 29, 33, 52]. Thus, mod-
eling yield response with reasonable time before harvest can 
be a complex task due to variability factors and alternate 
bearing.

However, the relevance of alternate bearing in the mod-
eling strategy depends on the spatial scale at which the 
model will be applied [49]. On a local scale, such as a 
management zone, productive area, or individual plant, the 
variability of yield among years is more pronounced. In 
such cases, considering alternate bearing in the modeling 
strategy becomes necessary to ensure accurate results. On 
the other hand, when dealing with regional or national 
scales, the final balance of production tends to be equiva-
lent. This is because areas of low production can be offset 
by others that have increased productivity in a given year 
and vice versa [49]

Review Protocol

For searching and selecting the articles, we used specific 
keywords, such as Machine Learning, Yield Modeling, 
Yield Forecasting, Yield Prediction, Perennial Crop, Pre-
cision Fruit Growing, Artificial Neural Networks, Long-
term Forecasting, Artificial Intelligence, Spatio-temporal 
Forecasting, and Deep Learning. To ensure comprehen-
sive coverage, Google Scholar, Science Direct, and Scopus 
databases were used. Initially, we screened the articles 
based on the relevance of their titles to our research topic. 
Next, we evaluated the objectives of the papers by review-
ing their abstracts. Articles that focused on perennial fruit 
crops, yield assessment, and yield modeling were identi-
fied as suitable for inclusion in this literature review. As 
a result, we selected and integrated 49 articles into the 
present review.

The articles selected for this review span from 1978 
to April 2022 (Fig. 1), as no specific publication time 
interval was defined. The selected research papers cover 
a period of 44 years, with a significant concentration of 
publications in the last 6 years (Fig. 1). Despite the field of 
yield assessment in PFG has a long history, the increased 
interest in this topic may be attributed to advancements in 
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technology and the adoption of more sophisticated com-
putational model techniques.

Yield Assessment of Perennial Crops

The yield assessment of a productive area is the closing 
stage of a cycle, as it allows assessing whether there was 
a success in carrying out the corrective actions during 
the management phase. Since the yield assessment cor-
responds to a summary of the complete production cycle, 
this literature review focused on estimation and forecast-
ing models of the final yield of perennial crops. However, 
this review does not cover the entire literature on com-
putational models for assessing the other stages of crop 
growth. The articles compiled in this review were related 
to the harvest stage (final yield). This aspect guided the 
discussion of the strategies and challenges for modeling 
the final yield in perennial crops, considering spatio-tem-
poral variability.

Strategies for Yield Assessment of Perennial Crops

After the selection of the articles, all obtained documents 
were analyzed and divided into categories according to 
their yield assessment modeling strategy:

1. Mathematical models developed based on crop data 
from the current season (n) for which the yield assess-
ment is desired. These models are applied to estimate 
the yield and are referred to as Estimating models or 
Estimation models.

2. Mathematical models developed based on crop data 
from previous seasons (n − 1) or before fruit ripening. 
This modeling strategy considers, at least partially, the 
temporal factors in the yield assessment. In this case, the 
crop conditions between data collection, data modeling, 
and the final yield assessment report may vary in func-
tion of the forecast horizon. These models are referred 
to as Predictive models or Forecasting models.

An overview of the main characteristics of the yield 
assessment modeling strategies of perennial crops is pre-
sented in Fig. 2.

The explanatory variable class used for each evalua-
tion modeling strategy may differ. Yield estimation mod-
els usually use direct variables related to direct compo-
nents of the tree, and sporadically use indirect variables 
(Fig. 2). The estimation modeling strategy seeks to objec-
tively quantify yield components through field sampling 
throughout the current production cycle [42]. In this case, 
data corresponding to the number of flowers and fruits, 

as well as parameters such as average fruit weight and 
trunk cross-section diameter are commonly used to yield 
estimation [36]. This way, direct variables combined with 
statistical methods or computational intelligence may be 
able to quantify the yield of the current season.

Models for yield forecasting primarily rely mainly 
on indirect variables (Fig.  2) to establish quantitative 
cause–effect relationships among physiological variables, 
climatological variables, and orchard yields. In addition, 
when making yield forecasting, it is interesting that the vari-
ables come from pre-development periods of the crop or past 
production cycles [42]. That is, quantitative yield data from 
previous seasons are used [14, 61], or data are collected in 
periods before the full ripening of the fruits, such as during 
the budding period.

The relationship between the explanatory variables—
whether direct or indirect—and the yield response can be 
mathematically represented in the modeling step. In terms of 
the estimation or forecasting objectives, we have identified 
two modeling classes. The main approach used in opera-
tional contexts is stochastic modeling, which involves estab-
lishing mathematical relationships between data through 
statistical or empirical models [14, 19, 20, 43, 55, 58, 75]. 
Although, when the modeler's knowledge of the mechanisms 
and processes of yield development is used to establish 
mathematical relationships among the explanatory variables, 
the modeling is considered deterministic or mechanistic [22, 
49, 69] (Fig. 2).

Regarding the model class, three main subdivisions were 
listed:

1. Linear Models (LMs) compose the classical statistical 
models used to describe the behavior of a response vari-
able (dependent variable) as a function of one or more 
predictor variables (independent variables).

2. Simple Nonlinear Models (SNLMs) correspond to 
more robust models. SNLMs can perform associations 

Fig. 2  An overview of the main characteristics of yield assessment 
modeling strategies (continuous line = higher frequency of use; 
dashed line = lower frequency of use)
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between nonlinear data through relatively complex 
machine learning techniques.

3. Deep Nonlinear Models (DNLMs) correspond to a sub-
area of machine learning, which includes models based 
on deep learning techniques that work from massive data 
and numerous processing layers. DNLMs can manage 
and process unstructured data such as text and images 
and automate feature extraction, removing some of the 
dependency on human experts.

Next, we conducted an analysis of the most relevant 
keywords, considering the indexing words used in the 
analyzed documents (Fig.  3). The keywords “yield”, 
“machine learning”, and “remote sensing” emerged as 
the most significant topics. Additionally, the keywords 
“image processing”, “flowering”, “detection”, and “deep 
learning” were prevalent in works related to yield esti-
mation. The keyword “long term” appeared in one yield 
forecasting study. One notable aspect of this analysis was 
the keyword “forecasting” which was associated with both 
modeling strategies. We observed that despite using the 
term “forecasting”, some studies utilized direct variables 
as input data to model the final crop yield in the current 
season, which may be better characterized as an estima-
tion modeling strategy.

The result of yield modeling may vary depending on 
factors such as the type of input data and the statisti-
cal management of uncertainty allowed by the modeling 
strategy. These two factors are, then, related to the model 
type and the assessment time horizon. Therefore, in this 
review, the yield modeling strategies are discussed based 
on two main characteristics: (i) the association of the 
yield assessment with either estimation or forecasting 
and (ii) the class of models used for yield estimation or 
yield forecasting.

Yield Estimation Modeling

Yield estimation is the simplest approach to yield assess-
ment, being performed in the same unit, time, and space 
as the measurement and sampling of input variables [42]. 
In this case, a common solution to obtain the relationships 
between the input variables and the final yield is the use of 
Linear Models (LM). LM appeared in the second place in 
the model class usage ranking (32%) (Fig. 4), considering 
that a linear and a known relationship can be established, 
at least partially, between input and output variables [5]. In 
addition to the simple linear regression model, multiple lin-
ear regression approaches that include more than one input 
parameter as an explanatory variable were frequently applied 
to yield estimation modeling [39, 62].

Some studies used regression models (linear or multiple) 
to estimate orchard yields according to flower density [4, 46, 
62]. For Salvo et al. [62], the simplest approach to estimat-
ing the amount of fruit is based on the number of flowers, 
as presented by Jiménez and Diáz [38, 39] for evaluating 
the production of pears and apples (density of flowers per 
trunk cross-sectional area). The number of flowers can be 
obtained manually [38, 39, 62], but it is possible to employ 
automated methods of computer vision to detect and count 
flowers and fruits in the orchard. These methods combine 
image acquisition devices, including cameras acting in the 
visible band (RGB), and image processing and segmentation 
algorithms to estimate crop yield [27, 56].

Aggelopoulou et  al. [4] used images of trees in full 
bloom to train a linear regression algorithm to estimate the 
orchard's yield from the number of flowers on each tree. 
The results indicated that the method can be used for yield 
estimation after the full flowering period, providing a yield 
response at the beginning of harvest in the actual season. 
However, the orchard area is a relevant factor to be consid-
ered in this type of experiment, mainly in terms of operating 
the system, due to the effort required to obtain the images. 
The authors manually collected images (static photographs) 
of 10% of the flowering trees due to the impossibility of cap-
turing images of the entire orchard in the flowering temporal 
window, considering the technology available at the time.

Yield
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Remote sensing
Neural networks

Phenological growth
Climate
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Flowering
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Fig. 3  Quantitative occurrence of keywords in the reviewed literature
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Fig. 4  Percentage of model class for yield estimation in the reviewed 
literature



SN Computer Science           (2023) 4:554  Page 5 of 13   554 

SN Computer Science

In contrast to the collection of images by photography, 
vegetation indices (VI) are variables easier to obtain as they 
do not depend on manual acquisition. When combined with 
LM, VI may allow the improvement of the orchard yield 
estimation, as verified by Bai et al. [9] during their research 
on the yield of jujube fruits (Ziziphus jujuba). Bai et al. [9] 
determined that LM estimation results can be optimized by 
adding VI corresponding to phenological development to 
the input data. The incorporation of the fruit growth period 
development was able to improve the yield estimation of 
jujube fruit.

Anastasiou et al. [6] conducted a study to evaluate the 
effectiveness of satellite imagery and proximal remote sens-
ing at various developmental stages of grape berry (veraison, 
mid-veraison, and maturity) in combination with a linear 
regression model for vineyard yield estimation. Their find-
ings confirmed that the linear regression model can achieve 
satisfactory results for estimating the yield. Interestingly, the 
correlations between vegetation indices (VI) and yield var-
ied depending on the method of image acquisition. The study 
revealed that using a proximal sensor resulted in higher cor-
relations and better yield estimation results, even during the 
early stages of fruit development. This can be attributed to 
the superior spatial resolution provided by proximal sensors 
compared to satellite images. Consequently, proximal sen-
sors have the potential to enhance yield estimation, even in 
the initial stages of fruit development [6].

Nevertheless, the use of LM can limit the accuracy of the 
estimation results, since the relationships between orchard 
yield and input variables are not always linear [12]. In a 
case study conducted by Logan et al. [47] to estimate the 
average fruit weight in an apple orchard of the 'Gala' cul-
tivar, both linear (generalized linear model) and nonlinear 
(Random Forest) models were employed. The results showed 
that the generalized linear model performed well when using 
data collected 5 days before harvest. However, when data 
collected further in advance (12 days before harvest) were 
utilized, the Random Forest model exhibited better perfor-
mance. Hence, for early yield estimation models, increased 
complexity is required, and nonlinear models may be useful 
for this task.

The SNLM category, which exhibited the highest fre-
quency of use (42%) for yield estimation of perennial crops 
(Fig. 4), involves the acquisition of training and testing 
data. These data can be obtained, similar to the case of 
LMs, through photographic cameras or remote and proxi-
mal sensing methods, allowing for the direct acquisition of 
parameters that are closely associated with orchard yield. 
Parameters, such as the number of fruits per tree, fruit size, 
and canopy area of trees, are commonly employed as direct 
variables in the development of SNLM [20].

In a related study, Rahman et al. [58] explored the poten-
tial of high-resolution satellite images, captured through-
out the fruit growth period, for estimating the yield of a 
mango orchard. They utilized an Artificial Neural Network 
(ANN) model and integrated vegetation indices (VI) with 
geographic information. The results of their study demon-
strated yield estimation results with accuracy superior to 
93%, considering the optimal simulation parameters.

Similarly, Črtomir et al. [23] employed an ANN to esti-
mate the yield of an apple orchard using a single image per 
tree canopy. The findings of their study demonstrated the 
effectiveness of using parameters derived from orchard 
images in conjunction with SNLM for improved yield esti-
mation. Specifically, these parameters proved to be efficient 
in providing more accurate yield estimates during a specific 
stage of development, preferably toward the end of the matu-
ration period. However, it should be noted that the perfor-
mance of SNLMs may reduce when it comes to allowing 
management interventions in the orchard during the cur-
rent harvest season. If SNLMs could efficiently perform 
yield estimation tasks during earlier stages of fruit develop-
ment, it could present an opportunity to increase orchard 
productivity.

Due to the need to explore more adaptable and efficient 
tools for potential operationalization of computational mod-
els in PFG [67], a portion corresponding to 26% of the works 
reviewed here used computer vision methods and different 
architectures of deep nonlinear models (DNLMs) for yield 
estimation (Fig. 4). Convolutional Neural Networks (CNN) 
showed promising results for image classification, particu-
larly in fruit detection and counting. Santos and Gebler [63] 
developed a methodology that incorporates CNN algorithms 
based on multi-view geometry to enable fruit tracking. This 
methodology not only avoids double counting but also 
locates fruits in 3-D space, thereby facilitating subsequent 
yield estimation. Consequently, DNLMs offer even greater 
advantages compared to SNLMs, as they possess the capa-
bility to automatically learn features from raw image data 
[53].

Chen et al. [19] developed a Faster R-CNN model for 
strawberry yield estimation. This model demonstrated the 
capability to detect flowers, immature fruits, and mature 
fruits using RGB images captured by unmanned aerial vehi-
cles (UAVs). The accuracy of the results varied between 
0.76 and 0.91 for images with a resolution of 2 m. However, 
the model's performance in detecting immature fruits fell 
short of expectations, as it occasionally misidentified cer-
tain immature strawberries as dead leaves. Additionally, the 
authors noted challenges arising from fruit occlusion caused 
by overlapping leaves.

Compared to the Faster R-CNN model, the YOLO-V3 
model integrates target detection and classification into a 
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regression problem [68]. Tian et al. [68] obtained favorable 
results in detecting apples at various development stages 
(young apples, growing apples, and ripe apples) using a 
dense YOLO-V3 network. The authors demonstrated the 
YOLO-V3 capability to identify fruits under challenging 
conditions, such as overlapping fruits or fruits hidden by 
leaves and branches. Additionally, they were able to track 
fruit production throughout the growth stages. It is important 
to note that not all immature fruits will mature and contrib-
ute to the final yield due to potential losses during devel-
opment. These findings exhibit promising advancements in 
fruit detection and classification throughout time, enabling 
more accurate estimation of the orchard's ultimate yield.

Yield Forecasting Modeling

The works related to yield forecasting frequently utilized the 
SNLM category (41%), with particular focus on Artificial 
Neural Networks (ANN) and Random Forests (RF). The LM 
category (35%) followed closely, as depicted in Fig. 5. Both 
categories fall under the umbrella of machine learning tech-
niques. Based on articles published between 2000 and 2016, 
the prevailing research trend in Precision Agriculture is con-
nected to the term “networks” [54]. This trend indicates a 
rising interest in the advancement of stochastic models based 
on machine learning techniques, which aligns with the find-
ings of this study.

The main interest when using stochastic models is to 
describe the system’s response, with little emphasis on 
understanding the underlying mechanisms. Invariably, due 
to their advantages in uncovering rules and patterns in large 
datasets [76], stochastic models have been widely imple-
mented in PFG. Linear and nonlinear stochastic models have 
been applied to forecast yields in various perennial crops, 
including apple, grape, mango, and citrus [28, 36, 47].

In contrast, mechanistic models, which aim to explain 
why and how phenomena occur, have been less com-
monly used (24%) (Fig. 5). Developing mechanistic models 
involves representing and reasoning about the underlying 
nature of the process [15]. They are based on scientific 
principles rather than statistical convenience [17] and can 

complement studies that rely on empirical approaches  [16, 
50].

Although mechanistic models are less conventional, they 
have gained popularity in PFG when the goal is to under-
stand and establish the fundamental mechanisms underlying 
crop yield. These models provide a comprehensive under-
standing of fruit formation and how the environment inter-
acts with the fruit growth development process [2, 22]. How-
ever, the process of mechanistic modeling is limited to the 
existing knowledge derived from previous research, which 
may rely on general interactions rather than accounting for 
cultivar-specific and location-specific interactions [42].

Moreover, mechanistic models pose challenges due to 
their high complexity. They require the specification and cal-
ibration of numerous parameters, including soil characteri-
zation, climate factors, and nutrient cycling [70]. Efficient 
data collection and minimizing parameter specifications are 
essential for operationalizing mechanistic models. Addi-
tionally, constructing an adequate model solution requires 
addressing aspects of the system that are still poorly under-
stood and subject to questioning, particularly regarding the 
reasonableness of the formulated hypotheses.

Mechanistic Modeling Strategy: Focus on Phenology

The WOFOST model was optimized by Bai et al. [8] to 
forecast the yield of jujube (Zizyphus jujuba) orchards of 
different ages by incorporating the total dry weight (TDW) 
of new organs, including initial buds and roots. The results 
indicated that the age of the orchard is a crucial parameter 
for accurately predicting the yield of these fruit trees. Addi-
tionally, WOFOST effectively modeled the phenological 
development stages and predicted ripe fruits 2–3 days earlier 
than observed in the field. However, the researchers solely 
considered the influence of temperature on the phenological 
stages of jujube development. When evaluating other peren-
nial species, it is important to consider factors such as day 
length (sunshine hours) and other variables to enhance the 
accuracy of yield forecasting [37].

There are some models available in the form of “R” pack-
ages that simulate the yield-related mechanisms, enabling 
the calculation and comparison of indices that model the 
biological processes of trees. For instance, the Fruclima-
dapt package was developed for temperate fruit species and 
can be applied to calculate bioclimatic indices for assessing 
potential risks to fruit quality and final yield [51]. This pack-
age facilitates the evaluation of long climate series, since 
there is no limit (aside from computational constraints) on 
the number of years that can be assessed in a single function 
run. On the other hand, the ChillModels package enables 
the calculation of multiple models to quantify the accumu-
lation of chill and heat requirements for the development 
of temperate fruit species. This package acknowledges the 

24%

35%

41%
Mechanistic model

Linear model

Simple nonlinear model

Fig. 5  Percentage of model class for yield forecasting in the reviewed 
literature
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importance of studying the seasonal effects on tree yield 
through climatic variables in terms of heat or chill units [57]. 
Similar to the study conducted by Bai et al. [8], both R pack-
ages allow the prediction of phenological stages and con-
sider temperature as the most influential factor in regulating 
bud development.

Phenological stages, strongly influenced by climate, 
hold significant relevance in yield forecasting. They can be 
regarded as a valuable set of input variables for forecasting 
models, as each growth phase directly and indirectly impacts 
crop yield, particularly during maturation stages [34]. How-
ever, determining the precise timing of each phenological 
stage for perennial fruit crops can introduce uncertainties 
due to the inherent variability associated with these crops. 
As a result, there is no universally applicable pattern that 
instills confidence among producers.

Mechanistic Modeling Strategy: Focus on Productivity

As well as the phenological stages, the annual yield varies 
among different perennial crops [51]. Consequently, some 
studies have decomposed the yield forecasting modeling 
problem, focusing on the effects of specific input param-
eters on the other components involved. For instance, in the 
case of using the STICS model to forecast the yield of apple 
orchards, it becomes possible to define the main involved 
parameters, which include agricultural practices, soil type, 
climate conditions, and ecosystem services [25]. The STICS 
model is considered a mechanistic modeling approach, able 
to simulate the water, C, and N balances of various types of 
crops, both annual and perennial, herbaceous, and woody. 
Thus, the model may be able to consider the complexity of 
an orchard by assessing the interactions of these parameters 
with the final yield.

In brief, the input variables most used for mechanistic 
modeling in yield forecasting are climatic indicators focused 
on summarized data for a specific area, such as daily or 
monthly averages [8, 10, 49]. Additionally, specific data 
from orchards, such as physiological characteristics and veg-
etation indexes synthesized into indicators of phenological 
stages, are frequently utilized [16, 69]. Moreover, authors 
often incorporate topographical information and model-
specific calibration parameters [22]. Furthermore, due to the 
interannual yield variability in perennial crops, including 
plant respiration as an input variable in mechanistic yield 
modeling can be advantageous [49].

Mechanistic models are developed based on the prob-
able mechanisms that govern tree behavior and deductions 
of their consequences through the model. In the case of 
perennial crops, plant physiology has a significantly greater 
impact on forecasting results compared to plant nutrition 
or soil fertility, which contrasts with the common rules in 
Precision Agriculture applied to annual crops. Therefore, 

mechanistic models are well suited for yield forecasting as 
they can prioritize the important components of fruit devel-
opment and quantify their effects on the final yield of the 
crop.

Stochastic Modeling Strategy

Yield forecasting takes into account that the explanatory 
variables exhibit characteristics that change over time. This 
implies that the variables' characteristics may differ between 
the time of data collection and the forecasting time horizon. 
Consequently, the relationships between the input variables 
and the predicted outcome are nonlinear and demonstrate 
stochastic characteristics, presenting challenges for the 
application of traditional statistical models [64]. For exam-
ple, Sakai et al. [61] conducted a study using yield data from 
48 citrus trees collected over 7 years to forecast the yield 
for the following season. Despite working with a relatively 
limited dataset, their findings provided clear evidence of the 
nonlinear nature of the data, particularly in relation to the 
biennial bearing phenomenon observed in fruit crops.

The complex nature of yield interference mechanisms in 
perennial fruit trees adds another layer of complexity to the 
system. This complexity, in turn, favors the use of stochas-
tic SNLMs, as they can yield accurate results even without 
complete knowledge of the variable relationships and pos-
sess the capability to adapt to nonlinear data [10].

However, there are a large number of works that address 
the issue of yield forecasting from the perspective of LMs 
[1, 14, 18, 75]. Some authors justified the preference for 
LMs due to their greater ease of interpretation compared 
to black-box models [60]. However, the indirect variables 
commonly used as input to yield forecasting modeling have 
multiple characteristics and tend to be nonlinear, such as VI 
and climatic data [58]. Due to this, it is possible that LMs 
are very restricted models and do not correctly represent the 
most complex mathematical relationships of the system [74].

Arab et al. [7] demonstrated that ANN (with one hid-
den layer) trained with Normalized Difference Vegetation 
Index (NDVI) provided promising results for vineyard yield 
forecasting. The Mean Absolute Error (MAE) obtained with 
the ANN was 1.4 ton/ha, which was less than those obtained 
with the conventional regression models (MAE = 2 ton/ha). 
Moreover, Random Forest models demonstrated good accu-
racy for apple orchard yield forecasting on a regional scale, 
when the models were developed based on climatic data 
and NDVI from two consecutive years [10]. Based on these 
results, it was possible to admit that more complex models, 
such as ANN and Random Forest, are more suitable for yield 
modeling, because they allow the adjustment of data in a 
nonlinear way, even if the modeling objective is explana-
tory [40, 73].
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The use of VI as input variables for yield forecasting has 
some limitations, because the correlations between these two 
parameters vary greatly depending on the period of image 
acquisition, which is related to the stage of crop develop-
ment [71]. Ye et al. [75] observed that the yield forecasting 
models for a citrus orchard performed better when the train-
ing image acquisition occurred in May. During this month, 
new leaves were growing at a faster rate, and it was possible 
to differentiate trees with a greater number of new leaves in 
the spectral images, which is directly related to the yield. 
Therefore, identifying the optimal period for data acquisition 
is essential to achieve good accuracy in yield forecasting.

Furthermore, the optimal period for image data acquisi-
tion can be determined by considering the date when a yield 
parameter is no longer evolving [42]. However, it may not be 
easy to identify this key moment in the field, especially when 
the vegetative stages of trees occur asynchronously in time 
and space [66, 72]. This complexity is further compounded 
by the lack of consensus in the literature regarding the defi-
nition of these stages, especially for perennial crops culti-
vated in regions with limiting climatic conditions. In such 
regions, phenological stages and the corresponding periods 
of fruit development exhibit site-specific temporal variabil-
ity. Consequently, it is not possible to establish a consistent 
phenological date pattern across years or cultivars that could 
aid in determining the optimal period for image acquisition.

Even though the literature indicates positive correlations 
between VIs and the yield of perennial crops, using VIs as 
sole input variables in forecasting models may lead to errors. 
Orchards are subject to various anthropic interferences that 
are not adequately captured when relying solely on param-
eters such as VIs in the development of yield forecasting 
models [59]. In perennial crops, yield is closely linked to dif-
ferent parameters, including both more stable variables such 
as soil and chemical properties, and less-stable variables 
like physiological parameters (e.g., number of leaves and 
tree vigor), management practices, and climatic parameters. 
These parameters are interconnected and contribute to yield 
variability. Li et al. [44] reported that common climatic vari-
ables, such as precipitation and sunshine hours, could have 
a greater impact on final apple yield compared to extreme 
climatic parameters (e.g., frost days, heat damage). Thus, 
to achieve efficient yield forecasting, it is essential to con-
sider the temporal dynamics of environmental influences and 
orchard management across multiple growing years [26].

For instance, collecting data over consecutive years may 
enable the identification of patterns of variability that often 
coincide with fluctuations in climate and orchard manage-
ment practices [42]. Incorporating input variables in the 
form of accumulated values of vegetation indices (VIs) 
throughout the various phenological stages across multiple 
growing seasons of perennial orchards may be representative 

of the correlation between these variables and final crop 
yield, resulting in improved accuracy of yield forecasting 
models [10].

The use of variables associated with physical properties 
and soil fertility in yield forecasting through SNLMs has 
been minimally explored, with only two publications report-
ing on this topic [55, 66]. This limited exploration can be 
attributed, in part, to the stability of these parameters within 
the considered input data time window of the reviewed docu-
ments. Furthermore, unlike annual crops, managing soil-
related variables in perennial crops is challenging as exten-
sive soil adjustment activities are not feasible. Despite these 
parameters may influence final yield, their management 
and correction options are restricted, which explains their 
reduced use as input data for perennial yield forecasting. 
However, although these variables may not be particularly 
useful for guiding actions to increase productivity, they can 
still be employed as parameters for initial forecasting model 
calibration, providing an overview of the area's conditions.

In the study conducted by Papageorgiou et al. [55], eight 
machine learning methods were proposed for yield fore-
casting of an apple orchard across three categories: low, 
medium, and high yield. These methods, including fuzzy 
cognitive maps, MLP ANN, Naive Bayes, K-means cluster-
ing, Decision trees, Recurrent Neural Networks (RNN), and 
association rules, were based on parameters of soil proper-
ties. Among the various machine learning models, the fuzzy 
cognitive maps model outperformed the others, correctly 
categorizing the yield in 42 out of the 56 analyzed cases, 
resulting in an accuracy of 75%. However, it is important to 
note that the accuracy of the results is limited to the train-
ing dataset, as the authors did not utilize a verification set 
to test the model.

The variables most used for yield forecasting through 
SNLMs include weather variables (temperature, precipi-
tation, photoperiod, and solar radiation intensity) [41], 
physiological variables (such as orchard age, tree density, 
and tree spacing) [40], and VIs [18, 74]. Some studies 
also considered geographic variables (such as latitude and 
longitude) [18, 40], as well as soil properties (such as 
electrical conductivity and organic matter content) [55]. 
In general, climate-physiological data tend to be more 
suitable for yield forecasting, because it better represents 
the variation in perennial fruit yield compared to soil 
data.

However, despite the significant progress in the devel-
opment of SNLMs for yield forecasting, these models have 
inherent limitations. They heavily rely on the quality and 
quantity of the data used for training the models. Data-
sets with high levels of noise, incompleteness, or outli-
ers can significantly reduce the performance of SNLMs 
[28]. To overcome these limitations, strategies such as 
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incorporating expert knowledge to address collinearity, 
identifying outliers, and using cross-validation techniques 
can be implemented [21, 47].

Temporal Data Scale Challenges in Perennial 
Fruit Crop Modeling: Insights and Future 
Directions

Yield Estimation Models

The accuracy of yield estimation models relies on site-
specific data, because they are typically based on direct 
variables, such as the number of flowers, number of fruits, 
fruit color, and canopy area. However, collecting local 
data for each site can be resource-intensive and time-con-
suming, requiring sufficient allocation of resources and 
comprehensive data collection and pre-processing efforts 
[45]. To overcome these challenges, recent studies have 
explored image-based analysis techniques, such as com-
puter vision, to facilitate data collection and improve the 
quality of yield estimation methods. However, the reliabil-
ity of image-based estimation can be affected by factors, 
such as lighting conditions, occlusion, and variations in 
fruit appearance. Ongoing research aims to enhance image 
capturing and develop more robust DNLMs, such as multi-
view imaging and 3-D reconstruction  [63, 68].

One of the complexities in developing yield estimation 
models arises when extrapolating results from one year to 
another. While the relationship between the number of flow-
ers and fruits may be established, it may not be applica-
ble for extrapolations beyond the period of data collection, 
especially in regions with year-to-year crop yield variability. 
Factors, such as alternate bearing and canopy changes, make 
it difficult, if not impossible, to create a general model that 
provides accurate results for different years using data from 
just one or two harvest seasons of a fruit crop [12]. There-
fore, it is crucial to examine the transferability and general-
izability of models to ensure accurate estimation results in 
diverse agricultural settings.

Yield Forecasting Models

Yield development is a dynamic process that is influenced 
by both endogenous and exogenous factors, which act on 
the crop throughout its trajectory and can include the inte-
gration of previous influences [42]. The complex nature of 
trajectory effects and accumulated influences has been sug-
gested by studies analyzing crop yield behavior over multi-
ple seasons [48, 61]. These findings highlight the importance 
of considering time-series data, as it can provide valuable 

insights into yield development by capturing the effects of 
its trajectory.

However, only a few studies have explicitly addressed 
the significance of temporal variability in their assessments, 
which can be achieved by incorporating intra-seasonal vari-
ables into the modeling strategy. Climatic variables and veg-
etation indices (VI) may have the potential to offer chrono-
logical data on crop development. Conversely, most of the 
existing literature has primarily focused on point indica-
tors based on specific phenological stages or seasonal time 
stages, such as the average temperature during the flowering 
period [41]. These indicators are often treated as independ-
ent variables when analyzed using classical methods like 
linear regression [32].

In addition, an analysis of the temporal database among 
the reviewed documents revealed that only 11% of the stud-
ies applied historical records spanning more than 10 years 
for yield forecasting modeling (Fig. 6). In contrast, most 
studies (47%) relied on data from a maximum of three previ-
ous seasons, which may provide an insufficient time-series 
to adequately assess the temporal variability of perennial 
crops' yields. Consequently, this limited timeframe may not 
fully capture the effects of past influences on the current 
season's yield.

Since the yield of perennial crops can exhibit signifi-
cant year-to-year variation, the development of accurate 
machine learning models for forecasting alternate bearing 
of fruit crop yield remains unknown. This task requires 
high-quality yield data spanning multiple years, enabling 
the establishment of causal relationships between yield and 
environmental variables or management practices to develop 
robust yield forecasting models [18, 47].

Also, the analysis of time-series data used in the reviewed 
literature revealed that there is a lack of investigation on 
long-term analysis for early yield forecasting. Long-term 
analysis means that the forecasting of crop yield for season 
‘n’ has been conducted without incorporating any input vari-
ables from the current year ‘n’. Otherwise, relying solely 
on input data from the current crop season (n) can limit the 

47%

16%

26%

11%

Database <  3 seasons
Database 3 -  5 seasons
Database 5 - 10 seasons
Database > 10 seasons

Fig. 6  An overview of the temporal scale relate to the input database 
used for yield forecasting modeling in the reviewed documents
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forecasting horizon and reduce the time window for imple-
menting corrective actions in crop management practices 
and decision-making processes, as the orchard production 
may already be established. Therefore, an ideal set of input 
data for long-term yield forecasting that provide actual early 
yield forecasting should include aggregated variables from 
previous seasons (n − 1, n − 2, n − 3, and so on).

In a recent report, Brinkhoff and Robson [18] proposed 
a model for long-term yield forecasting in perennial crops, 
conducted with exclusively historical data from previous 
seasons (2014–2019). The authors successfully forecasted 
macadamia orchard yields for different regions within a 
specific time window, providing producers and the industry 
with valuable information for their decision-making pro-
cesses. Thus, employing newer or more advanced machine 
learning models that incorporate time-series analysis can 
enhance the information derived from the data and contrib-
ute to the development of more robust long-term yield fore-
casting models with greater operational advantages.

Conclusions

In the context of PFG, the field of yield modeling for per-
ennial crops through computational models is still in its 
early stages. This literature survey provides an overview 
of yield assessment modeling for perennial fruit crops and 
the commonly applied estimation and forecasting modeling 
strategies.

For yield estimation, LMs have been widely used and 
have yielded interesting results in the assessment of final 
crop yield based on input data from the current crop har-
vest season, such as the number of flowers and fruits. One 
advantage of LMs is their simplicity and interpretability; 
however, there are limitations when dealing with complex 
nonlinear relationships of perennial crop yield and spatio-
temporal characteristics. In contrast, DNLMs can cap-
ture complex nonlinear patterns and interactions among 
explanatory variables, allowing for more accurate yield 
estimation. These models can automatically process large 
amounts of data and extract detailed crop characteristics 
from high-resolution images, such as leaf area, vegetation 
indices, and canopy structure.

On the other hand, the forecasting yield assessment 
typically refers to the prediction of the final yield within 
the same location but at a future time. Mechanistic mod-
eling strategies enable the prioritization of crucial fruit 
development components and the quantification of their 
impact on the crop's final yield. However, the mechanis-
tic approach requires specific calibration parameters that 
increase the modeling complexity. To overcome this issue, 
forecasting modeling has been frequently conducted by 

SNLMs. The SNLMs incorporate stochastic processes and 
statistical techniques to model the relationships between 
yield data and relevant influencing factors over time, such 
as weather and agronomic conditions. By accounting for 
the temporal dynamics and randomness in perennial crop 
yield, SNLMs may capture complex patterns of perennial 
crop development.

Choosing the yield assessment modeling strategy 
depends on the specific requirements of the application, 
the availability of data, and the expected assessment time 
horizon. Combined data from different locations can pro-
vide valuable information for estimation or forecasting 
modeling from a more generic perspective. However, it 
is equally important to retain the ability to interpret the 
results on a local scale, ensuring that the models can be 
effectively utilized from an agronomic perspective and 
applied in on-farm management practices. Moreover, 
while perennial crop yield is influenced by spatial and 
temporal variability, further research is needed to identify 
the main explanatory variables and establish consistent 
datasets over time and space.
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